首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lymphocyte entry into lymph nodes (LN) and Peyer's patches (PP) occurs specifically at high endothelial cell venules (HEV). We previously isolated a high endothelial binding factor (HEBFLN) from rat lymph that blocked the lymphocyte binding sites of HEVLN but not HEVPP. In this study, mouse monoclonal anti-HEBFLN antibody (A.11) was used to investigate rat lymphocyte surface structures mediating adhesion to high endothelium. The A.11 antigen was expressed on the majority of thoracic duct lymphocytes (TDL), spleen, LN, PP cells, but was only detected on few (1 to 10%) thymus and bone marrow cells (indirect immunofluorescence). The treatment of TDL with the A.11 IgG blocked their ability to bind to HEVLN. This effect was specific, inasmuch as A.11 antibody did not block lymphocyte binding to HEVPP, and an anti-leukocyte-common antigen monoclonal antibody, OX1, did not block lymphocyte binding to HEVLN. In addition, the A.11 antigen isolated from the lymph and detergent lysates of TDL by antibody affinity chromatography had the capacity to block the lymphocyte binding sites of HEVLN but not HEVPP. Immunoprecipitation studies revealed that the A.11 antibody recognized the radioiodinated surface membrane proteins of TDL and TDL-derived T cells and B cells, which resolved with SDS-PAGE autoradiography into three polypeptides with relative m.w. of approximately 135,000, 63,000, and 40,000. We conclude that the A.11 antigen is a component of the lymphocyte surface recognition structure that mediates adhesion to high endothelial cells of rat peripheral lymph nodes.  相似文献   

2.
Cell surface molecules involved in lymphocyte adhesion to high endothelial cell venules (HEV) of Peyer's patches (PP) have been studied in the rat by using a mouse monoclonal anti-HEBFPP (1B.2) antibody. We previously showed that rat thoracic duct lymph contains a high endothelial cell binding factor termed HEBFPP, which in vitro blocks lymphocyte binding sites of HEVPP but not HEVLN. Monoclonal 1B.2 antibody was produced by fusing P3U1 myeloma cells with spleen cells of a mouse immunized with this material. Immunoprecipitation studies with 125I surface-labeled rat thoracic duct lymphocytes (TDL) showed that the antibody recognized an 80-kilodalton protein. This antigen was present in the majority of TDL, spleen, LN, and PP cells but was found on few (5 to 10%) thymus and bone marrow cells (indirect immunofluorescence). Treatment of TDL with 1B.2 antibody blocked their ability to bind in vitro to HEVPP; antibody treatment did not interfere with TDL adhesion to HEVLN. Analysis of 1B.2 antigen isolated from lymph and detergent lysates of TDL by antibody-affinity chromatography showed that this material had the capacity to block lymphocyte binding sites of HEVPP but not HEVLN. In contrast, material with such blocking activity was not isolated from detergent lysates of thymocyte, a population deficient in HEV-binding cells. The results indicate that the 1B.2 antigen is a component of the lymphocyte surface recognition structure mediating adhesion to HEVPP and provide further evidence that distinct adhesion molecules of rat TDL mediate interaction with high endothelium of LN and PP.  相似文献   

3.
Rat thoracic duct lymphocytes (TDL) bind selectively to venules lined by high endothelial cells (HEV) when overlaid onto glutaraldehyde-fixed frozen sections of lymph nodes. This report describes the characteristics of TDL binding to HEV in unfixed frozen sections and compares this reactivity with that observed after fixing sections with different reagents. We found that TDL bound to unfixed HEV and that the pattern of adherence to such sections was identical to that observed when using glutaraldehyde-fixed tissue. Fixation of the sections with glutaraldehyde, however, enhanced the binding reaction. This effect was also observed when sections were treated with the diimidoester, dimethylsuberimidate (DMS) but not when methanol or formaldehyde was used. Since glutaraldehyde and DMS are each bifunctional cross-linking reagents, the results suggest that in vitro HEV adherence was facilitated under conditions in which the endothelial binding sites were present in an aggregated form.  相似文献   

