首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The turning point between apoptosis and necrosis induced by hydrogen peroxide (H2O2) have been investigated using human T-lymphoma Jurkat cells. Cells treated with 50 μM H2O2 exhibited caspase-9 and caspase-3 activation, finally leading to apoptotic cell death. Treatment with 500 μM H2O2 did not exhibit caspase activation and changed the mode of death to necrosis. On the other hand, the release of cytochrome c from the mitochondria was observed under both conditions. Treatment with 500 μM H2O2, but not with 50 μM H2O2, caused a marked decrease in the intracellular ATP level; this is essential for apoptosome formation. H2O2-reducing enzymes such as cellular glutathione peroxidase (cGPx) and catalase, which are important for the activation of caspases, were active under the 500 μM H2O2 condition. Prevention of intracellular ATP loss, which did not influence cytochrome c release, significantly activated caspases, changing the mode of cell death from necrosis to apoptosis. These results suggest that ATP-dependent apoptosome formation determines whether H2O2-induced cell death is due to apoptosis or necrosis.  相似文献   

2.
Apoptosis has been associated with oxidative stress in biological systems. Caspases have been considered to play a pivotal role in the execution phase of apoptosis. However, which caspases function as executioners in reactive oxygen species (ROS)-induced apoptosis is not known. The present study was performed to identify the major caspases acting in ROS-induced apoptosis. Treatment of HL-60 cells with 50 μM hydrogen peroxide (H2O2) for 4 h induced the morphological changes such as condensed and/or fragmented nuclei, increase in caspase-3 subfamily protease activities, reduction of the procaspase-3 and a DNA fragmentation. To determine the role of caspases in H2O2-induced apoptosis, caspase inhibitors, acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone(Ac-YVAD-cmk), acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) and acetyl-Val-Glu-lle-Aspaldehyde (Ac-VEID-CHO), selective for caspase-1 subfamily, caspase-3 subfamily and caspase-6, respectively, were loaded into the cells using an osmotic lysis of pinosomes method. Of these caspase inhibitors, only Ac-DEVD-CHO completely blocked morphological changes, caspase-3 subfamily protease activation and DNA ladder formation in H2O2-treated HL-60 cells. This inhibitory effect was dose-dependent. These results suggest that caspase-3, but not caspase-1 is required for commitment to ROS-triggered apoptosis.  相似文献   

3.
Methylmercury (MeHg) is a neurotoxic agent acting via diverse mechanisms, including oxidative stress. MeHg also induces astrocytic dysfunction, which can contribute to neuronal damage. The cellular effects of MeHg were investigated in human astrocytoma D384 cells, with special reference to the induction of oxidative-stress-related events. Lysosomal rupture was detected after short MeHg-exposure (1 μM, 1 h) in cells maintaining plasma membrane integrity. Disruption of lysosomes was also observed after hydrogen peroxide (H2O2) exposure (100 μM, 1 h), supporting the hypothesis that lysosomal membranes represent a possible target of agents causing oxidative stress. The lysosomal alterations induced by MeHg and H2O2 preceded a decrease of the mitochondrial potential. At later time points, both toxic agents caused the appearance of cells with apoptotic morphology, chromatin condensation, and regular DNA fragmentation. However, MeHg and H2O2 stimulated divergent pathways, with caspases being activated only by H2O2. The caspase inhibitor z-VAD-fmk did not prevent DNA fragmentation induced by H2O2, suggesting that the formation of high-molecular-weight DNA fragments was caspase independent with both MeHg and H2O2. The data point to the possibility that lysosomal hydrolytic enzymes act as executor factors in D384 cell death induced by oxidative stress.  相似文献   

