首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Ag presentation by MHC class I is a highly inefficient process because cytosolic peptidases destroy most peptides after proteasomal generation. Various mechanisms shape the MHC class I peptidome. We define a new one: intracellular peptide stability. Peptides with two N-terminal basic amino acids are more stable than other peptides. Such peptides should be overrepresented in the peptidome of MHC class I-associated peptides. HLA-B27 binding peptides use anchor residue R at P2 and, although most amino acids are allowed, particular amino acids are overrepresented at P1, including R and K. We show that such N-terminal dibasic peptides are indeed more efficiently presented by HLA-B27. This suggests that HLA-B27 can present peptides from Ags present in fewer copies than required for successful peptide generation for other MHC class I molecules.  相似文献   

2.
3.
Recently, it has been demonstrated that stimulated T cells bearing defects in caspase-8 fail to promote nuclear shuttling of NF-kappaB complexes. Such cells display strikingly similar proliferative and survival defects as T cells lacking Fas-associated death domain protein (FADD) function. We characterized NF-kappaB signaling in T cells bearing a dominant-negative FADD transgene (FADDdd). Whereas FADDdd T cells displayed proliferative defects following activation, these were not a consequence of aberrant NF-kappaB signaling, as measured by IKK/IkappaB phosphorylation and IkappaB degradation. There were no appreciable defects in nuclear translocation of p65/Rel using ImageStream, a flow-based imaging cytometer. Pretreatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, a potent caspase inhibitor, also failed to impede canonical NF-kappaB signaling. Secretion of IL-2 and up-regulation of various activation markers occurred normally. Thus, FADD does not play an essential role in NF-kappaB activation, suggesting an alternative route by which this adaptor promotes the clonal expansion of T cells.  相似文献   

4.
Minor histocompatibility Ags elicit cell-mediated immune responses and graft rejection in individuals receiving MHC-matched tissues. H60 represents a dominant Ag that elicits a strong CTL response in C57BL/6 mice immunized against BALB.B. An 8-aa peptide in the H60 protein is presented by H-2K(b) and this is recognized by the TCR as an alloantigen. The intact H60 glycoprotein is a ligand for the costimulatory NKG2D receptor that is expressed by activated CD8(+) T cells. Thus, H60 may provide both an allogeneic peptide and its own costimulation. We show that mutation of an H-2K(b)-binding anchor residue in the H60 peptide completely abrogates binding of H60 glycoprotein to NKG2D and a synthetic H60 peptide partially blocks the binding of NKG2D to its ligand. Ligands of the human NKG2D receptor are remarkably polymorphic, suggesting that these may also serve as minor histocompatibility Ags.  相似文献   

5.
The human CD1a-d proteins are plasma membrane molecules involved in the presentation of lipid Ags to T cells. In contrast, CD1e is an intracellular protein present in a soluble form in late endosomes or lysosomes and is essential for the processing of complex glycolipid Ags such as hexamannosylated phosphatidyl-myo-inositol, PIM(6). CD1e is formed by the association of beta(2)-microglobulin with an alpha-chain encoded by a polymorphic gene. We report here that one variant of CD1e with a proline at position 194, encoded by allele 4, does not assist PIM(6) presentation to CD1b-restricted specific T cells. The immunological incompetence of this CD1e variant is mainly due to inefficient assembly and poor transport of this molecule to late endosomal compartments. Although the allele 4 of CD1E is not frequent in the population, our findings suggest that homozygous individuals might display an altered immune response to complex glycolipid Ags.  相似文献   

6.
A random-bred strain (Q) was established and divided into six replicates. Each replicate was divergently selected for 6-week weight (for over 30 generations) and each had an unselected control. We have investigated the H-2 haplotype of individual mice of the 18 selected Q strains to determine whether selection for size had also selected for H-2 or H-2-linked genes. From the results it appeared that only the H-2 b and H-2 q haplotypes were present in the foundation stock. A large number of individuals of the six small sublines were of H-2 bhaplotype, while the majority of those of the six large sublines were of the H-2 q haplotype. Individuals in the six control strains were H-2 b , H-2 q or both (i. e., H-2 heterozygotes and/or H-2 recombinants). These results suggest that control of body size is associated with H-2 or an H-2-linked gene(s).  相似文献   

