首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sampling Submicron T1 Bacteriophage Aerosols   总被引:7,自引:5,他引:2       下载免费PDF全文
Liquid impingers, filter papers, and fritted bubblers were partial viable collectors of radioactive submicron T1 bacteriophage aerosols at 30, 55, and 85% relative humidity. Sampler differences for viable collection were due to incomplete physical collection (slippage) and killing of phage by the samplers. Dynamic aerosols of a mass median diameter of 0.2 mu were produced with a Dautrebande generator from concentrated aqueous purified phage suspensions containing extracellular soluble radioactive phosphate as a physical tracer. There was considerable destruction of phage by the Dautrebande generator; phage titers of the Dautrebande suspension decreased exponentially, but there was a progressive (linear) increase in tracer titers. Liquid impingers recovered the most viable phage but allowed considerable (30 to 48%) slippage, which varies inversely with the aerosol relative humidity. Filter papers were virtually complete physical collectors of submicron particles but were the most destructive. Fritted bubbler slippage was more than 80%. With all samplers, phage kill was highest at 85% relative humidity and lowest at 55% relative humidity. An electrostatic precipitator was used to collect aerosol samples for particle sizing with an electron microscope. The particle size was slightly larger at 85% relative humidity than at 30 or 55% relative humidity.  相似文献   

2.
Studies were undertaken to determine if a prewetting device (humidifier bulb) used in combination with an all glass impinger (AGI-30) would increase the recovery of airborne mengovirus-37A, vesicular stomatitis virus (VSV), and the S-13 coliphage. Suspensions of T3 coliphage with mengovirus-37A, VSV, or S-13 were aerosolized and collected by using the AGI-30-humidifier bulb combination to sample the aerosols before and after shifts in relative humidities (RH). These studies revealed the following. (i) At low RH values there was a 3 to 4 log increase in recovery of airborne T3 phage; (ii) concomitantly, the recovery of mengovirus-37A and VSV decreased; and (iii) only at the mid-range RH values was the recovery of S-13 enhanced. The prehumidification technique significantly increased the recovery of airborne T3 phage but decreased the recovery of the two animal viruses tested.  相似文献   

3.
Andersen air samplers were used to determine the particle size distribution of Serratia marcescens aerosols created during several common laboratory procedures and simulated laboratory accidents. Over 1,600 viable particles per cubic foot of air sampled were aerosolized during blending operations. More than 98% of these particles were less than 5 mu in size. In contrast, 80% of the viable particles aerosolized by handling lyophilized cultures were larger than 5 mu. Harvesting infected eggs, sonic treatment, centrifugation, mixing cultures, and dropping infectious material produced aerosols composed primarily of particles in the 1.0- to 7.5-mu size range.  相似文献   

4.
Influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and Staphylococcus aureus are important swine pathogens capable of being transmitted via aerosols. The electrostatic particle ionization system (EPI) consists of a conductive line that emits negative ions that charge particles electrically resulting in the settling of airborne particles onto surfaces and potentially decreasing the risk of pathogen dissemination. The objectives of this study were to determine the effect of the EPI system on the quantity and viability of IAV, PRRSV, PEDV and S. aureus in experimentally generated aerosols and in aerosols generated by infected animals. Efficiency at removing airborne particles was evaluated as a function of particle size (ranging from 0.4 to 10 µm), distance from the source of ions (1, 2 and 3 m) and relative air humidity (RH 30 vs. 70 %). Aerosols were sampled with the EPI system “off” and “on.” Removal efficiency was significantly greater for all pathogens when the EPI line was the closest to the source of aerosols. There was a greater reduction for larger particles ranging between 3.3 and 9 µm, which varied by pathogen. Overall airborne pathogen reduction ranged between 0.5 and 1.9 logs. Viable pathogens were detected with the EPI system “on,” but there was a trend to reducing the quantity of viable PRRSV and IAV. There was not a significant effect on the pathogens removal efficiency based on the RH conditions tested. In summary, distance to the source of ions, type of pathogen and particle size influenced the removal efficiency of the EPI system. The reduction in infectious agents in the air by the EPI technology could potentially decrease the microbial exposure for pigs and people in confinement livestock facilities.  相似文献   