4.
Cho ES  Lee KW  Lee HJ 《Mutation research》2008,640(1-2):123-130
Oxidative stress induced by reactive oxygen species has been strongly associated with the pathogenesis of neurodegenerative disorders, including Alzheimer's disease. In this study, we investigated the possible protective effects of a cocoa procyanidin fraction (CPF) and procyanidin B2 (epicatechin-(4β-8)-epicatechin) – a major polyphenol in cocoa – against apoptosis of PC12 rat pheochromocytoma (PC12) cells induced by hydrogen peroxide (H2O2). CPF (1 and 5 μg/ml) and procyanidin B2 (1 and 5 μM) reduced PC12 cell death caused by H2O2, as determined by MTT and trypan blue exclusion assays. CPF and procyanidin B2 attenuated the H2O2-induced fragmentation of nucleus and DNA in PC12 cells. Western blot data demonstrated that H2O2 induced cleavage of poly(ADP-ribose)polymerase (PARP), downregulated Bcl-XL and Bcl-2 in PC12 cells. Pretreatment with CPF or procyanidin B2 before H2O2 treatment diminished PARP cleavage and increased Bcl-XL and Bcl-2 expression compared with those only treated with H2O2. Activation of caspase-3 by H2O2 was inhibited by pretreatment with CPF or procyanidin B2. Furthermore, H2O2-induced rapid and significant phosphorylation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), and both of these effects were attenuated by CPF or procyanidin B2 treatment. These results suggest that the protective effects of CPF and procyanidin B2 against H2O2-induced apoptosis involve inhibiting the downregulation of Bcl-XL and Bcl-2 expression through blocking the activation of JNK and p38 MAPK.  相似文献   

5.
Tea (Camellia sinensis) catechins have been studied for disease prevention. These compounds undergo oxidation and produce H2O2. We have previously shown that holding tea solution or chewing tea leaves generates high salivary catechin levels. Herein, we examined the generation of H2O2 in the oral cavity by green tea solution or leaves. Human volunteers holding green tea solution (0.1-0.6%) developed salivary H2O2 with Cmax = 2.9-9.6 μM and AUC0 → ∞ = 8.5-285.3 μM min. Chewing 2 g green tea leaves produced higher levels of H2O2 (Cmax = 31.2 μM, AUC0 → ∞ = 1290.9 μM min). Salivary H2O2 correlated with catechin levels and with predicted levels of H2O2 (Cmax(expected) = 36 μM vs Cmax(determined) = 31.2 μM). Salivary H2O2 and catechin concentrations were similar to those that are biologically active in vitro. Catechin-generated H2O2 may, therefore, have a role in disease prevention by green tea.  相似文献   

6.
Intestinal epithelial cell function is compromised by local immune and inflammatory responses. In this study, we examined the possibility that intestinal epithelial cell injury occurs in the presence of activated inflammatory cells, such as neutrophils and macrophages, via production of reactive oxygen species (ROS). Following exposure to 50–150 μM H2O2, levels of mRNA and protein for Fas and, to a lesser degree, Fas-L were increased and intestinal epithelial cells underwent apoptosis. Treatment of H2O2-exposed cells with agonistic anti-Fas antibody, but not isotype control antibody, significantly enhanced apoptosis. Apoptosis was associated with the activation of caspase 8, while Z-IETD, an inhibitor of caspase 8, blocked apoptosis of H2O2-exposed intestinal epithelial cells. Thus, ROS induced Fas and Fas-L expression in association with intestinal epithelial cell apoptosis. These data support the hypothesis that, following exposure to oxidative stress, enterocytes are primed for cell death via Fas-mediated pathways.  相似文献   

7.
Reactive oxygen species released during the respiratory burst are known to participate in cell signaling. Here we demonstrate that hydrogen peroxide produced by the respiratory burst activates AP-1 binding. Stimulation of the macrophage cell line NR8383 with respiratory burst agonists ADP and C5a increased AP-1 binding activity. Importantly, this increase in binding was blocked by catalase, confirming mediation by endogenous H2O2. Moreover, exogenously added H2O2 mimicked the agonists, and also activated AP-1. Antibodies revealed that the activated AP-1 complex is composed predominantly of c-Fos/c-Jun heterodimers. Treatment of the cells with ADP, C5a and H2O2 (100 μM) all increased the phosphorylation of c-Jun. c-Fos protein was increased in cells treated with C5a or high dose (200 μM) H2O2, but not in cells treated with ADP. The MEK inhibitor, PD98059, partially blocked the C5a-mediated increase in AP-1 binding. A novel membrane-permeable peptide inhibitor of JNK, JNKi, also inhibited AP-1 activation. Together these data suggest that C5a-mediated AP-1 activation requires both the activation of the ERK and JNK pathways, whereas activation of the JNK pathway is sufficient to increase AP-1 binding with ADP. Thus, AP-1 activation joins the list of pathways for which the respiratory burst signals downstream events in the macrophage.  相似文献   

