首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasonic acoustic emissions from excised stems of two Thryptomene species   总被引:1,自引:0,他引:1  
ABA-dcficient ( aba-1 ) and ABA-insensitive ( abi3–1 ) double mutant seeds of Arabidopsis thaliana are desiccation-intolerant. Carbohydrates are supposed to fulfill a role in membrane protection during dehydration. Desiccation tolerance can be induced in douhle mutant seeds in vivo by supplying the ABA-analog LAB 173 711 to the plant root system. However. this does not lead to significant changes in the carbohydrate composition, in contrast, in vitro incubation of dissected immature seeds with ABA induced desiccation tolerance concomitant with an increase in the seed raffinose content. Thus, different desiccation tolerance-inducing treatments show contradictory effects on seed carbohydrate composition and accumulation. It is concluded that. although carbohydrates might be invohed in membrane protection or glass formation during dehydration, it is unlikely that they are the sole factor determining desiccation tolerance in Arabidopsis seeds  相似文献   

2.
In contrast to wild-type seeds of Arabidopsis thaliana and to seeds deficient in (aba) or insensitive to (abi3) abscisic acid (ABA), maturing seeds of recombinant (aba,abi3) plants fail to desiccate, remain green, and lose viability upon drying. These double-mutant seeds acquire only low levels of the major storage proteins and are deficient in several low mol wt polypeptides, both soluble and bound, and some of which are heat stable. A major heat-stable glycoprotein of more than 100 kilodaltons behaves similarly; during seed development, it shows a decrease in size associated with the abi3 mutation. In seeds of the double mutant from 14 to 20 days after pollination, the low amounts of various maturation-specific proteins disappear and many higher mol wt proteins similar to those occurring during germination are induced, but no visible germination is apparent. It appears that in the aba,abi3 double mutant seed development is not completed and the program for seed germination is initiated prematurely in the absence of substances protective against dehydration. Seeds may be made desiccation tolerant by watering the plants with the ABA analog LAB 173711 or by imbibition of isolated immature seeds, 11 to 15 days after pollination, with ABA and sucrose. Whereas sucrose stimulates germination and may protect dehydration-sensitive structures from desiccation damage, ABA inhibits precocious germination and is required to complete the program for seed maturation and the associated development of desiccation tolerance.  相似文献   

3.
Two new abscisic acid (ABA)-insensitive mutants of Arabidopsis thaliana affected in the abi3 locus are described. These new mutants are severely ABA insensitive. Like the earlier described abi3-1 and the ABA-deficient and -insensitive double mutant aba,abi3, these new mutants vary in the extent of ABA-correlated physiological responses. Mutant seeds fail to degrade chlorophyll during maturation and show no dormancy, and desiccation tolerance and longevity are poorly developed. Carbohydrate accumulation as well as synthesis of LEA or RAB proteins are often suggested to be essential for acquisition of desiccation tolerance. In this work two points are demonstrated. (a) Accumulation of carbohydrates as such does not correlate with acquisition of desiccation tolerance or longevity. It is suggested that a low ratio of mono- to oligosac-charides rather than the absolute amount of carbohydrates controls seed longevity or stability to desiccation tolerance. (b) Synthesis of a few assorted proteins, which is responsive to ABA in the later part of seed maturation, is not correlated with desiccation tolerance or longevity.  相似文献   

4.
The moss Physcomitrella patens , a model system for basal land plants, tolerates several abiotic stresses, including dehydration. We previously reported that Physcomitrella patens survives equilibrium dehydration to ?13 MPa in a closed system at 91% RH. Tolerance of desiccation to water potentials below ?100 MPa was only achieved by pretreatment with exogenous abscisic acid (ABA). We report here that gametophores, but not protonemata, can survive desiccation below ?100 MPa after a gradual drying regime in an open system, without exogenous ABA. In contrast, faster equilibrium drying at 90% RH for 3–5 days did not induce desiccation tolerance in either tissue. Endogenous ABA accumulated in protonemata and gametophores under both drying regimes, so did not correlate directly with desiccation tolerance. Gametophores of a Ppabi3a/b/c triple knock out transgenic line also survived the gradual dehydration regime, despite impaired ABA signaling. Our results suggest that the initial drying rate, and not the amount of endogenous ABA, may be critical in the acquisition of desiccation tolerance. Results from this work will provide insight into ongoing studies to uncover the role of ABA in the dehydration response and the underlying mechanisms of desiccation tolerance in this bryophyte.  相似文献   