5.
Quantitative studies were conducted to evaluate the efficiency of the slit sampler in collecting airborne Serratia marcescens and Bacillus subtilis var. niger, and to compare it with the collecting efficiency of the all-glass impinger AGI-30. The slit sampler was approximately 50% less efficient than the AGI-30. This ratio remained the same whether liquid or dry cultures were disseminated when the sample was taken at 2 min of aerosol cloud life. At 30 min of aerosol cloud life, this ratio was approximately 30% for B. subtilis var. niger. S. marcescens recoveries by the slit sampler were, however, only 17% lower than the AGI-30 at 30 min of cloud age, indicating a possible interaction involving the more labile vegetative cells, aerosol age, and method of collection.  相似文献   

6.
Aerosols composed of viable particles of a uniform size were produced with a commercial spinning-disc generator from aqueous suspensions of Bacillus subtilis var. niger spores containing various amounts of an inert material, dextran, to regulate aerosol particle size. Aerosols composed of single naked spores having an equivalent spherical diameter of 0.87 mum were produced from spore suspensions without dextran, whereas aerosols produced from suspensions containing 0.001, 0.01, 0.1, and 1% dextran had median diameters of 0.90, 1.04, 1.80, and 3.62 mum, respectively. Such aerosols, both homogeneous and viable, would be useful for calibrating air sampling devices, evaluating air filter systems, or for employment wherever aerosol behavior may be size-dependent.  相似文献   

7.
Suspensions of transmissible gastroenteritis virus (TGEV), a porcine coronavirus, were nebulized at rates of 0.1–0.2 ml/min into moving air using a Collison nebulizer or a plastic medical nebulizer operating at pressures ranging from 7 to 15 psi. The airborne viruses were collected on heating, ventilating, and air conditioning (HVAC) filters in an experimental apparatus and also sampled upstream of these test filters using AGI-30 and BioSampler impinger samplers. To study the effects of relative humidity (RH) on TGEV collection by the filters and samplers, the virus was nebulized into air at 30, 50, 70, and 90% RH. There were no significant changes in virus titer in the nebulizer suspension before and after nebulization for either nebulizer at any of the pressures utilized. Aerosolization efficiency – the ratio of viable virus sampled with impingers to the quantity of viable virus nebulized – decreased with increasing humidity. BioSamplers detected more airborne virus than AGI-30 samplers at all RH levels. This difference was statistically significant at 30 and 50% RH. Nebulizer type and pressure did not significantly affect the viability of the airborne virus. Virus recovery from test filters relative to the concentration of virus in the nebulizer suspension was less than 10%. The most and the least virus were recovered from filter media at 30% and 90% RH, respectively. The results suggest that TGEV, and perhaps other coronaviruses, remain viable longer in an airborne state and are sampled more effectively at low RH than at high humidity.  相似文献   

8.
A number of industrial processes require the addition of materials to the fermentation broth that are hazardous to health and environment. Agitation of broths inoculated with microorganisms can potentially release aerosols large enough to carry the microorganisms. The influence of agitation, air flow, and bacterial growth on aerosol size distribution, air flow, and bacterial growth on aerosol size distribution was investigated in an industrial pilot scale fermentor. A decrease in particle concentration was observed with increase in bacterial growth; this change was more pronounced in the size range above 2 mum. The aerosol size distribution was found to be practically independent of air flow rate and agitation rate for sizes less than 2 mum. However, for particles largar than 2 mum, the concentration was found to increase with an increase in air flow rate and agitation rate.  相似文献   

