首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E A Berger  J R Sisler    P L Earl 《Journal of virology》1992,66(10):6208-6212
The ability of soluble forms of CD4 to induce gp120 release from the human immunodeficiency virus type 1 envelope glycoprotein complex may reflect molecular events associated with membrane fusion. The third hypervariable (V3) region of gp120 appears to play a role in fusion independent of CD4 binding. We demonstrate herein that envelope glycoprotein molecules rendered fusion defective by mutations in conserved residues within the V3 region nevertheless undergo efficient soluble CD4-induced gp120 release.  相似文献   

2.
Protein minimization of the gp120 binding region of human CD4   总被引:2,自引:0,他引:2  
CD4 is an important component of the immune system and is also the cellular receptor for HIV-1. CD4 consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1-D4. Constructs consisting of all four extracellular domains of human CD4 as well as the first two domains (CD4D12) have previously been expressed and characterized. All of the gp120-binding residues are located within the first N-terminal domain (D1) of CD4. To date, it has not been possible to obtain domain D1 alone in a soluble and active form. Most residues in CD4 that interact with gp120 lie within the region 21-64 of domain D1 of CD4. On the basis of these observations and analysis of the crystal structure of CD4D12, a mutational strategy was designed to express CD4D1 and region 21-64 of CD4 (CD4PEP1) in Escherichia coli. K(D) values for the binding of CD4 analogues described above to gp120 were measured using a Biacore-based solution-phase competition binding assay. Measured K(D) values were 15 nM, 40 nM, and 26 microM for CD4D12, CD4D1, and CD4PEP1, respectively. All of the proteins interact with gp120 and are able to expose the 17b-binding epitope of gp120. Structural content was determined using CD and proteolysis. Both CD4D1 and CD4PEP1 were partially structured and showed an enhanced structure in the presence of the osmolyte sarcosine. The aggregation behavior of all of the proteins was characterized. While CD4D1 and CD4PEP1 did not aggregate, CD4D12 formed amyloid fibrils at neutral pH within a week at 278 K. These CD4 derivatives should be useful tools in HIV vaccine design and entry inhibition studies.  相似文献   

3.
The conserved disulfide-bonded region (DSR) of the human immunodeficiency virus type 1 (HIV-1) fusion glycoprotein, gp41, mediates association with the receptor-binding glycoprotein, gp120. Interactions between gp120, CD4 and chemokine receptors activate the fusion activity of gp41. The introduction of W596L and W610F mutations to the DSR of HIV-1QH1549.13 blocked viral entry and hemifusion without affecting gp120-gp41 association. The fusion defect correlated with inhibition of CD4-triggered gp41 pre-hairpin formation, consistent with the DSR mutations having decoupled receptor-induced conformational changes in gp120 from gp41 activation. Our data implicate the DSR in sensing conformational changes in the gp120-gp41 complex that lead to fusion activation.  相似文献   

4.
The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.  相似文献   

5.
Peptide fragments of the CD4 molecule were compared in their ability to 1) inhibit CD4-dependent HIV-induced cell fusion; 2) inhibit CD4-dependent HIV infection in vitro; and 3) block gp120 envelope glycoprotein binding to CD4. Peptides from the region CD4(81-92), although inactive when underivatized, were equipotent inhibitors of CD4-dependent virus infection, cell fusion, and CD4/gp120 binding when derivatized via benzylation and acetylation. Peptides of identical chemical composition, but altered sequence and derivatization pattern that blocked gp120 binding to either CD4-positive cells or solubilized CD4, also blocked infection and fusion with similar potencies. Those that did not block gp120/CD4 interaction were also inactive in HIV-1 infection and cell fusion assays. No other peptide fragments of the CD4 molecule inhibited fusion, infection, or CD4/gp120 interaction. The peptide CD4(23-56), derived from a region of CD4 implicated in binding of CD4 antibodies that neutralize HIV infection and cell fusion, had no effect on CD4-dependent cell fusion, HIV-1 infection, or CD4/gp120 binding, but did reverse OKT4A and anti-Leu 3a blockade of gp120 binding to CD4. These data provide evidence that the 81-92 region of CD4 is directly involved in gp120 binding leading to CD4-dependent HIV infection and syncytium formation. Previous observations with structural mutants of CD4 suggest that the CDR2-homologous region of CD4 is also involved, either directly or indirectly, in binding of gp120 to CD4. The CDR2- and CDR3-like domains of CD4 may both contribute to the binding of the HIV envelope necessary for HIV-1 infection and HIV-1-induced cell fusion.  相似文献   