5.
Lin  T; Yen  W; Chien  C 《Journal of experimental botany》1998,49(324):1203-1212
The relationship between sugar content and loss of desiccation tolerance of hydrated crop seeds (tomato, okra, snow pea, mung bean, and cucumber) was evaluated by imbibing seeds with or without ABA, followed by dehydration and germination. During the process of hydration, but before the seeds lost desiccation tolerance, monosaccharide content increased only slightly, sucrose increased in snow peas, mung bean and cucumber, but maintained its original level in other species and the oligosaccharides declined dramatically. At the time of losing desiccation tolerance, the sucrose content of imbibed seeds was 2-3 times higher than the original level in most species. Positive significant correlation coefficients (r) were found in many, but not all crop seeds between desiccation tolerance and the oligosaccharide mass, or oligo/sucrose ratio. The ratio of oligo/sucrose in intact seeds at the time of losing desiccation tolerance, however, was not a fixed value and varied among species. Oligosaccharides declined significantly in different seed parts of imbibed cucumber seeds while sucrose increased to a higher level in the radicle than in the hypocotyl. Radicles were far more sensitive to desiccation than hypocotyls. The same observation was found for cucumber seeds imbibed in 100 M ABA, yet desiccation tolerance was largely maintained in hypocotyls and cotyledons. It is concluded that sucrose and oligosaccharides are not the determinants of the loss of desiccation tolerance in hydrated seeds.Imbibed seeds did not show any differences between seed parts in their ability to resynthesize sugars during the process of slow dehydration. Differences in sensitivity to desiccation among seed parts were not due to differences in the initial water content or to the rate of water content increase among seed parts. Physiological regulation of the loss of desiccation tolerance in crop seeds during hydration is discussed.  相似文献   

6.
The effect of exogenous ABA on acquisition of desiccation tolerance has been well documented for the embryos of several species. including maize ( Zea mays L.). It has also been suggested that endogenous ABA plays a role in regulating the same phenomena. To test this hypothesis, endogenous ABA was quantified by radioimmunoassay. Our results show that: (1) during embryogenesis in maize, endogenous ABA increase-concomitantly with the acquisition of desiccation tolerance: (2) ABA deficient embryos of the vp 5 mutant are desiccation intolerant, but tolerance can he induced by exogenous ABA: and (3) desiccation tolerance is acquired if desiccation sensitive embryos undergo a slow drying treatment, during which ABA increases. However, when embryos were preincubated in fluridone to prevent ABA accumulation during slow drying, desiccation tolerance was induced in spite of the low level of endogenous ABA in the embryo. Our results cast doubts on an exclusive role of ABA in the acquisition of desiccation tolerance in maize embryo.  相似文献   

7.
8.
In order to obtain dry artificial seeds, carrot somatic embryos were pre-treated before being encapsulated into calcium-alginate-gellan gum, and slowly dehydrated unitil 15% RH (relative humidity of the chamber). ABA (1 to 10 μM), 1 to 5 mM proline, an osmotic pressure of ±520 mOsm, or heat (35°C) enhanced the desiccation tolerance of encapsulated somatic embryos. Some treatments were complementary, like 10 μM ABA and 10% sucrose, 10 μM ABA and heat (35°C), or 10% sucrose and cold (4°C). In such conditions, complete or almost total (95.6–100% germination) desiccation tolerance was then obtained. These treatments may act by the acquisition of sufficient-and well-balanced-protein and starch reserves. osmotic treatments, ABA, and above all proline, promoted protein accumulation, meanwhile starch reserves were slightly depleted by 10–20 μM ABA, proline, and poor sucrose-osmotic treatments (8% trehalose). All the treatments were found to enhance viability during dehydration, as observed by fluorescence. Sucrose may be partly replaced by other osmotica. Alone, it has a negative effect on the depletion of starch reserves. Cold (4°C) with 10% sucrose may favor the glassy state transition. ABA and proline appear to be involved in the same process leading to the acquisition of partial desiccation tolerance. Heat (35°C), or 10% sucrose, have been found to complement ABA action in the acquisition of full desiccation tolerance.  相似文献   