4.
Rat thoracic duct lymphocytes (TDL) are capable of selective adherence to the endothelium of high-endothelial venules (HEV) when overlaid onto glutaraldehyde-fixed sections of lymph nodes. The data presented indicate that lymphocyte adherence is an energy-dependent, calcium-requiring event that involves membrane determinants on TDL which are sensitive to trypsin. Surface sialic acids on lymphocytes are not essential and treatment of the cells with neuraminidase does not interfere with their attachment to HEV. There was no evidence that microtubule-associated functions play a role in binding. Adherence, however, is abolished by cytochalasin B, indicating that the cytoplasmic contractile microfilament system exerts an important effect. The results imply that lymphocyte surface membrane modulation is involved in the development of strong adhesive forces that bind the cells to the endothelium. In addition, lymphocyte-HEV adherence is reduced by ionophore A-23187, an agent known to inhibit surface membrane receptor movement. It is suggested that specific binding of recirculating lymphocytes to HEV is not a passive event, but that activation of cytoplasmic contractile forces in the lymphocyte is required for the formation of stable lymphocyte-HEV binding.  相似文献   

5.
An in vitro system developed for studying lymphocyte binding to high endothelial venules (HEV) of lymph nodes was used to determine if there are similar binding sites in other organs of the rat. Thoracic duct lymphocytes (TDL) adhered selectively and uniformly to white matter when overlaid onto glutaraldehyde-fixed tissue sections of cerebellum and cerebrum. The pattern of TDL adherence to cerebellar sections showed that binding to nonmyelinated areas was negligible. Comparison of TDL-white matter to TDL-HEV binding demonstrated that the density of adherence to each site was quantitatively similar. In contrast, lymphocytes exhibited little tendency to bind to tissue sections of liver, spleen, heart, thymus, and salivary glands. TDL adherence to cerebellar white matter occurred rapidly, was cell dose dependent and optimal at 7 degrees C. White matter binding was also a property of spleen lymphocytes but the thymus was deficient in cells with this capability. The affinity of TDL and spleen lymphocytes for myelinated areas of the brain suggests the presence of myelin binding receptors on these cells.  相似文献   

6.
Five patients with rheumatoid arthritis (RA), who were treated by lymphocyte depletion by using thoracic duct drainage (TDD), provided an opportunity to characterize the phenotype and function of their recirculating lymphocytes. We found that: a) thoracic duct lymphocytes (TDL) were similar in their proportion of T cells (83% +/- 6 OKT3+), OKT4+ subset (65% +/- 8), and OKT8+ subset (22% +/- 6) to peripheral blood lymphocytes (PBL): b) fewer natural killer-like cells were present in TDL (5% +/- 4 Leu-7+; 2% +/- 2 Leu-11+: 8% +/- 2 OKM -1+) than in PBL (20% +/- 10 Leu-7+: 11% +/- 6 Leu-11+; 18% +/- 5 OKM -1) (p less than 0.01); c) TDL differed from synovial fluid lymphocytes ( SFL ) and synovial membrane lymphocytes ( SML ) in that TDL lacked a high percentage of activated lymphocytes (T cells bearing Ia antigen, OKT10 , and transferrin receptor): d) immature T cells (expressing either OKT6 antigen or reactive with peanut agglutinin) were not found in TDL even late in the course of TDD: and e) in vitro functional studies demonstrated that TDL were similar to PBL in their ability to synthesize immunoglobulin after mitogen stimulation and to generate cytotoxic T lymphocytes capable of lysing autologous EBV-transformed B cells. However, natural killer activity, as measured by lysis of K562 cells was significantly lower in TDL than PBL (p less than 0.05). These results demonstrate that natural killer cells defined by phenotype and function are excluded from thoracic duct lymph and thus have a circulation pattern different from most T cells.  相似文献   