6.
The noncovalent association of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) is disrupted by soluble CD4 binding, resulting in shedding of the gp120 exterior envelope glycoprotein. This observation has led to the speculation that interaction of gp120 with the CD4 receptor triggers shedding of the exterior envelope glycoprotein, allowing exposure of gp41 domains necessary for membrane fusion steps involved in virus entry or syncytium formation. To test this hypothesis, a set of HIV-1 envelope glycoprotein mutants were used to examine the relationship of soluble CD4-induced shedding of the gp120 glycoprotein to envelope glycoprotein function in syncytium formation and virus entry. All mutants with a threefold or greater reduction in CD4-binding ability exhibited marked decreases in gp120 shedding in response to soluble CD4, even though several of these mutants exhibited significant levels of envelope glycoprotein function. Conversely, most fusion-defective mutants with wild-type gp120-CD4 binding affinity, including those with changes in the V3 loop, efficiently shed gp120 following soluble CD4 binding. Thus, soluble CD4-induced shedding of gp120 is not a generally useful marker for conformational changes in the HIV-1 envelope glycoproteins necessary for the virus entry or syncytium formation processes. Some gp120 mutants, despite being expressed on the cell surface and capable of efficiently binding soluble CD4, exhibited decreased gp120 shedding. These mutants were still sensitive to neutralization by soluble CD4, indicating that, for envelope glycoproteins exhibiting high affinity for soluble CD4, competitive inhibition may be more important than gp120 shedding for the antiviral effect.  相似文献   

7.
Various roles for the viral receptor, CD4, have been proposed in facilitating human immunodeficiency virus type 1 (HIV-1) entry, including virion binding to the target cell and the induction of conformational changes in the viral envelope glycoproteins required for the membrane fusion reaction. Here, we compare the structural requirements in the CDR2-like loop of CD4 domain 1, the major contact site of the gp120 envelope glycoprotein, for gp120 binding and virus entry. For every CD4 mutant examined, the level of cell surface expression and the gp120 binding affinity were sufficient to explain the relative ability to function as a viral receptor. The decrease in relative infectibility associated with decreased gp120 binding affinity was more pronounced at lower cell surface CD4 concentrations. These results imply that both receptor density and affinity determine the efficiency of HIV-1 entry and that specific structures in the CD4 residues examined are probably not required for HIV-1 entry functions other than gp120 binding.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the surface-exposed envelope protein (SU) gp120, which binds to cellular CD4 and chemokine receptors, triggering the membrane fusion activity of the transmembrane (TM) protein gp41. The core of gp41 comprises an N-terminal triple-stranded coiled coil and an antiparallel C-terminal helical segment which is packed against the exterior of the coiled coil and is thought to correspond to a fusion-activated conformation. The available gp41 crystal structures lack the conserved disulfide-bonded loop region which, in human T-lymphotropic virus type 1 (HTLV-1) and murine leukemia virus TM proteins, mediates a chain reversal, connecting the antiparallel N- and C-terminal regions. Mutations in the HTLV-1 TM protein gp21 disulfide-bonded loop/chain reversal region adversely affected fusion activity without abolishing SU-TM association (A. L. Maerz, R. J. Center, B. E. Kemp, B. Kobe, and P. Poumbourios, J. Virol. 74:6614-6621, 2000). We now report that in contrast to our findings with HTLV-1, conservative substitutions in the HIV-1 gp41 disulfide-bonded loop/chain reversal region abolished association with gp120. While the mutations affecting gp120-gp41 association also affected cell-cell fusion activity, HIV-1 glycoprotein maturation appeared normal. The mutant glycoproteins were processed, expressed at the cell surface, and efficiently immunoprecipitated by conformation-dependent monoclonal antibodies. The gp120 association site includes aromatic and hydrophobic residues on either side of the gp41 disulfide-bonded loop and a basic residue within the loop. The HIV-1 gp41 disulfide-bonded loop/chain reversal region is a critical gp120 contact site; therefore, it is also likely to play a central role in fusion activation by linking CD4 plus chemokine receptor-induced conformational changes in gp120 to gp41 fusogenicity. These gp120 contact residues are present in diverse primate lentiviruses, suggesting conservation of function.  相似文献   