9.
The moss Physcomitrella patens has been used as a model organism to study the induction of desiccation tolerance (DT), but links between dehydration rate, the accumulation of endogenous abscisic acid (ABA) and DT remain unclear. In this study, we show that prolonged acclimation of P. patens at 89% relative humidity (RH) [?16 MPa] can induce tolerance of desiccation at 33% RH (?153 MPa) in both protonema and gametophore stages. During acclimation, significant endogenous ABA accumulation occurred after 1 day in gametophores and after 2 days in protonemata. Physcomitrella patens expressing the ABA‐inducible EARLY METHIONINE promoter fused to a cyan fluorescent protein (CFP) reporter gene revealed a mostly uniform distribution of the CFP increasing throughout the tissues during acclimation. DT was measured by day 6 of acclimation in gametophores, but not until 9 days of acclimation for protonemata. These results suggest that endogenous ABA accumulating when moss cells experience moderate water loss requires sufficient time to induce the changes that permit cells to survive more severe desiccation. These results provide insight for ongoing studies of how acclimation induces metabolic changes to enable DT in P. patens.  相似文献   

10.
The ability of seeds to withstand desiccation develops during embryogenesis and differs considerably among species. Paddy rice (Oryza sativa L.) grains readily survive dehydration to as low as 2% water content, whereas North American wild rice (Zizania palustris var interior [Fasset] Dore) grains are not tolerant of water contents below 6% and are sensitive to drying and imbibition conditions. During embryogenesis, dehydrin proteins, abscisic acid (ABA), and saccharides are synthesized, and all have been implicated in the development of desiccation tolerance. We examined the accumulation patterns of dehydrin protein, ABA, and soluble saccharides (sucrose and oligosaccharides) of rice embryos and wild rice axes in relation to the development of desiccation tolerance during embryogenesis. Dehydrin protein was detected immunologically with an antibody raised against a conserved dehydrin amino acid sequence. Both rice and wild rice embryos accumulated a 21-kD dehydrin protein during development, and an immunologically related 38-kD protein accumulated similarly in rice. Dehydrin protein synthesis was detected before desiccation tolerance had developed in both rice embryos and wild rice axes. However, the major accumulation of dehydrin occurred after most seeds of both species had become desiccation tolerant. ABA accumulated in wild rice axes to about twice the amount present in rice embryos. There were no obvious relationships between ABA and the temporal expression patterns of dehydrin protein in either rice or wild rice. Wild rice axes accumulated about twice as much sucrose as rice embryos. Oligosaccharides were present at only about one-tenth of the maximum sucrose concentrations in both rice and wild rice. We conclude that the desiccation sensitivity displayed by wild rice grains is not due to an inability to synthesize dehydrin proteins, ABA, or soluble carbohydrates.  相似文献   

11.
12.
Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis.   总被引:19,自引:4,他引:15       下载免费PDF全文
Exogenous abscisic acid (ABA) induced the alcohol dehydrogenase gene (Adh) in Arabidopsis roots. Both the G-box-1 element and the GT/GC motifs (anaerobic response element) were required for Adh inducibility. Measurement of endogenous ABA levels during stress treatment showed that ABA levels increased during dehydration treatment but not following exposure to either hypoxia or low temperature. Arabidopsis ABA mutants (aba1 and abi2) displayed reduced Adh mRNA induction levels following either dehydration treatment or exogenous application of ABA. Low-oxygen response was slightly increased in the aba1 mutant but was unchanged in abi2. Low-temperature response was unaffected in both aba1 and abi2 mutants. Our results indicate that, although induction of the Adh gene by ABA, dehydration, and low temperature required the same cis-acting promoter elements, their regulatory pathways were at least partially separated in a combined dehydration/ABA pathway and an ABA-independent low-temperature pathway. These pathways were in turn independent of a third signal transduction pathway leading to low-oxygen response, which did not involve either ABA or the G-box-1 promoter element.  相似文献   