8.
Oxidant-sensitive protein phosphorylation in endothelial cells   总被引:1,自引:0,他引:1  
Reactive oxygen is an important regulator of vascular cell biology; however, the mechanisms involved in transducing signals from oxidants in endothelial cells are poorly defined. Because protein phosphorylation is a major mechanism for signal ransduction, cultured aortic endothelial cells were exposed to nonlethal concentrations of H2O2 to examine oxidant-sensitive changes in phosphorylation state. Addition of H2O2 increases the phosphorylation of the heat shock protein 27 (HSP27) within 2 min. This response is maximal by 20 min and remains constant for more than 45 min. Levels of intrcellular free Ca2+ in endothelial cells did not change following addition of 100 μM H2O2, nor did the ability of the cells to respond to bradykinin. H2O2-induced phosphorylations were either not affected or were slightly increased in cells pretreated with PKC inhibitors (H-8, staurosporin, or calphostin c). Two-dimensional analysis of phosphoproteins from homogenates of 32P-labeled cells revealed that phorbol myristate acetate (PMA) did not cause the same degree of HSP27 phosphorylation as H2O2. Simultaneous addition of 10 ηM PMA and 50 μM H2O2 decreased the oxidant-stimulated phoshorylation of the most acidic HSP27 isoform. These data suggest that signal transduction for H2O2-sensitive endothelial cell responses are not only independent of PKC, but may also be suppressed by the action of the kinase.  相似文献   

9.
10.
Intracellular levels of H2O2 in BHK-21 cells are not static but decline progressively with cell growth. Exposure of cells to inhibitors of catalase, or glutathione peroxidase, not only diminishes this decline but also depresses rates of cell proliferation, suggesting important growth regulatory roles for those antioxidant enzymes. Other agents which also diminish the growth-associated decline in intracellular levels of H2O2, such as the superoxide dismutase mimic, copper II—(3,5-diisopropylsalicylate)2, or docosahexaenoic acid, also reduced cell proliferation. In contrast, proliferation can be stimulated by the addition of 1 μM exogenous H2O2 to the culture medium. Under these conditions, however, intracellular levels of H2O2 are unaffected, whereas there is a reduction in intracellular levels of glutathione. It is argued that critical balances between intracellular levels of both H2O2 and glutathione are of significance in relation both to growth stimulation and inhibition. In addition growth stimulatory concentrations of H2O2, whilst initially leading to increased intracellular levels of lipid peroxidation breakdown products, appear to “trigger” their metabolism, possibly through aldehyde dehydrogenase, whose activity is also stimulated by H2O2  相似文献   

11.
The ability of several beverages to generate hydrogen peroxide was demonstrated by direct measurement using the ferrous ion oxidation-xylenol orange (FOX) assay. Tea and coffee could generate H2O2 to achieve levels over 100 μM, but cocoa did not. Milk decreased net H2O2 production by beverages and showed some ability to remove H2O2 itself, apparently not because of catalase activity. Hence several of the beverages commonly drunk by humans show a complex mixture of anti- and pro-oxidant abilities.  相似文献   

12.
Heme catalases are considered to degrade two molecules of H2O2 to two molecules of H2O and one molecule of O2 employing the catalatic cycle. We here studied the catalytic behaviour of bovine liver catalase at low fluxes of H2O2 (relative to catalase concentration), adjusted by H2O2-generating systems. At a ratio of a H2O2 flux (given in μM/min- 1) to catalase concentration (given in μM) of 10 min- 1 and above, H2O2 degradation occurred via the catalatic cycle. At lower ratios, however, H2O2 degradation proceeded with increasingly diminished production of O2. At a ratio of 1 min- 1, O2 formation could no longer be observed, although the enzyme still degraded H2O2. These results strongly suggest that at low physiological H2O2 fluxes H2O2 is preferentially metabolised reductively to H2O, without release of O2. The pathways involved in the reductive metabolism of H2O2 are presumably those previously reported as inactivation and reactivation pathways. They start from compound I and are operative at low and high H2O2 fluxes but kinetically outcompete the reaction of compound I with H2O2 at low H2O2 production rates. In the absence of NADPH, the reducing equivalents for the reductive metabolism of H2O2 are most likely provided by the protein moiety of the enzyme. In the presence of NADPH, they are at least in part provided by the coenzyme.  相似文献   