9.
Human immunodeficiency virus (HIV) entry into a host cell requires the fusion of virus and cellular membranes that is driven by interaction of the viral envelope glycoproteins gp120 and gp41 (gp120/gp41) with CD4 and a coreceptor, typically either CXCR4 or CCR5. The stoichiometry of gp120/gp41:CD4:CCR5 necessary to initiate membrane fusion is not known. To allow an examination of early events in gp120/gp41-driven membrane fusion, we developed a novel real-time cell-cell fusion assay. Using this assay to study fusion kinetics, we found that altering the cell surface density of gp120/gp41 affected the maximal extent of fusion without dramatically altering fusion kinetics. Collectively, these observations are consistent with the view that gp120/gp41-driven membrane fusion requires the formation of a threshold number of fusion-active intercellular gp120/gp41:CD4:CCR5 complexes. Furthermore, the probability of reaching this threshold is governed, in part, by the surface density of gp120/gp41.  相似文献   

10.
Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting interaction with the CCR5 chemokine receptor and ultimately leading to gp41-mediated virus-cell membrane fusion and entry. Topological layers in the gp120 inner domain contribute to gp120-trimer association in the unliganded state and to CD4 binding. Here we describe similarities and differences between HIV-1 and SIVmac gp120. In both viruses, the gp120 N/C termini and the inner domain β-sandwich and layer 2 support the noncovalent association of gp120 with the envelope glycoprotein trimer. Layer 1 of the SIVmac gp120 inner domain contributes more to trimer association than the corresponding region of HIV-1 gp120. On the other hand, layer 1 plays an important role in stabilizing the CD4-bound conformation of HIV-1 but not SIVmac gp120 and thus contributes to HIV-1 binding to CD4. In SIVmac, CD4 binding is instead enhanced by tryptophan 375, which fills the Phe 43 cavity of gp120. Activation of SIVmac by soluble CD4 is dependent on tryptophan 375 and on layer 1 residues that determine a tight association of gp120 with the trimer. Distinct biological requirements for CD4 usage have resulted in lineage-specific differences in the HIV-1 and SIV gp120 structures that modulate trimer association and CD4 binding.  相似文献   

11.
CD4 and CCR5 mediate fusion and entry of R5 human immunodeficiency virus type 1 (HIV-1) strains. Sulfotyrosine and other negatively charged residues in the CCR5 amino-terminal domain (Nt) are crucial for gp120 binding and viral entry. We previously showed that a soluble gp120-CD4 complex specifically binds to a peptide corresponding to CCR5 Nt residues 2 to 18, with sulfotyrosines in positions 10 and 14. This sulfopeptide also inhibits soluble gp120-CD4 binding to cell surface CCR5 as well as infection by an R5 virus. Here we show that residues 10 to 18 constitute the minimal domain of the CCR5 Nt that is able to specifically interact with soluble gp120-CD4 complexes. In addition to sulfotyrosines in positions 10 and 14, negatively charged residues in positions 11 and 18 participate in this interaction. Furthermore, the CCR5 Nt binds to a CD4-induced surface on gp120 that is composed of conserved residues in the V3 loop stem and the C4 domain. Binding of gp120 to cell surface CCR5 is further influenced by residues in the crown of the V3 loop, C1, C2, and C3. Our data suggest that gp120 docking to CCR5 is a multistep process involving several independent regions of the envelope glycoprotein and the coreceptor.  相似文献   