7.
The entry of radiolabeled blood-borne T and B lymphocytes into resting popliteal lymph nodes and popliteal lymph nodes stimulated with semiallogeneic lymphocytes was investigated in rats. Thoracic duct lymphocytes separated into T- and B-lymphocyte populations on nylon-wool columns were radiolabeled with 51chromium and equal numbers of T or B lymphocytes were injected intravenously. While the ratio of T and B lymphocytes in the blood is approximately 3:1 it was found that the ratio of T to B lymphocytes migrating into lymph nodes was approximately 9 T to 1 B lymphocyte in both resting and antigenically stimulated lymph nodes. Since the ratio of T to B lymphocytes in thoracic duct lymph is similar to that of blood, there is a disparity between the number of T cells entering and leaving lymph nodes. These results suggest that some T lymphocytes may return to the blood directly and/or there is increased T lymphocyte death in lymph nodes.  相似文献   

8.
Thoracic duct lymphocytes labelled with 51Cr were injected into a primary recipient and then were transferred for a second time from the lymph nodes (cervical and/or mesenteric), spleen, lymph, or blood into a series of final recipients. Measurement of the organ distribution of labelled lymphocytes in the final recipients enabled three main conclusions to be drawn. (1) Lymphocytes that had localized in the spleen, mesenteric lymph nodes (LN), or cervical LN of the first recipient showed no tendency to return in increased numbers to the same organ in the final recipient. (2) Lymphocytes that had recently entered the spleen or LN were temporarily impaired in their ability to reenter LN. This capacity was recharged when the cells returned to the lymph and the blood. (3) Lymphocytes that had been passaged from blood to lymph and collected for up to 4 hr at room temperature entered the LN of a recipient much faster than did nonpassaged thoracic duct lymphocytes collected overnight at 0 degree C. Supplementary experiments indicated that the different migratory behavior of thoracic duct lymphocytes under these two circumstances was mainly a consequence of their handling in vitro during the collecting and the labelling procedures. This functional impairment was not associated with a diminished ability to enter the spleen and bone marrow or to survive in recipients for up to 24 hr.  相似文献   

9.
By 7 weeks post-grafting, the number of small lymphocytes in the thoracic duct lymph (TDL) and blood of the thymus-grafted neonatally thymectomized adult rats had increased to 60% of the number of cells in sham controls, or 2-1/2 times thymectomized control values. This increasing consisted almost exclusively of long-lived, recirculating small lymphocytes and corresponded to a 60% recovery of cellular immunocompetence as measured by the mixed lymphocyte reaction (MLR). Associated with the return of cellular immunocompetence was an increased incorporation of 3H-uridine by the small lymphocytes. Cells from thymectomized animals grafted with lymph node fragments demonstrated no significant increase in lymphocyte numbers nor was there a return of immunocompetence as compared to thymectomized controls.  相似文献   

10.
Results of this study indicated that an absence of vitamin B6 from the diet of pregnant rats led to reduced immunological competence in the offspring. While the numbers of cells in the thoracic duct lymph (TDL) of rats approximately 3 months old and progeny of vitamin B6-deficient mothers were nearly equivalent to control values, such cells had a reduced capacity to respond in the mixed lymphocyte and normal lymphocyte transfer reactions. It is suggested that this reduction may have reflected (i) an alteration in the capacity of TDL cells or their precursors to give rise to immunologically competent cells, (ii) a shift in the proportions of T and B cells in the TDL, and/or (iii) an absence or ineffectiveness of a humoral factor required for the development of immunologically competent lymphocytes.  相似文献   

11.
The trafficking of lymphocytes from the blood and into lymphoid organs is controlled by tissue-selective lymphocyte interactions with specialized endothelial cells lining post capillary venules, in particular the high endothelial venules (HEV) found in lymphoid tissues and sites of chronic inflammation. Lymphocyte interactions with HEV are mediated in part by lymphocyte homing receptors and tissue-specific HEV determinants, the vascular addressins. A peripheral lymph node addressin (PNAd) has been detected immunohistologically in mouse and man by monoclonal antibody MECA-79, which inhibits lymphocyte homing to lymph nodes and lymphocyte binding to lymph node and tonsillar HEV. The human MECA-79 antigen, PNAd, is molecularly distinct from the 65-kD mucosal vascular addressin. The most abundant iodinated species by SDS-PAGE is 105 kD. When affinity isolated and immobilized on glass slides, MECA-79 immunoisolated material binds human and mouse lymphocytes avidly in a calcium dependent manner. Binding is blocked by mAb MECA-79, by antibodies against mouse or human LECAM-1 (the peripheral lymph node homing receptor, the MEL-14 antigen, LAM-1), and by treatment of PNAd with neuraminidase. Expression of LECAM-1 cDNA confers PNAd binding ability on a transfected B cell line. We conclude that LECAM-1 mediates lymphocyte binding to PNAd, an interaction that involves the lectin activity of LECAM-1 and carbohydrate determinants on the addressin.  相似文献   