9.
Air filters efficiency is usually determined by non-biological test aerosols, such as potassium chloride particles, Arizona dust or di-ethyl-hexyl-sebacate (DEHS) oily liquid. This research was undertaken to asses, if application of non-biological aerosols reflects air filters capacity to collect particles of biological origin. The collection efficiency for non-biological aerosol was tested with the PALAS set and ISO Fine Test Dust. Flow rate during the filtration process was 720 l/h, and particles size ranged 0.246–17.165 μm. The upstream and downstream concentration of the aerosol was measured with a laser particle counter PCS-2010. Tested bioaerosol contained 4 bacterial strains of different shape and size: Micrococcus luteus, Micrococcus varians, Pseudomonas putida and Bacillus subtilis. Number of the biological particles was estimated with a culture-based method. Results obtained with bioaerosol did not confirmed 100% filters efficiency noted for the mineral test dust of the same aerodynamic diameter. Maximum efficiency tested with bacterial cells was 99.8%. Additionally, cells reemission from filters into air was also studied. Bioaerosol contained 3 bacterial strains: Micrococcus varians, Pseudomonas putida and Bacillus subtilis. It was proved that the highest intensity of the reemission process was during the first 5 min. and reached maximum 0.63% of total number of bacteria retained in filters. Spherical cells adhered stronger to the filter fibres than cylindrical ones. It was concluded that non-biological aerosol containing particles of the same shape and surface characteristics (like DEHS spherical particles) can not give representative results for all particles present in the filtered air.  相似文献   

10.
The mechanisms involving inactivation of bacteriophage MS2 in aerosols and the effect of protective substances in the spray-medium were studied after spraying from various NaCl solutions. Results with aerosols generated from the salt solutions showed that with higher salt concentration in the spray-medium higher concentrations of protective substances were needed to protect phage MS2 against aerosol inactivation. Phenylalanine, which has a protective action at low concentration, produced less protection in aerosol droplets that were supersaturated solutions of this substance or in which crystals of phenylalanine can be expected to form. Our results suggested that protection by peptone and phenylalanine was related to the concentration in the aerosol droplet after evaporation to equilibrium, whereas protection by the surface active agent OED (a commercial mixture of oxyethylene docosylether and oxyethelene octadecylether) was related to the concentration at which a monolayer is formed around the aerosol particle. Inactivation of phage MS2 was maximal in the aerosol particle in fluid phase and became less at lower relative humidity where aerosol particles are expected to be in the solid state. It is suggested that inactivation of bacteriophage MS2 in aerosols could be explained by surface inactivation at the air-water interface.  相似文献   

11.
This paper reports a series of experiments in which two methods of collecting airborne bacteriophage particles were compared. A standard aerosol sampler, the AGI-30, was evaluated for its competence in measuring the content of bacteriophage aerosols. It was used alone or with a prewetting or humidification device (humidifier bulb) to recover T(3) coliphage and Pasteurella pestis bacteriophage particles from aerosols maintained at 21 C and varied relative humidity. Collection of bacteriophage particles via the humidifier bulb altered both the initial recovery level and the apparent biological decay. Sampling airborne bacteriophage particles by the AGI-30 alone yielded data that apparently underestimated the maximal number of potentially viable particles within the aerosol, sometimes by as much as 3 logs.  相似文献   

12.
Aerosol particle size influences airway drug deposition. Current inhaler devices are inefficient, delivering a heterodisperse distribution of drug particle sizes where, at best, 20% reaches the lungs. Monodisperse aerosols are the appropriate research tools to investigate basic aerosol science concepts within the human airways. We hypothesized that engineering such aerosols of albuterol would identify the ideal bronchodilator particle size, thereby optimizing inhaled therapeutic drug delivery. Eighteen stable mildly to moderately asthmatic patients [mean forced expiratory volume in 1 s (FEV1) 74.3% of predicted] participated in a randomized, double-blind, crossover study design. A spinning-top aerosol generator was used to produce monodisperse albuterol aerosols that were 1.5, 3, and 6 microm in size, and also a placebo, which were inhaled at cumulative doses of 10, 20, 40, and 100 microg. Lung function changes and tolerability effects were determined. The larger particles, 6 and 3 microm, were significantly more potent bronchodilators than the 1.5-microm and placebo aerosols for FEV1 and for the forced expiratory flow between exhalation of 25 and 75% of forced vital capacity. A 20-microg dose of the 6- and 3-microm aerosols produced FEV1 bronchodilation comparable to that produced by 200 microg from a metered-dose inhaler. No adverse effects were observed in heart rate and plasma potassium. The data suggest that in mildly to moderately asthmatic patients there is more than one optimal beta2-agonist bronchodilator particle size and that these are larger particles in the higher part of the respirable range. Aerosols delivered in monodisperse form can enable large reductions of the inhaled dose without loss of clinical efficacy.  相似文献   