12.
The trimeric HIV/SIV envelope glycoprotein, gp160, is cleaved to noncovalently associated fragments, gp120 and gp41. Binding of gp120 to viral receptors leads to large structural rearrangements in both fragments. The unliganded gp120 core has a disordered beta3-beta5 loop, which reconfigures upon CD4 binding into an ordered, extended strand. Molecular modeling suggests that residues in this loop may contact gp41. We show here that deletions in the beta3-beta5 loop of HIV-1 gp120 weaken the binding of CD4 and prevent formation of the epitope for monoclonal antibody (mAb) 17b (which recognizes the coreceptor site). Formation of an encounter complex with CD4 binding and interactions of gp120 with mAbs b12 and 2G12 are not affected by these deletions. Thus, deleting the beta3-beta5 loop blocks the gp120 conformational change and may offer a strategy for design of restrained immunogens. Moreover, mutations in the SIV beta3-beta5 loop lead to greater spontaneous dissociation of gp120 from cell-associated trimers. We suggest that the CD4-induced rearrangement of this loop releases structural constraints on gp41 and thus potentiates its fusion activity.  相似文献   

13.
The entry of human immunodeficiency virus type 1 into cells proceeds via a fusion mechanism that is initiated by binding of the viral glycoprotein gp120-gp41 to its cellular receptor CD4. Species- and tissue-specific restrictions to viral entry suggested the participation of additional membrane components in the postbinding fusion events. In a previous study (H. Golding, J. Manischewitz, L. Vujcic, R. Blumenthal, and D. Dimitrov, J. Virol. 68:1962-1968, 1994), it was found that phorbol myristate acetate (PMA) inhibits human immunodeficiency virus type 1 envelope-mediated cell fusion by inducing down modulation of an accessory component(s) in the CD4-expressing cells. The fusion inhibition was seen in a variety of cells, including T-cell transfectants expressing engineered CD4 receptors (CD4.401 and CD4.CD8) which are not susceptible to down modulation by PMA treatment. In the current study, it was found that preincubation of A2.01.CD4.401 cells with soluble monomeric gp120 for 1 h at 37 degrees C primed them for PMA-induced down modulation (up to 70%) of the tailless CD4 receptors. The gp120-priming effect was temperature dependent, and the down modulation may have occurred via clathrin-coated pits. Importantly, nonhuman cell lines expressing tailless CD4 molecules did not down modulate their CD4 receptors under the same conditions. The gp120-dependent PMA-induced down modulation of tailless CD4 receptors could be efficiently blocked by the human monoclonal antibodies 48D and 17B, which bind with increased avidity to gp120 that was previously bound to CD4 (M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski, J. Virol. 67:3978-3988, 1993). These findings suggest that gp120 binding to cellular CD4 receptors induces conformational changes leading to association of the gp120-CD4 complexes with accessory transmembrane molecules that are susceptible to PMA-induced down modulation and can target the virions to clathrin-coated pits.  相似文献   