12.
The effect of influenza virus A/Japan 305 (H2N2) on the path of migration of recirculating lymphocytes has been studied. 51Cr-labeled rat thoracic duct lymphocytes (TDL) were incubated with virus at 37 degrees C for 1 hr and then infused i.v. into syngeneic recipients which were killed 1 hr later. Virus-treated TDL accumulated in the liver and their recovery in lymph nodes and spleen was severely reduced. Changes in lymphocytes induced by virus developed rapidly and were evident after incubation for only 15 min. UV-irradiated virus altered the pattern of lymphocyte localization but attachment of heat-inactivated virus to lymphocytes in vitro had no effect on their distribution in vivo. Evidence was obtained that some virus-treated TDL, initially sequestered in the liver, subsequently recovered their ability to circulate normally. Recovery was not complete and a population of cells failed to regain their ability to home into lymph nodes. Evidence is also presented demonstrating that influenza virus affected the homing properties of both T and B cells. It is suggested that aberrations in lymphocyte homing were mediated by the viral neuraminidase which induces changes in the cell membrane leading to their accumulation in the liver.  相似文献   

13.
Large granular lymphocytes (LGL) and T cells were separated from blood by centrifugation on discontinuous gradients of Percoll, were labeled with [3H]uridine or [111In]oxine, and were injected i.v. into syngeneic euthymic or athymic nude rats. The tissue distribution of these labeled cells was monitored for up to 24 hr after transfer by scintillation counting of tissue homogenates and autoradiography of tissue sections. In normal euthymic rats, the main sites of LGL localization were the alveolar walls of the lungs and spleen red pulp; however, they were not detectable in the major traffic areas of T lymphocyte recirculation, the spleen white pulp, and lymph nodes. Furthermore, the density of labeled LGL was very low in the small intestine, thymus, kidney, and liver, although on a per-organ basis, about 10% of the injected radioactivity was found in the liver by 24 hr post-injection. When 111In-labeled LGL were injected i.v. into rats with an indwelling thoracic duct cannula, they completely failed to enter the thoracic duct lymphocyte (TDL) population over an observation period of 6 days. This finding was markedly different from the results obtained with T cells and was consistent with the lack of natural killer and antibody-dependent cellular cytotoxicity activity observed among TDL, even in rats pretreated with the biological response modifier, poly I:C. LGL in athymic nude rats also failed to recirculate between blood and lymph. However, in contrast to normal euthymic animals, a significant increase in the localization of radiolabeled LGL to lymph nodes was observed in nude rats between 30 min and 24 hr. Taken as a whole, these findings define the areas within the lungs and spleen in which blood LGL normally localize, and clearly demonstrate that LGL do not normally recirculate between blood and lymph.  相似文献   