13.
phi 227, a temperate phage from a group H streptococcus (Streptococcus sanguis), was propagated vegetatively in group H strain Wicky 4-EryR, and its characteristics were determined. A procedure dependent on multiplicity of infection, incubation time, and treatment of crude lysates with diatomaceous earth was found to optimize phage yield, resulting in titers of 1 X 10(10) to 2 X 10(10) PFU/ml. Without prior treatment with diatomaceous earth, subsequent purification procedures (methanol, ammonium sulfate, polyethylene glycol) gave recoveries of less than 1% of crude lysate titers. Adsorption of phi227 to host cells was relatively unaffected by the medium, but calcium (not substituted by magnesium) was required for formation of infectious centers. The phage receptor was present on purified cell walls, resisted trypsin and heat, and was removed ty hydrochloric acid, trichloracetic acid, and hot formamide: however, formamide-extracted material failed to inactivate phage, and the nature of the receptor is unknown. Single-step growth experiments showed a latent period of 39 min and a burst size of 100 PFU/infectious center; results were unaffected by omission of supplemental Ca2+, by supplementation with Mg2, addition of glucose, or changes of pH between 6.35 and 8.0; but increased temperature (40 to 43 degrees C) shortened the latent period and decreased the burst size. The latent period was prolonged in genetically competent host cells and in chemically defined medium; and in the latter, the burst size was smaller. Phage replication was sensitive to those metabolic inhibitors which inhibited the host streptococcus: these included rifampin, fluorodeoxyuridine, hydroxyurea, dihydrostreptomycin, and 6-P-hydroxyphenylazouracil. The data suggest that phi227 does not code for a rifampin-resistant RNA polymerase. However, in a rifampin-resistant host strain, phage replication and lysogen formation were both decreased suggesting that altered host core polymerase had less affinity for (some) promotors on the phi227 template. In transfection, a Ca2+-dependent stabilization step that was inhibited by Mg2+ was demonstrated; transformation was not affected by either Ca2+ or Mg2+, and the site and nature of the stabilization are unknown. More than one molecule of DNA was required for plaque formation. Biophysical characterization showed a type B phage of buoyant density (CsCl) 1.50, containing five proteins and 54.8% DNA. The duplex linear DNA had a molecular weight (calculated from contour length) of 23.2 X 10(6) and a guanine plus cytosine content (calculated from melting point) of 42.3 mol%. Similar characterizations of streptococcal phages, including biophysical data, have not been previously available.  相似文献   

14.
Aims:  To assess the impact of reaerosolization from liquid impingement methods on airborne virus sampling.
Methods and Results:  An AGI-30 impinger containing particles [MS2 bacteriophage or 30-nm polystyrene latex (PSL)] of known concentration was operated with sterile air. Reaerosolized particles as a function of sampling flow rate and particle concentration in the impinger collection liquid were characterized using a scanning mobility particle sizer. Reaerosolization from the impinger was also compared to that from a BioSampler. Results show that reaerosolization increases as flow rate increases. While the increased particle concentration in the impinger collection liquid leads to an increase in the reaerosolization of PSL particles, it does not necessarily lead to an increase in the reaerosolization of virus particles. Reaerosolization of virus particles begins to decrease as the particle concentration in the impinger collection liquid rises above 106 PFU ml−1. This phenomenon results from aggregation of viral particles at high concentrations. Compared with micron-sized particles, nanosized virus particles are easier to aerosolize because of reduced inertia. Reaerosolization from the BioSampler is demonstrated to be significantly less than that from the impinger.
Conclusions:  Reaerosolization from impingement sampling methods is a mode of loss in airborne virus sampling, although it is not as significant a limitation as the primary particle size of the aerosol. Utilizing a BioSampler coupled with short sampling periods to prevent high accumulative concentrations can minimize the impact of reaerosolization.
Significance and Impact of the Study:  This study confirms reaerosolization of virus particles to be a mode of loss in impingement sampling and identifies methods to minimize the loss.  相似文献   