13.
14.
Leafy Cotyledon Mutants of Arabidopsis   总被引:11,自引:1,他引:10       下载免费PDF全文
We have previously described a homeotic leafy cotyledon (lec) mutant of Arabidopsis that exhibits striking defects in embryonic maturation and produces viviparous embryos with cotyledons that are partially transformed into leaves. In this study, we present further details on the developmental anatomy of mutant embryos, characterize their response to abscisic acid (ABA) in culture, describe other mutants with related phenotypes, and summarize studies with double mutants. Our results indicate that immature embryos precociously enter a germination pathway after the torpedo stage of development and then acquire characteristics normally restricted to vegetative parts of the plant. In contrast to other viviparous mutants of maize (vp1) and Arabidopsis (abi3) that produce ABA-insensitive embryos, immature lec embryos are sensitive to ABA in culture. ABA is therefore necessary but not sufficient for embryonic maturation in Arabidopsis. Three other mutants that produce trichomes on cotyledons following precocious germination in culture are described. One mutant is allelic to lec1, another is a fusca mutant (fus3), and the third defines a new locus (lec2). Mutant embryos differ in morphology, desiccation tolerance, pattern of anthocyanin accumulation, presence of storage materials, size and frequency of trichomes on cotyledons, and timing of precocious germination in culture. The leafy cotyledon phenotype has therefore allowed the identification of an important network of regulatory genes with overlapping functions during embryonic maturation in Arabidopsis.  相似文献   

15.
The consistent correlation between desiccation tolerance in orthodox seed tissue and an accumulation of certain "late embryogenesis abundant" (LEA) proteins suggests that these proteins reduce desiccation-induced cellular damage. The aim of the present work was to test this hypothesis. Exogenous abscisic acid (ABA) was used to elevate the level of heal-soluble LEA-like proteins in axes from immature (30 days after flowering: mid-development) seeds of soybean ( Glycine max [L.] Merrill cv. Chippewa 64). As the LEA-like proteins accumulated in response to ABA, the leakage of all elements after desiccation and subsequent rehydration markedly declined. Both LEA-like protein accumulation and the decline in desiccation-induced electrolyte leakage were apparently dependent on the presence of ABA. Both effects of ABA were inhibited by cycloheximide. Light microscopy revealed a marked effect of the ABA on cellular integrity following desiccation. Osmotic stress also caused a decrease in desiccation-induced electrolyte leakage and stimulated the accumulation of LEA-like proteins. Our data are consistent with the hypothesis that the LEA-like proteins contribute to the increase in desiccation tolerance in response to ABA, and are consistent with a general protective role for these proteins in desiccation tolerance.  相似文献   

16.
17.
Raffinose family oligosaccharides (RFOs) have been implicated in mitigating the effects of environmental stresses on plants. In seeds, proposed roles for RFOs include protecting cellular integrity during desiccation and/or imbibition, extending longevity in the dehydrated state, and providing substrates for energy generation during germination. A gene encoding galactinol synthase (GOLS), the first committed enzyme in the biosynthesis of RFOs, was cloned from tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds, and its expression was characterized in tomato seeds and seedlings. GOLS (LeGOLS-1) mRNA accumulated in developing tomato seeds concomitant with maximum dry weight deposition and the acquisition of desiccation tolerance. LeGOLS-1 mRNA was present in mature, desiccated seeds but declined within 8 h of imbibition in wild-type seeds. However, LeGOLS-1 mRNA accumulated again in imbibed seeds prevented from completing germination by dormancy or water deficit. Gibberellin-deficient (gib-1) seeds maintained LeGOLS-1 mRNA amounts after imbibition unless supplied with gibberellin, whereas abscisic acid (ABA) did not prevent the loss of LeGOLS-1 mRNA from wild-type seeds. The presence of LeGOLS-1 mRNA in ABA-deficient (sitiens) tomato seeds indicated that wild-type amounts of ABA are not necessary for its accumulation during seed development. In all cases, LeGOLS-1 mRNA was most prevalent in the radicle tip. LeGOLS-1 mRNA accumulation was induced by dehydration but not by cold in germinating seeds, whereas both stresses induced LeGOLS-1 mRNA accumulation in seedling leaves. The physiological implications of LeGOLS-1 expression patterns in seeds and leaves are discussed in light of the hypothesized role of RFOs in plant stress tolerance.  相似文献   