7.
Multiple sclerosis (MS) is believed to be an autoimmune disease mediated by T cells specific for CNS Ags. MS lesions contain both CD4+ and CD8+ T lymphocytes. The contribution of CD4+ T cells to CNS autoimmune disease has been extensively studied in an animal model of MS, experimental autoimmune encephalomyelitis. However, little is known about the role of autoreactive CD8+ cytotoxic T cells in MS or experimental autoimmune encephalomyelitis. We demonstrate here that myelin basic protein (MBP) is processed in vivo by the MHC class I pathway leading to a MBP79-87/Kk complex. The recognition of this complex by MBP-specific cytotoxic T cells leads to a high degree of tolerance in vivo. This study is the first to show that the pool of self-reactive lymphocytes specific for MBP contain MHC class I-restricted T cells whose response is regulated in vivo by the induction of tolerance.  相似文献   

8.
In this study we demonstrate that a disarmed version of the cytotoxin ricin can deliver exogenous CD8(+) T cell epitopes into the MHC class I-restricted pathway by a TAP-independent, signal peptidase-dependent pathway. Defined viral peptide epitopes genetically fused to the N terminus of an attenuated ricin A subunit (RTA) that was reassociated with its partner B subunit were able to reach the early secretory pathway of sensitive cells, including TAP-deficient cells. Successful processing and presentation by MHC class I proteins was not dependent on proteasome activity or on recycling of MHC class I proteins, but rather on a functional secretory pathway. Our results demonstrated a role for signal peptidase in the generation of peptide epitopes associated at the amino terminus of RTA. We showed, first, that potential signal peptide cleavage sites located toward the N terminus of RTA can be posttranslationally cleaved by signal peptidase and, second, that mutation of one of these sites led to a loss of peptide presentation. These results identify a novel MHC class I presentation pathway that exploits the ability of toxins to reach the lumen of the endoplasmic reticulum by retrograde transport, and suggest a role for endoplasmic reticulum signal peptidase in the processing and presentation of MHC class I peptides. Because TAP-negative cells can be sensitized for CTL killing following retrograde transport of toxin-linked peptides, application of these results has direct implications for the development of novel vaccination strategies.  相似文献   

9.
The mechanism of assembly/dissociation of a recombinant water-soluble class I major histocompatibility complex (MHC) H-2Kb molecule was studied by a real-time fluorescence resonance energy transfer method. Like the H-2Kd ternary complex [Gakamsky et al. (1996) Biochemistry 35, 14841-14848], the interactions among the heavy chain, beta2-microglobulin (beta2m), and antigenic peptides were found to be controlled by an allosteric mechanism. Association of the heavy chain with beta2m increased peptide binding rate constants by more than 2 orders of magnitude and enhanced affinity of the heavy-chain molecule for peptides. Interaction of peptides with the heavy-chain binding site, in turn, increased markedly the affinity of the heavy chain for beta2m. Binding of peptide variants of the ovalbumin sequence (257-264) to the heavy chain/beta2m heterodimer was found to be a biphasic reaction. The fast phase was a second-order process with nearly the same rate constants as those of binding of peptides derived from the influenza virus nucleoprotein 147-155 to the H-2Kd heavy chain/beta2m heterodimer [(3.0 +/- 1.0) x 10(-6) M-1 s-1 at 37 degrees C]. The slow phase was a result of both the ternary complex assembly from the "free" heavy chain, beta2m, and peptide as well as an intramolecular conformational transition within the heavy chain/beta2m heterodimer to a peptide binding conformation. Biexponential kinetics of peptide or beta2m dissociation from the ternary complex were observed. They suggest that it can exist in two conformations. The rate constants of beta2m dissociation from the H-2Kb ternary complex were, in the limits of experimental accuracy, independent of the structure of the bound peptide, though their affinities differed by an order of magnitude. Dissociation of peptides from the Kb heavy chain was always faster than from the ternary complexes, yet the heavy chain/peptide complexes were considerably more stable compared with their Kd/nucleoprotein peptide counterparts.  相似文献   