14.
The high affinity binding site for human immunodeficiency virus (HIV) envelope glycoprotein gp120 resides within the amino-terminal domain (D1) of CD4. Mutational and antibody epitope analyses have implicated the region encompassing residues 40-60 in D1 as the primary binding site for gp120. Outside of this region, a single residue substitution at position 87 abrogates syncytium formation without affecting gp120 binding. We describe two groups of CD4 monoclonal antibodies (mAbs) which recognize distinct epitopes associated with these regions in D1. These mAbs distinguish between the gp120 binding event and virus infection and virus-induced cell fusion. One cluster of mAbs, which bind at or near the high affinity gp120 binding site, blocked gp120 binding to CD4 and, as expected, also blocked HIV infection of CD4+ cells and virus-induced syncytium formation. A second cluster of mAbs, which recognize the CDR-3 like loop, did not block gp120 binding as demonstrated by their ability to form ternary complexes with CD4 and gp120. Yet, these mAbs strongly inhibited HIV infection of CD4+ cells and HIV-envelope/CD4-mediated syncytium formation. The structure of D1 has recently been solved at atomic resolution and in its general features resembles IgVk regions as predicted from sequence homology and mAb epitopes. In the D1 structure, the regions recognized by these two groups of antibodies correspond to the C'C" (Ig CDR2) and FG (Ig CDR3) hairpin loops, respectively, which are solvent-exposed beta turns protruding in two different directions on a face of D1 distal to the D2 domain. This face is straddled by the longer BC (Ig CDR1) loop which bisects the plain formed by C'C' and FG. This structure is consistent with C'C' and FG forming two distinct epitope clusters within D1. We conclude that the initial interaction between gp120 and CD4 is not sufficient for HIV infection and syncytium formation and that CD4 plays a critical role in the subsequent virus-cell and cell-cell membrane fusion events. We propose that the initial binding of CD4 to gp120 induces conformational changes in gp120 leading to subsequent interactions of the FG loop with other regions in gp120 or with the fusogenic gp41 potion of the envelope gp160 glycoprotein.  相似文献   

15.
We sought to identify sequences in the monoclonal antibody m18 complementarity determining regions (CDRs) that are responsible for its interaction with HIV-1 gp120 and inhibition of the envelope receptor binding sites. In the accompanying paper (DOI 10.1021/bi101160r), we reported that m18 inhibits CD4 binding through a nonactivating mechanism that, at the same time, induces conformational effects leading to inhibition of the coreceptor site. Here, we sought to define the structural elements in m18 responsible for these actions. Direct binding and competition analyses using surface plasmon resonance showed that YU-2 gp120 binding is stabilized by a broad paratope of residues in the m18 CDRs. Additionally, several m18 residues were identified for which mutants retained high affinity for gp120 but had suppressed CD4 and 17b inhibition activities. A subset of these mutants did, however, neutralize HXBc2 viral infection. The results obtained in this work demonstrate that the combined m18 paratope contains subsets of residues that are differentially important for the binding and inhibition functions of the m18 neutralizing antibody. The data also add to prior observations that high-affinity antibodies that do not inhibit monomeric gp120 receptor site interactions may still exhibit significant antiviral activity.  相似文献   

16.
The CC-chemokine receptor CCR5 is required for the efficient fusion of macrophage (M)-tropic human immunodeficiency virus type 1 (HIV-1) strains with the plasma membrane of CD4+ cells and interacts directly with the viral surface glycoprotein gp120. Although receptor chimera studies have provided useful information, the domains of CCR5 that function for HIV-1 entry, including the site of gp120 interaction, have not been unambiguously identified. Here, we use site-directed, alanine-scanning mutagenesis of CCR5 to show that substitutions of the negatively charged aspartic acid residues at positions 2 and 11 (D2A and D11A) and a glutamic acid residue at position 18 (E18A), individually or in combination, impair or abolish CCR5-mediated HIV-1 entry for the ADA and JR-FL M-tropic strains and the DH123 dual-tropic strain. These mutations also impair Env-mediated membrane fusion and the gp120-CCR5 interaction. Of these three residues, only D11 is necessary for CC-chemokine-mediated inhibition of HIV-1 entry, which is, however, also dependent on other extracellular CCR5 residues. Thus, the gp120 and CC-chemokine binding sites on CCR5 are only partially overlapping, and the former site requires negatively charged residues in the amino-terminal CCR5 domain.  相似文献   