18.
Desiccation tolerance can be induced in microspore-derived embryos of Brassica napus L. by application of abscisic acid (ABA). Scanning electron microscopy was employed to study and compare desiccation-tolerant and -sensitive microspore-derived embryos. The external surface of those desiccated embryos in which desiccation tolerance had been induced was uniformly shriveled due to severe dehydration, and their internal tissue system was well preserved. In contrast, in desiccation-sensitive embryos, dehydration caused tearing of the epidermis and collapse of the internal tissue system. After the desiccated embryos had been rehydrated, the size and external morphology of the desiccation-tolerant ones recovered to the pre-desiccation state within 1 day, whereas the sensitive ones did not recover or remained shriveled. The effect of ABA on the induction of desiccation tolerance is discussed. Received: 25 June 1998 / Revision received: 03 September 1998 / Accepted: 24 September 1998  相似文献   

19.
The resurrection plant (Craterostigma plantagineum) is desiccation tolerant. However, callus derived from this plant, when propagated in vitro, requires exogenously applied abscisic acid (ABA) in order to survive desiccation. Treatment of callus tissue with ABA induces most of the genes that are induced by dehydration in the whole plant. This property has been exploited for the isolation of mutants that show dominant phenotypes resulting from the ectopic expression of endogenous genes induced by the insertion of a foreign promoter. Here we describe new T-DNA tagged Craterostigma desiccation-tolerant (cdt) mutants with different molecular and physiological characteristics, suggesting that different pathways of desiccation tolerance are affected. One of the mutants, cdt-2, constitutively expresses known osmoprotective Lea genes in callus and leaf tissue. Further analysis of this mutant revealed that the tagged locus is similar to a previously characterised gene, CDT-1, which codes for a signalling molecule that confers desiccation tolerance. The nature of the T-DNA insertion provides insight into the mechanism by which the CDT-1/2 gene family functions in ABA signal transduction.  相似文献   

20.
Proteins inducible by dehydration and abscisic acid (ABA), termed dehydrins or RAB (Responsive to ABA) proteins, have been identified in a number of species and have been suggested to play a role in desiccation tolerance, particularly during seed development. Seeds (caryopses) of North American wild rice (Zizania palustris var interior [Fassett] Dore) are tolerant of dehydration to <10% moisture content (fresh weight basis) only under restricted dehydration and rehydration conditions. In comparison, seeds of paddy rice (Oryza sativa L.) readily tolerate desiccation to <5% water content. Expression of “dehydrin-like” proteins in Zizania and Oryza seedlings and embryos was examined to investigate the relationship between the presence of such proteins and desiccation tolerance. [35S]Methionine labeling of newly synthesized proteins showed that seedlings (first leaf stage) of both Zizania and Oryza synthesized a novel “heat-stable” protein of apparent molecular weight = 20,000 when dehydrated to <75% of their initial fresh weight. ABA (100 micromolar) induced synthesis of a protein with similar electrophoretic mobility in both species. Western blots using antiserum raised against maize (Zea mays L.) dehydrin detected a protein band from dehydrated Zizania shoots and mature embryonic axes that comigrated with the labeled 20-kilodalton polypeptide. Northern blots using a cDNA for an ABA-responsive protein from Oryza (rab 16a) showed that both seedlings and excised embryonic axes of Zizania accumulated RNA similar in sequence to rab 16a in response to water loss. Zizania seedlings and embryonic axes were also capable of ABA accumulation during dehydration. The intolerance of Zizania seeds to dehydration at low temperature is apparently not due to an absence of dehydrin-like proteins or an inability to accumulate ABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号