14.
Adhesion of lymphocytes to high endothelial venule (HEV) cells is the first step in the migration of these cells from blood into lymph nodes and Peyer's patches (PP). In the present study, we isolated and cultured HEV cells from PP of the rat and assessed their capacity to interact with lymphocytes. Flow cytometric analysis with a rat HEV-specific mAb KJ-4 revealed that greater than 90% of the cultured cells were stained by the antibody. Furthermore, confluent monolayers of PP HEV cells retained the capacity to support the adhesion of lymphocytes from spleen, thoracic duct, and lymph nodes but not binding of immature cells from thymus and bone marrow, which are deficient in cells capable of binding to HEV in vivo. In addition, intraepithelial lymphocytes that preferentially migrated into mucosal lymphoid tissues were also enriched in cells that adhered to the endothelial monolayers. The binding process required energy, was calcium-dependent, and could be inhibited by cytochalasin D, trypsin, and mixed glycosidase. Interestingly, pretreatment of PP HEV cells with rTNF, IFN-gamma, or granulocyte-macrophage CSF significantly increased the endothelial adhesiveness for thoracic duct lymphocytes in a time- and dose-dependent manner. In contrast, stimulation of lymphocytes with phorbol ester or TNF resulted in the rapid modulation of the surface expression of the PP homing receptor and decrease in lymphocyte binding to normal or TNF-stimulated HEV cells. The adhesion of lymphocytes to normal or cytokine-stimulated HEV cells can be blocked by pretreatment of lymphocytes, but not HEV cells, with the PP homing receptor-specific 1B.2.6 antibody. Taken together, these experiments provide strong evidence that the interaction between lymphocytes and cultured HEV cells are mediated by adhesive mechanisms that regulate lymphocyte entry into PP in vivo and that cytokines can promote HEV adhesiveness for lymphocytes through increased expression of organ-specific ligands on HEV cells.  相似文献   

15.
THE TEMPO OF LYMPHOCYTE RECIRCULATION FROM BLOOD TO LYMPH IN THE RAT   总被引:7,自引:0,他引:7  
Radioactively labelled thoracic duct lymphocytes were obtained either by incubation in vitro with 3H-uridine or 14C-uridine or by giving potential donors repeated injections of 3H-thymidine finishing 17 days before thoracic duct cannulation. These labelled TDL were injected i.v. into syngeneic recipients which had been subjected to splenectomy and thoracic duct cannulation on the previous day. The tempo of lymphocyte recirculation from blood to lymph was reflected by the time at which radioactivity was recovered in the thoracic duct lymphocyte output of the recipient. This was measured by scintillation counting of 2-hourly fractional collections for 36 hr after the injection. Two lines of evidence showed that the majority of small lymphocytes which label intensely with radioactive uridine in vitro were uniform in their 'migration potential'with a modal blood to lymph transit time of 14–18 hr. By contrast the cells which were labelled in vivo with 3H-thymidine included a slower population with a modal transit time of 24–28 hr. These conclusions can be more fully interpreted in the light of recent evidence on thymic-independent ('B') lymphocytes.  相似文献   

16.
The adhesion of lymphocytes to endothelial cells lining the postcapillary high endothelial venules (HEV) is the first step in their emigration from the bloodstream into lymph nodes and Peyer's patches (PP). We have recently shown that the adhesiveness of cultured rat lymph node and PP HEV cells for thoracic duct lymphocytes can be increased significantly by pretreatment with TNF-alpha, IFN-gamma, and IL-4. In the present study we investigated the role of transforming growth factor-beta 1 (TGF-beta) on the adhesiveness of nonstimulated and cytokine-stimulated PP HEV cells for rat lymphocytes. The results indicated that at picomolar concentrations, TGF-beta significantly (p less than 0.001) decreased the ability of PP HEV cells to adhere 51Cr-labeled rat lymphocytes. Maximal inhibition was observed with a TGF-beta dose of 0.5 ng/ml and an incubation time of 6 to 12 h. TGF-beta did not affect the morphology of HEV cells and had no adverse effect on their viability. Moreover, the decrease in HEV adhesiveness by TGF-beta was reversible, with lymphocyte binding returning to control level 24 h after removal of the cytokine. The specificity of TGF-beta was confirmed by the ability of neutralizing anti-TGF-beta 1 antibody, but not control serum, to abolish the inhibitory properties of the cytokine. In addition, TGF-beta completely abrogated the increased adhesiveness of PP HEV cells normally induced by TNF-alpha or IFN-gamma. In contrast, TGF-beta had no effect on the stimulating effects of IL-4. Moreover, preincubation of PP HEV cells with TGF-beta did not alter the ability of these cells to respond to IL-4. Importantly, the adhesion of rat lymphocytes to IL-4-stimulated PP HEV cells can be blocked by pretreatment of lymphocytes with the PP-homing receptor-specific 1B.2.6 antibody whereas pretreatment of human mononuclear cells with anti-very late activation antigen-4 alpha antibody inhibited only partially the binding of these cells to the IL-4-stimulated PP HEV monolayers. Taken together, these findings strongly suggest that TGF-beta and IL-4 play important regulatory roles in lymphocyte-HEV adhesion and that the stimulatory effect of IL-4 is mediated at least in part through the increased expression of organ-specific ligands on HEV cells.  相似文献   