17.
HIV use the CD4 molecule as their primary cellular receptor. Residues in the N-terminal domain (D1) of CD4 are crucial to HIV attachment through the gp120 envelope component. However, other regions of CD4 appear to be required subsequently for virus- and cell-cell fusion. Little is understood of the post-binding steps which may differ between HIV variants. We report a novel anti-CD4 mAb that does not block CD4/gp120 binding, but that does efficiently block both viral infection and cell-cell syncytia formation, and define its contact site as residues in CD4 D2 using both mouse/human CD4 chimeras and CD4 substitution mutants. We also investigated the basis for its antiviral effect. Using the CD4 D2 specific mAb, we identify another conserved step in HIV infection, as evidenced by its ability to neutralize a broad range of primary isolates and T cell-line passaged strains. Monovalent forms of the mAb were used to determine if its activity was due to masking of the D2 epitope, to steric inhibition, or bivalency. Our data indicate that both binding site and bivalency of the mAb underlie its potency. The need for bivalency is not simply explained by affinity, because monovalent forms can displace the intact mAb and reverse its protective effect. These results provide evidence that binding of the D2-specific mAb prevents structural alterations necessary for membrane fusion.  相似文献   

18.
Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.  相似文献   

19.
Doranz BJ  Baik SS  Doms RW 《Journal of virology》1999,73(12):10346-10358
Binding of the extracellular subunit of human immunodeficiency type 1 (HIV-1) envelope (Env) glycoprotein (gp120) to CD4 triggers the induction or exposure of a highly conserved coreceptor binding site in gp120 that helps mediate membrane fusion. Characterizing the structural features involved in gp120-coreceptor binding and the conditions under which binding occurs is important for understanding the fusion process, the evolution of pathogenic strains in vivo, the identification of novel anti-HIV compounds, and the development of HIV vaccines that utilize triggered structures of Env. Here we use the kinetics of interaction between CCR5 and gp120 to understand temporal and structural changes that occur during viral fusion. Using saturation binding and homologous competition analysis, we estimated the K(d) of interaction between CCR5 and gp120 from the macrophage tropic HIV-1 strain JRFL to be 4 nM. Unlike Env-mediated fusion, gp120 binding to CCR5 did not require divalent cations or elevated temperatures. Binding was not significantly affected by the pH of binding, G-protein coupling of CCR5, or partial gp120 deglycosylation. Oligomeric, uncleaved JRFL gp140 failed to bind CCR5 despite its ability to bind CD4 and monoclonal antibody 17b, suggesting that the uncleaved ectodomain of gp41 interferes with full exposure of the chemokine receptor binding site. Exposure of the chemokine receptor binding site on gp120 could be induced rapidly by CD4, but exposure of this site was lost upon CD4 dissociation from gp120, indicating that the conformational changes in gp120 induced by CD4 binding are fully reversible. The functional gp120-soluble CD4 complex was remarkably stable over time and temperature ranges, offering the possibility that complexes in which the highly conserved coreceptor binding site in gp120 is exposed can be used for vaccine development.  相似文献   

20.
Entry of HIV-1 into target cells requires binding of the viral envelope glycoprotein (Env) to cellular receptors and subsequent conformational changes that culminates in fusion of viral and target cell membranes. Recent structural information has revealed that these conformational transitions are regulated by three conserved but potentially flexible layers stacked between the receptor-binding domain (gp120) and the fusion arm (gp41) of Env. We hypothesized that artificial insertion of a covalent bond will ‘snap’ Env into a conformation that is less mobile and stably expose conserved sites. Therefore, we analyzed the interface between these gp120 layers (layers 1, 2 and 3) and identified residues that may form disulfide bonds when substituted with cysteines. We subsequently probed the structures of the resultant mutant gp120 proteins by assaying their binding to a variety of ligands using Surface Plasmon Resonance (SPR) assay. We found that a single disulfide bond strategically inserted between the highly conserved layers 1 and 2 (C65-C115) is able to ‘lock’ gp120 in a CD4 receptor bound conformation (in the absence of CD4), as indicated by the lower dissociation constant (Kd) for the CD4-induced (CD4i) epitope binding 17b antibody. When disulfide-stabilized monomeric (gp120) and trimeric (gp140) Envs were used to immunize rabbits, they were found to elicit a higher proportion of antibodies directed against both CD4i and CD4 binding site epitopes than the wild-type proteins. These results demonstrate that structure-guided stabilization of inter-layer interactions within HIV-1 Env can be used to expose conserved epitopes and potentially overcome the sequence diversity of these molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号