13.
Introduction Excess of intracellular reactive oxygen species in relation to antioxidative systems results in an oxidative environment which may modulate gene expression or damage cellular molecules. These events are expected to greatly contribute to processes of carcinogenesis. Only few studies are available on the oxidative/reductive conditions in the colon, an important tumour target tissue. It was the objective of this work to further develop methods to assess intracellular oxidative stress within human colon cells as a tool to study such associations in nutritional toxicology.

Methods We have measured H2O2-induced oxidative stress in different colon cell lines, in freshly isolated human colon crypts, and, for comparative purposes, in NIH3T3 mouse embryo fibroblasts. Detection was performed by loading the cells with the fluorigenic peroxide-sensitive dye 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (diacetoxymethyl ester), followed by in vitro treatment with H2O2 and fluorescence detection with confocal laser scanning microscopy (CLSM). Using the microgel electrophoresis (“Comet”) Assay, we also examined HT29 stem and clone 19A cells and freshly isolated primary colon cells for their relative sensitivity toward H2O2-induced DNA damage and for steady-state levels of endogenous oxidative DNA damage.

Results A dose-response relationship was found for the H2O2-induced dye decomposition in NIH3T3 cells (7.8-125 μM H2O2) whereas no effect occurred in the human colon tumour cell lines HT29 stem and HT29 clone 19A (62-1000 μM H2O2). Fluorescence was significantly increased at 62 μM H2O2 in the human colon adenocarcinoma cell line Caco-2. In isolated human colon crypts, the lower crypt cells (targets of colon cancer) were more sensitive towards H2O2 than the more differentiated upper crypt cells. In contrast to the CLSM results, oxidative DNA damage was detected in both cell lines using the Comet Assay. Endogenous oxidative DNA damage was highest in HT29 clone 19A, followed by the primary colon cells and HT29 stem cells.

Conclusions Oxidative stress in colon cells leads to damage of macromolecules which is sensitively detected in the Comet Assay. The lacking response of the CLSM-approach in colon tumour cells is probably due to intrinsic modes of protective activities of these cells. In general, however, the CLSM method is a sensitive technique to detect very low concentrations of H2O2-induced oxidative stress in NIH3T3 cells. Moreover, by using colon crypts it provides the unique possibility of assessing cell specific levels of oxidative stress in explanted human tissues. Our results demonstrate that the actual target cells of colon cancer induction are indeed susceptible to the oxidative activity of H2O2.  相似文献   

14.
Wu LT  Chu CC  Chung JG  Chen CH  Hsu LS  Liu JK  Chen SC 《Mutation research》2004,556(1-2):75-82
The effect of tannic acid (TA), gallic acid (GA), propyl gallate (PA) and ellagic acid (EA) on DNA damage in human lymphocytes induced by food mutagens [3-amino-1-methyl-5H-pyrido (4,3-b) indole (Trp-P-2) and 2-amino-1-methyl-6-phenylimadazo (4,5-b) pyridine (PhIP) or H2O2 was evaluated by using single-cell electrophoresis (comet assay). The toxicity of these tested compounds (0.1–100 μg/ml) on lymphocytes was not found. These compounds did not cause DNA strand breaks at lower concentrations of 0.1–10 μg/ml. At a concentration of 100 μg/ml, TA and GA exhibited slight DNA damage, whereas PA and EA showed no DNA strand breaks. TA and its related compounds decreased the DNA strand breaks induced by Trp-P-2, PhIP or H2O2 at concentrations of 0.1–10 μg/ml. DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycoslase (FPG)] were used to examine the levels of oxidised pyrimidines and purines in human lymphocytes induced by H2O2. All the compounds at 10 μg/ml can reduce the level of FPG sensitive sites. However, only EA inhibited the formation of EndoIII sensitive sites. The results indicated that these compounds can enhance lymphocytes resistance towards DNA strand breaks induced by food mutagens or H2O2 in vitro.  相似文献   