17.
Lymphocyte function-associated Ag-1 (LFA-1) or CD11a/CD18 mediates lymphocyte adhesion to cultured vascular endothelial cells (EC). Thus, LFA-1 likely plays a major role in lymphocyte migration out of the blood, but there is little information on this in vivo. Small peritoneal exudate lymphocytes (sPEL) and lymph node (LN) lymphoblasts adhere to cytokine-activated EC and preferentially migrate to cutaneous inflammatory sites. The role of LFA-1 in the adherence and in vivo migration of these T cells was determined. Because of a lack of anti-rat LFA-1, mAb were prepared to rat T cells. One mAb, TA-3, inhibited homotypic aggregation; T cell proliferation to Ag, alloantigens, and mitogens; stained all leukocytes; and immunoprecipitated 170- and 95-kDa polypeptides from lymphocytes and neutrophils. TA-3 binding to lymphocytes also required Ca2+, but not Mg2+. Thus, TA-3 appears to react with rat LFA-1. TA-3 inhibited spleen T cell adhesion to unstimulated EC by 30% and to IFN-gamma, TNF-alpha, IL-1 alpha, and LPS stimulated EC by 50 to 60% but inhibited sPEL EC adhesion by only 10%. TA-3 also strongly inhibited anti-CD3-stimulated LN T cell adherence. The migration of spleen T cells to delayed-type hypersensitivity and skin sites injected with LPS, poly I:C, IFN-gamma, IFN-alpha/beta, and TNF was inhibited by 72 to 88% by TA-3, and was decreased by 50% to peripheral LN. TA-3 caused less but still 50 to 60% inhibition of sPEL migration to inflamed skin. Lymphoblast migration to skin was inhibited 40 to 80% and to PLN by 30%. Migration of lymphocytes from all sources to mesenteric LN was inhibited by 32 to 60%. In conclusion, LFA-1 mediates much of the adherence of spleen T cells and lymphoblasts to EC in vitro, most of the migration of these cells to dermal inflammation and about 50% of the homing of LN and spleen T cells to peripheral and mesenteric LN. sPEL are less dependent on LFA-1 for adhesion to EC in vitro and for migration to inflamed skin and LN in vivo.  相似文献   

18.
A variety of adhesion molecules regulate the traffic and tissue localization of lymphocytes in vivo by mediating their binding to vascular endothelial cells. The homing receptor gp90MEL-14 (gp90), also known as LECAM-1 or L-selectin, mediates the adhesion of lymphocytes to specialized high endothelial venules in lymph nodes (LN) and is the primary molecule regulating lymphocyte recirculation and homing to LN, whereas other adhesion molecules have a major role in the localization of lymphocytes in inflammatory sites. We used four-color flow cytometric analysis to examine the regulation of adhesion receptor expression on LN CD8 T cells responding to skin allografts in vivo. In normal mice, greater than 95% of LN CD8 T cells are gp90+, being either gp90+Pgp1- (Population (Pop.) 1 or gp90+Pgp-1+ (Pop.2). Allografting induces the down-regulation of gp90 and up-regulation of Pgp-1 on a subset of cells, resulting in the appearance of CD8+gp90-Pgp-1hi (Pop. 3) cells. Pop. 3 cells also express high levels of LFA-1, ICAM-1, and ICAM-2, and a subset of them are VLA-4 alpha-positive. Purified Pop. 3 cells have potent cytolytic activity directed against donor alloantigen, whereas no such activity is present in Pop. 1 or 2 cells. Correlating with this is the high granzyme activity in Pop. 3 cells. In addition, Pop. 3 lymphocytes, but not Pop. 1 or 2, secrete a large amount of IFN-gamma in response to Ag. Finally, the CD8 T cells that infiltrate sponge matrix allografts are markedly enriched for the Pop. 3 subset. These results show that, during the immune response to alloantigen in vivo, a small subset of CD8 T cells down-regulates the LN homing receptor while increasing the expression of other adhesion molecules, as they differentiate into highly active cytolytic T lymphocytes. Thus, the differential regulation of LN homing receptors and receptors for peripheral vascular endothelium provides a mechanism that would redirect the traffic of activated effector cells away from lymphoid tissue and to sites of Ag deposition, where they would participate in the inflammatory response.  相似文献   