10.
Fas ligand (FasL)-expressing tumor cells are found to effectively mediate rejection of the coinoculated FasL negative parental cells while having no effect on the growth of histologically distinct tumor cells. These observations indicate that FasL induces a specific immune response against Ag derived from FasL-bearing tumors and suggest a possible role for FasL in tumor Ag presentation. Indeed, tumor cells expressing FasL can efficiently interact with dendritic cells (DCs) and this interaction requires the expression of membrane-bound FasL on tumors and Fas on DCs. Moreover, DCs cocultured with FasL-expressing tumors are able to elicit a tumor-specific immune response in vivo, suggesting that DCs acquire tumor Ag during the Fas/FasL-mediated DC-tumor contact. These results identify a novel role for FasL in augmenting tumor-DC interactions and subsequent tumor Ag acquisition by DCs, and suggest that FasL-expressing tumor cells could be used to generate tumor-specific DC vaccines.  相似文献   

11.
Although the importance of membrane microdomains in receptor-mediated activation of lymphocytes has been established, much less is known about the role of receptor ligand distribution on APC and target cells. Detergent-resistant membrane domains, into which GPI-linked proteins partition, are enriched in cholesterol and glycosphingolipids. ULBP1 is a GPI-linked ligand for natural cytotoxicity receptor NKG2D. To investigate how ULBP1 distribution on target cells affects NKG2D-dependent NK cell activation, we fused the extracellular domain of ULBP1 to the transmembrane domain of CD45. Introduction of this transmembrane domain eliminated the association of ULBP1 with the detergent-resistant membrane fraction and caused a significant reduction of cytotoxicity and degranulation by NK cells. Clustering and lateral diffusion of ULBP1 was not affected by changes in the membrane anchor. These results show that the partitioning of receptor ligands in discrete membrane domains of target cells is an important determinant of NK cell activation.  相似文献   

12.
To explore the mechanism(s) by which phospholipase C (PLC)-gamma 2 participates in B cell Ag receptor (BCR) signaling, we have studied the function of PLC-gamma 2 mutants in B cells deficient in PLC-gamma 2. Mutation of the N-terminal Src homology 2 domain [SH2(N)] resulted in the complete loss of inositol 1,4, 5-trisphosphate generation upon BCR engagement. A possible explanation for the SH2(N) requirement was provided by findings that this mutation abrogates the association of PLC-gamma 2 with an adaptor protein BLNK. Moreover, expression of a membrane-associated form (CD16/PLC-gamma 2) with SH2(N) mutation required coligation of BCR and CD16 for inositol 1,4,5-trisphosphate generation. Together, our results suggest a central role for the SH2(N) domain in directing PLC-gamma 2 into the close proximity of BCR signaling complex by its association with BLNK, whereby PLC-gamma 2 becomes tyrosine phosphorylated and thereby activated.  相似文献   

13.
Although they are known for their capacity to kill infected cells, Ag-specific CD8(+) T cells elaborate other effector mechanisms, including TNF and IFN-gamma, that contribute to defense against infection. Ag-specific CD8(+) T cells rapidly turn ON and turn OFF IFN-gamma production in direct response to Ag contact, presumably to minimize the potential immunopathology that could result from inappropriate secretion of this inflammatory mediator. In this study, we show, using in vitro propagated and directly ex vivo-analyzed Ag-specific CD8(+) T cells, that in contrast to Ag-dependent ON/OFF cycling of IFN-gamma production, the cessation of TNF production by the same IFN-gamma producing cells is rapid and Ag independent.  相似文献   

14.
CTLs recognize peptide epitopes which are proteolytically generated by the proteasome and presented on MHC class I molecules. According to the defective ribosomal product (DRiP) hypothesis, epitopes originate from newly synthesized polypeptides which are degraded shortly after their translation. The DRiP hypothesis would explain how epitopes can be generated from long-lived proteins. We examined whether neosynthesis is required for presentation of the immunodominant epitope NP118 of the lymphocytic choriomeningitis virus nucleoprotein, which has a half-life of >3 days. Two days after nucleoprotein biosynthesis was terminated in a tetracycline-regulated transfectant, the presentation of the NP118 epitope ceased. This indicates that NP118 epitopes are generated from newly synthesized nucleoproteins rather than from the long-lived pool of nucleoproteins in the cell. Therefore, the lymphocytic choriomeningitis virus nucleoprotein is the first substrate for which a major prediction of the DRiP hypothesis, namely the requirement for neosynthesis, is shown to hold true.  相似文献   