15.
Thyroglobulin (Tg) was subjected to metal-catalyzed oxidation, and the oxidative degradation was analyzed by SDS-polyacrylamide gel electrophoresis under reducing conditions. In contrast to no effect of hydrogen peroxide (H2O2) alone on the Tg degradation, the inclusion of Cu2+ (30 μM), in combination with 2 mM H2O2, caused a remarkable degradation of Tg, time- and concentration-dependent. The action of Cu2+ was not mimicked by Fe2+, suggesting that Tg may interact selectively with Cu2+. A similar degradation of Tg was also observed with Cu2+corbate system, and the concentration of Cu2+ (5-10 μM), in combination with ascorbate, required for the effective degradation was smaller than that of Cu2+ (10-30 μM) in combination with H2O2. In support of involvement of H2O2 in the Cu2+ corbate action, catalase expressed a complete protection. However, hydroxyl radical scavengers such as dimethylsulfoxide or mannitol failed to prevent the oxidation of Tg whereas phenolic compounds, which can interact with Cu2+, diminished the oxidative degradation, presumably consistent with the mechanism for Cu2+-catalyzed oxidation of protein. Moreover, the amount of carbonyl groups in Tg was increased as the concentration (3-100 μM) of Cu2+ was enhanced, while the formation of acid-soluble peptides was not remarkable in the presence of Cu2+ up to 200 μM. In further studies, Tg pretreated with heat or trichloroacetic acid seemed to be somewhat resistant to Cu2+-catalyzed oxidation, implying a possible involvement of protein conformation in the susceptibility to the oxidation. Based on these observations, it is proposed that Tg could be degraded non-enzymatically by Cu2+-catalyzed oxidation.  相似文献   

16.
The effect of oxygen transfer rate (OTR) on β-carotene production by Blakelsea trispora in shake flask culture was investigated. The results indicated that the concentration of β-carotene (704.1 mg/l) was the highest in culture grown at maximum OTR of 20.5 mmol/(l h). In this case, the percentage of zygospores was over 50.0% of the biomass dry weight. On the other hand, OTR level higher than 20.5 mmol/(l h) was found to be detrimental to cell growth and pigment formation. To elucidate the effect of oxidative stress on β-carotene synthesis, the accumulation of hydrogen peroxide during fermentation under different OTRs was determined. A linear response of β-carotene synthesis to the level of H2O2 was observed, indicating that β-carotene synthesis is stimulated by H2O2. However, there was an optimal concentration of H2O2 (2400 μM) in enhancing β-carotene synthesis. At a higher concentration of H2O2, β-carotene decreased significantly due to its toxicity.  相似文献   

17.
Enhancement of radiation-induced apoptosis by 6-formylpterin   总被引:7,自引:0,他引:7  
Radiation-induced apoptosis and its possible enhancement in the presence of 6-formylpterin (6-FP), a metabolite of folic acid, were examined in human myelomonocytic lymphoma U937 cells. When cells were treated with 6-FP at a nontoxic concentration of 300 μM, and then exposed to X-rays at a dose of 10 Gy, significant enhancement of radiation-induced apoptosis as determined by nuclear morphological change, phosphatidylserine (PS) externalization and DNA fragmentation were observed. Flow cytometry for the detection of intracellular hydrogen peroxide (H2O2) revealed that 6-FP increased the formation of intracellular H2O2, which further increased when the cells were irradiated. Decrease of mitochondria trans-membrane potential (MMP), release of cytochrome c from mitochondria, and activation of caspase-3 were enhanced after the combined treatment. Remarkable activation of protein kinase C δ (PKC δ) and its translocation from cytosol to mitochondria were detected in combined treatment. Increase of intracellular Ca2+ concentrations ([Ca2+]i) was also observed, however, neither calpain I nor calpain II could inhibit the apoptosis. In addition, c-Jun NH2-terminal kinase ( JNK) activation was not enhanced in the combined treatment. A protein involved in a caspase-independent apoptosis pathway, apoptosis inducing factor (AIF), remained unchanged even 3 h after treatment. These results indicate that intracellular H2O2 generated by 6-FP enhances radiation-induced apoptosis via the mitochondria-mediated caspase-dependent pathway, with the active involvement of PKC δ.  相似文献   