19.
The tissue localization or "homing" of circulating lymphocytes is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. In peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches and appendix), and sites of chronic inflammation, for example, lymphocytes leave the blood by adhering to and migrating between those endothelial cells lining postcapillary high endothelial venules (HEV). Functional analyses of lymphocyte interactions with HEV have shown the lymphocytes can discriminate between HEV in different tissues, indicating that HEV express tissue-specific determinants or address signals for lymphocyte recognition. We recently described such a tissue-specific "vascular addressin" that is selectively expressed by endothelial cells supporting lymphocyte extravasation into mucosal tissues and that appears to be required for mucosa-specific lymphocyte homing (Streeter, P. R., E. L. Berg, B. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988. Nature (Lond.). 331:41-46). Here we document the existence and tissue-specific distribution of a distinct HEV differentiation antigen. Defined by monoclonal antibody MECA-79, this antigen is expressed at high levels on the lumenal surface and in the cytoplasm of HEV in peripheral lymph nodes. By contrast, although MECA-79 stains many HEV in the mucosal Peyer's patches, expression in most cases is restricted to the perivascular or ablumenal aspect of these venules. In the small intestine lamina propria, a mucosa-associated site that supports the extravasation of lymphocytes, venules do not stain with MECA-79. Finally, we demonstrate that MECA-79 blocks binding of both normal lymphocytes and a peripheral lymph node-specific lymphoma to peripheral lymph node HEV in vitro and that it also inhibits normal lymphocyte homing to peripheral lymph nodes in vivo without significantly influencing lymphocyte interactions with Peyer's patch HEV in vitro or in vivo. Thus, MECA-79 defines a novel vascular addressin involved in directing lymphocyte homing to peripheral lymph nodes.  相似文献   

20.
Lymphocytes from antigen-stimulated lymph nodes avidly migrate from the blood to cutaneous sites of inflammation such as DTH reactions or contact sensitivity. One of the initial steps in this migration is the adhesion of the lymphocyte to endothelial cells (EC); therefore, the adhesion of lymphocytes from antigen-stimulated lymph nodes to microvascular EC in the rat was examined. Two to five days after subcutaneous immunization with antigen, lymphocytes that adhered to unstimulated and IFN-gamma-, TNF-alpha-, IL-1 alpha-, and LPS-treated EC were increased in the regional lymph nodes. The enhanced adhesion was attributable to low-density lymphoblast-enriched lymph node cells while small high-density lymphocytes displayed little or no increase in their adhesion. Lymphoblast adhesion required the stimulation of the EC with 10 times the concentrations of IFN-gamma and TNF-alpha required for peritoneal exudate lymphocyte adhesion. There was a synergistic increase in the adhesion of the low-density lymphocytes to EC stimulated with combinations of IFN-gamma and TNF-alpha. Antibody to VLA-4 inhibited about 40% of the stimulated adhesion to EC treated with IFN-gamma, TNF-alpha, or LPS. In vivo anti-VLA-4 inhibited lymphoblast migration to IFN-gamma, TNF-alpha, LPS, and DTH reactions by 60%. Thus antigen stimulates the generation of low-density lymphoblasts that have an enhanced adherence to cytokine- and LPS-treated EC through a partially VLA-4-dependent mechanism and the migration of these cells to cutaneous inflammatory reactions is dependent upon VLA-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号