15.
The Upjohn Company uses filtration to remove microorganisms and particulates from air and other gases which may come in contact with sterile products. To validate the microbial retentivity of these filters, they were challenged with an aerosol of Bacillus subtilis var niger spores. An aerosol challenge was used because it more closely simulated the use for which these filters were designed. The test apparatus was constructed of autoclavable components using a jet-type nebulizer and heated air mixing tube. Characterization of the aerosol particle size distribution with a particle size analyzer demonstrated that 80% of the particles had a diameter of x 3.0 times;m and that the particles had a mean mass diameter of 1.9 times;m with a geometric standard deviation of 1.8 times;m. Studies conducted with aerosols of Bacillus subtilis var niger spores demonstrated that the test apparatus could recover ca. 50% of the spores that were aerosolized. Hydrophobic filters from various manufactures were challenged with an aerosol of at least 10(8) spores of Bacillus subtilis. All filters tested could retain at least 10(9) spores when physical integrity of the filter was verfield.  相似文献   

16.
This study was conducted to evaluate the effect of aerosol generation, methods of sampling, storage conditions, and relative humidity on the culturability of the mycobacteriophage D29. The lytic phage D29 can kill Mycobacterium tuberculosis, and the phage aerosol can be treated as a potential tool for tuberculosis treatment. The culturability of D29 was tested using a test chamber designed for the bioaerosols research against three spray liquids (deionized water, phosphate-buffered saline [PBS], and normal saline), four collection media (suspension medium [SM], nutrient broth, PBS, and deionized water), two sampling systems (the all-glass impinger AGI-30 and the Biosampler) and across a range of humidities (20 to 90%). The effect of storage conditions on the culturability of collected sample was also evaluated for the AGI-30 impinger. The results proved that viable phage D29 particles generated by deionized water were approximately 30- and 300-fold higher than PBS and normal saline, respectively. As collection media, SM buffer and nutrient broth were observed to yield a higher number of plaques compared to PBS and deionized water. No difference was observed in collection efficiency between AGI-30 and Biosampler with two detection methods (culture-based technique and real-time PCR). The culturability of collected D29 in SM buffer or nutrient broth can be maintained up to 12 h irrespective of storage temperature. Relative humidity was found to strongly influence airborne D29 culturability which is 2- to 20-fold higher in low humidity (25%) than medium (55%) or high (85%) humidity. This research will help identify the optimal means for the application of D29 aerosol in animal inhalation experiments.  相似文献   

17.
A mass airflow cabinet for handling and housing of laboratory rodents has been developed and tested. The unit consists of a high-efficiency particulate air filter and uniform distribution of air at a vertical velocity of 19 cm per s. Animals are maintained without bedding in mesh-bottomed cages that rest on rollers for rotation inside the cabinet. There is an air barrier of 90 cm per s separating the cabinet air from room air. Sampling for airborne bacteria yielded an average of 0.03 colony-forming units (CFU) per ft(3) of air inside the cabinet, whereas 28.8 CFU per ft(3) was simultaneously detected outside the cabinet during housekeeping, a reduction of almost three logs. The efficiency of the air barrier was tested by aerosolization of T3 phage. When phage was aerosolized 5 cm outside the cabinet, no phage could be detected 5 cm inside when the fans were operating; with the fans off an average of 1.6 x 10(4) plaque-forming units (PFU) per ft(3) was detected in six tests. Aerosolization of phage inside the cabinet yielded an average of 9 x 10 PFU per ft(3) outside; an average of 4.1 x 10(6) PFU per ft(3) were detected with the fans not in operation, a reduction of more than four logs. In-use studies on effectiveness showed that the cabinet significantly reduced the incidence of mice originally titer-free to Reo-3 virus. Hemagglutination inhibition antibodies to Reo-3 were detected in 9/22 (42%) mice housed in a conventionally ventilated animal laboratory while no seroconversion was detected in any of 22 mice housed in the mass air flow cabinet in the same laboratory.  相似文献   