15.
The agent of Lyme disease, Borrelia burgdorferi, produces membrane lipoproteins possessing potent inflammatory properties linked to disease pathology. The recent association of toll-like receptors (TLR) 2 and 4 with LPS responses prompted the examination of TLR involvement in lipoprotein signaling. The ability of human cell lines to respond to lipoproteins was correlated with the expression of TLR2. Transfection of TLR2 into cell lines conferred responsiveness to lipoproteins, lipopeptides, and sonicated B. burgdorferi, as measured by nuclear translocation of NF-kappaB and cytokine production. The physiological importance of this interaction was demonstrated by the 10-fold greater sensitivity of TLR2-transfected cells to lipoproteins than LPS. Futhermore, TLR2-dependent signaling by lipoproteins was facilitated by CD14. These data indicate that TLR2 facilitates the inflammatory events associated with Lyme arthritis. In addition, the widespread expression of lipoproteins by other bacterial species suggests that this interaction may have broad implications in microbial inflammation and pathogenesis.  相似文献   

16.
Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A   总被引:2,自引:0,他引:2  
Induced secretion of acute-phase serum amyloid A (SAA) is a host response to danger signals and a clinical indication of inflammation. The biological functions of SAA in inflammation have not been fully defined, although recent reports indicate that SAA induces proinflammatory cytokine expression. We now show that TLR2 is a functional receptor for SAA. HeLa cells expressing TLR2 responded to SAA with potent activation of NF-kappaB, which was enhanced by TLR1 expression and blocked by the Toll/IL-1 receptor/resistance (TIR) deletion mutants of TLR1, TLR2, and TLR6. SAA stimulation led to increased phosphorylation of MAPKs and accelerated IkappaBalpha degradation in TLR2-HeLa cells, and results from a solid-phase binding assay showed SAA interaction with the ectodomain of TLR2. Selective reduction of SAA-induced gene expression was observed in tlr2-/- mouse macrophages compared with wild-type cells. These results suggest a potential role for SAA in inflammatory diseases through activation of TLR2.  相似文献   

17.
18.
We have transferred the mouse Ak alpha and Ak beta genes, which encode the class II I-Ak molecule, into mouse L-cell fibroblasts and hamster B cells. I-Ak molecules are expressed on the surface of both cell types. The L-cell and hamster B-cell I-Ak molecules appear normal by serological analyses and two-dimensional gel electrophoresis. Furthermore, the I-Ak molecules on L cells can act as targets for the allogenic T-cell killing of the transformed L cells. The I-Ak molecules in both mouse fibroblasts and hamster B cells can present certain antigens to T-cell helper hybridomas. Thus only class II molecules are required to convert the nonantigen-presenting cell. Accordingly, it will be possible to dissect the structure-function relationships existing between Ia molecules, foreign antigen, and T-cell receptor molecules by in vitro site-directed mutagenesis and gene transfer.  相似文献   

19.
We have investigated the primary immunity generated in vivo by MHC class I-deficient and -competent tumor cell lines that expressed the NKG2D ligand retinoic acid early inducible-1 (Rae-1) beta. Rae-1beta expression on class I-deficient RMA-S lymphoma cells enhanced primary NK cell-mediated tumor rejection in vivo, whereas RMA-Rae-1beta tumor cells were rejected by a combination of NK cells and CD8(+) T cells. Rae-1beta expression stimulated NK cell cytotoxicity and IFN-gamma secretion in vitro, but not proliferation. Surprisingly, only NK cell perforin-mediated cytotoxicity, but not production of IFN-gamma, was critical for the rejection of Rae-1beta-expressing tumor cells in vivo. This distinct requirement for perforin activity contrasts with the NK cell-mediated rejection of MHC class I-deficient RMA-S tumor cells expressing other activating ligands such as CD70 and CD80. Thus, these results indicated that NKG2D acted as a natural cytotoxicity receptor to stimulate perforin-mediated elimination of ligand-expressing tumor cells.  相似文献   

20.
The immunopotentiating activity of neisserial porins, the major outer membrane protein of the pathogenic Neisseria, is mediated by its ability to stimulate B cells and up-regulate the surface expression of B7-2. This ability is dependent on MyD88 and Toll-like receptor (TLR)2 expression, as demonstrated by a lack of a response by B cells from MyD88 or TLR2 knockout mice to the porins. Using previously described TLR2-dependent reporter constructs, these results were confirmed and were shown to be due to induction of NF-kappaB nuclear translocation. This is the first demonstration of known vaccine adjuvant to stimulate immune cells via TLR2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号