18.
Oligodendrocytes have the highest rate of metabolic activity in the brain and are highly vulnerable to oxidative stress. In this work we determined the protective effect of Trolox, a water-soluble analogue of vitamin E, and insulin, a peptide shown to be neuroprotective, in oligodendrocyte lesion induced by hydrogen peroxide (H2O2). Exposure of primary cultures of rat oligodendrocytes to H2O2 dose-dependently decreased their reducing capacity, as determined by the MTT assay. H2O2 (100 μM) had no effect on Bax levels, active-caspase-3, DNA fragmentation or lactate dehydrogenase (LDH) leakage. Nevertheless, under these conditions, H2O2 decreased the levels of myelin basic protein (MBP), used as a marker for oligodendrocyte myelin membrane. Treatment with insulin alone increased MBP levels, but no changes were observed in the presence of insulin plus H2O2. In contrast, incubation with Trolox completely prevented H2O2-induced decrease in MBP expression, suggesting that vitamin E analogues may prevent against oligodendrocyte oxidative damage.  相似文献   

19.
Copper Fenton systems (Cu(II)/H2O2 and Cu(II)/Asc) inactivated the lipoamide reductase and enhanced the diaphorase activity of pig-heart lipoamide dehydrogenase (LADH). Cupric ions alone were less effective. As a result of Cu(II)/H2O2 treatment, the number of titrated thiols in LADH decreased from 6 to 1 per subunit. NADH and ADP (not NAD+ or ATP) enhanced LADH inactivation by Cu(II). NADH also enhanced the effect of Cu(II)/H2O2. Dihydrolipoamide, dihydrolipoic acid, Captopril, acetylcysteine, EDTA, DETAPAC, histidine, bathocuproine, GSSG and trypanothione prevented LADH inactivation. 100 μM GSH, DL-dithiothreitol, N-(2-mercaptopropionylglicine) and penicillamine protected LADH against Cu(II)/Asc and Cu(II), whereas 1.0 mm GSH and DL-dithiothreitol also protected LADH against Cu(II)/H2O2. Allopurinol provided partial protection against Cu(II)/H2O2. EthanoI, mannitol, Na benzoate and superoxide dismutase failed to prevent LADH inactivation by Cu(II)/H2O2 or Cu(II). Catalase (native or denaturated) and bovine serum albumin protected LADH but that protection should be due to Cu binding. LADH inhibited deoxyribose oxidation and benzoate hydroxylation by Cu(II)/H2O2. It is concluded that site-specifically generated HO, radicals were responsible for LADH inactivation by Cu(II) Fenton systems. The latter effect is discussed in the context of ischemia-reoxygenation myocardial injury.  相似文献   

20.
The effects of xanthine + xanthine oxidase-generated reactive oxygen species (ROS) on rabbit muscle creatine kinase (CK) were studied. Xanthine (0.1 mM) + xanthine oxidase (30 mU/ml) inhibited activity of rabbit muscle CK (1.2mU/ml). Catalase (100/ml), but not SOD (100 U/ml), deferoxamine (100μM) or mannitol (20 mM), protected CK from inactivation; suggesting that H2O2 was responsible for inactivation. These results were different from previously reported findings on bovine heart CK that superoxide radicals inactivate the enzyme. Thus, enzymes with homologous structures may have different reactivities to different ROS. H2O2-induced inactivation of rabbit muscle CK was accompanied by a decrease in its thiol group content, whereas no significant changes in the protein structure were detected by SDS-PAGE or carbonyl content. These results suggest that oxidation of -SH groups by H2O2 seems to be a major mechanism of activation of rabbit muscle CK by xanthine + xanthine oxidase. Such inactivation of CK by H2O2 may be important in ROS-induced pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号