18.
Vuvuzelas, the plastic blowing horns used by sports fans, recently achieved international recognition during the FIFA World Cup soccer tournament in South Africa. We hypothesised that vuvuzelas might facilitate the generation and dissemination of respiratory aerosols. To investigate the quantity and size of aerosols emitted when the instrument is played, eight healthy volunteers were asked to blow a vuvuzela. For each individual the concentration of particles in expelled air was measured using a six channel laser particle counter and the duration of blowing and velocity of air leaving the vuvuzela were recorded. To allow comparison with other activities undertaken at sports events each individual was also asked to shout and the measurements were repeated while using a paper cone to confine the exhaled air. Triplicate measurements were taken for each individual. The mean peak particle counts were 658 × 10(3) per litre for the vuvuzela and 3.7 × 10(3) per litre for shouting, representing a mean log(10) difference of 2.20 (95% CI: 2.03,2.36; p < 0.001). The majority (>97%) of particles captured from either the vuvuzela or shouting were between 0.5 and 5 microns in diameter. Mean peak airflows recorded for the vuvuzela and shouting were 6.1 and 1.8 litres per second respectively. We conclude that plastic blowing horns (vuvuzelas) have the capacity to propel extremely large numbers of aerosols into the atmosphere of a size able to penetrate the lower lung. Some respiratory pathogens are spread via contaminated aerosols emitted by infected persons. Further investigation is required to assess the potential of the vuvuzela to contribute to the transmission of aerosol borne diseases. We recommend, as a precautionary measure, that people with respiratory infections should be advised not to blow their vuvuzela in enclosed spaces and where there is a risk of infecting others.  相似文献   

19.
The mechanism of inactivation of a double-stranded DNA phage, phage J1 of Lactobacillus casei, by ascorbic acid was investigated.

Bubbling air, oxidizing agents and transition metal ions enhanced the rate of inactivation of the phage by ascorbic acid. In contrast, bubbling nitrogen gas, other reducing agents and radical scavengers prevented the inactivation. The results indicated that the inactivating effect of ascorbic acid was oxygen dependent and caused by free radicals formed during the autoxidation of ascorbic acid.

The target of ascorbic acid in the phage particle was not the tail protein but DNA. Ascorbic acid caused single-strand scissions in phage DNA, as exhibited by alkaline sucrose density gradient centrifugation analysis, and caused a slight decrease in the viscosity of DNA.  相似文献   

20.
Method for detecting viruses in aerosols.   总被引:2,自引:1,他引:1       下载免费PDF全文
A simple method with poliovirus as the model was developed for recovering human enteric viruses from aerosols. Filterite filters (pore size, 0.45 micron; Filterite Corp., Timonium, Md.) moistened with glycine buffer (pH 3.5) were used for adsorbing the aerosolized virus. No virus passed the filter, even with air flow rates of 100 liters/min. Virus recovery from the filter was achieved by rapid elution with 800 ml of glycine buffer, pH 10. The virus in the primary eluate was reconcentrated by adjusting the pH to 3.5, adding AlCl3 to 0.0005 M, collecting the virus on a 0.25-micron-pore Filerite disk (diameter, 25 mm) and and eluting with 6 ml of buffer, pH 10. With this method, virus could be detected regularly in aerosols produced by flushing when 3 X 10(8) PFU of poliovirus were present in the toilet bowl. Poliovirus-containing fecal material from two of four infants who had recently received oral polio vaccine also yielded virus in the aerosols when feces containing 2.4 X 10(7) to 4.5 X 10(7) PFU of virus had been added to the toilet bowl. Persons infected with a variety of natural enteric viruses are known to excrete this amount of virus in their daily stools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号