首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In quiescent Balb/c 3T3 cells, competence factors such as 12-O-tetradecanoylphorbol-13-acetate (TPA) and platelet-derived growth factor (PDGF) synergize with progression factors such as insulin to initiate DNA synthesis. In this study, we found that colchicine, a microtubule-disrupting agent, acted synergistically with TPA, but not with insulin, to induce the maximal stimulation of DNA synthesis. Colchicine also synergized with PDGF in the presence of epidermal growth factor to elicit nearly the optimal induction of DNA synthesis. Moreover, it acted synergistically with fibroblast growth factor, another competence factor. These results suggest that colchicine acts as a progression factor like insulin in quiescent Balb/c 3T3 cells.  相似文献   

2.
In quiescent Balb/c 3T3 cells, competence factors such as platelet-derived growth factor and 12-O-tetradecanoylphorbol-13-acetate (TPA) activated MAP kinase, whereas progression factors such as insulin did not. Insulin was, however, capable of activating MAP kinase in cells pretreated with TPA. Moreover, TPA plus insulin activated MAP kinase more strongly and for a longer time period than did TPA alone. Treatment of Balb/c 3T3 cells with competence factors stimulated phosphorylation of the 350-kDa protein which was immunoprecipitated with antibodies against brain high-molecular-weight microtubule-associated protein MAP1, whereas insulin treatment did not stimulate the phosphorylation. Insulin could induce, however, further increase in the phosphorylation of the 350-kDa protein, when added simultaneously with TPA or added to the TPA-treated cells. The enhanced phosphorylation of the 350-kDa protein thus correlated with the MAP kinase activation. As insulin acts synergistically with TPA to induce initiation of DNA synthesis in the quiescent Balb/c 3T3 cells, it seems that activation of MAP kinase and enhanced phosphorylation of the 350-kDa protein are accompanied by the initiation of DNA synthesis.  相似文献   

3.
R W Tucker  C D Scher  C D Stiles 《Cell》1979,18(4):1065-1072
BALB/c-3T3 cells which are growth-arrested by high cell density or low serum have ciliated, unduplicated centrioles. Stimulation of these quiescent cells by serum is associated with a rapid (within 1–2 hr) deciliation of the centriole, followed by reciliation within 6–10 hr. This transient deciliation of the centriole is induced by the platelet-derived growth factor (PDGF) component of serum. The cells treated with PDGF became competent to replicate their DNA; most PDGF treated cells, however, did not progress from Go toward S phase unless they were incubated with the platelet-poor plasma component of serum. Addition of CaCl2 or Fibroblast Growth Factor to the media mimicked PDGF by producing both centriole deciliation and competence to replicate DNA. In fact, over a range of concentrations of each of these factors, only doses which produced centriole deciliation were capable of producing competence for DNA synthesis. Plasma alone or factors such as Multiplication Stimulating Activity produced neither centriole deciliation nor competence; these agents were, however, required for the optimum progression of competent cells into DNA synthesis. In contrast, infection with SV40 induced host cell DNA synthesis without an initial transient deciliation of the centriole. Thus while growth factors may have to induce centriole deciliation for 3T3 cells to synthesize DNA, abortive transformation by SV40 overrides this requirement.  相似文献   

4.
Balb/3T3 cells show density-dependent regulation of multiplication with the final cell density depending on serum concentration in the media. Chemically transformed Balb/3T3 cells (Balb/3T3-D) pile up on each other, multiply to a high cell density, but have decreased DNA synthesis at very high cell densities. Balb/3T3-D cells require less serum for multiplication compared with original Balb/3T3 cells. A rat serum fraction and a bovine β-globulin fraction stimulate the multiplication of Balb/3T3 cells but only slightly stimulate Balb/3T3-D cells indicating different serum factors stimulate growth of these two cell types. The multiplication properties of Balb/3T3-D cells are very similar to those of SV-40 transformed 3T3 cells, however, these properties were brought about by a single treatment by a chemical carcinogen, without an exogenous virus. The transformation altered the contact of cells to one another, indicating a permanent chemical change in the membrane structure.  相似文献   

5.
Epidermal growth factor (EGF)-induced down-regulation of its receptor is an obligatory pathway for cellular regulation of EGF-specific receptor (EGF-R) in normal and malignant cells. BNER4 cells are mouse Balb/3T3 cells transfected with the human EGF-R complementary DNA (cDNA). Polyoma middle T antigen-transfectants of BNER4, B4/MT-2, B4/MT-13, B4/MT-23, and B4/MT-24, showed diminished down-regulation of cell surface human EGF-R in response to EGF relative to the parental BNER4 cells. Also, the v-src-transfectants B4/SRC-13 and B4/SRC-24 showed much less down-regulation than BNER4 cells, whereas H-ras-transfectants of BNER4, B4/RAS-24 and B4/RAS-25, showed EGF-induced down-regulation of the cell surface EGF-R similar to that of BNER4. EGF induced DNA synthesis more than 20-fold in BNER4, but induced only about a 1.5- to 6-fold increase in the middle T antigen- and v-src-transfectants. EGF-Rs of the middle T antigen-transfectants were metabolically stable in the presence of EGF in comparison with their parental BNER4 cells. EGF-Rs of BNER4 cells degraded with half-lives of about 2 h in the presence of EGF, but those of the middle T antigen transformants were found to be highly stabilized in the presence of EGF. On the other hand, transfection with polyoma middle T antigen (MTAg) cDNA causes malignant transformation of Balb/3T3 cells, but not its monensin (an ionophoric antibiotic)-resistant mutant MO-5 cells, which have no significant EGF binding activity. Transfection of human EGF-R cDNA into MO-5 leads to the expression of high levels of human EGF-R in MNER31. Unlike the polyoma MTAg transfectants of BNER4, EGF-R in polyoma MTAg cDNA-transfectants into MNER31, M31/MT-13 and M31/MT-14, were down-regulated to levels similar to those of their parental MNER31. Exposure to EGF induced a more than 10-fold increase in DNA synthesis of quiescent BNER4, MNER31, M31/MT-13, and M31/MT-14 cells. Polyoma middle T antigen or v-src appears to modulate EGF-induced down-regulation of EGF-R, possibly through interaction of the receptor with the viral oncogenes, and this interaction may be altered in the mutant.  相似文献   

6.
The authors compared sedimentation rates of nucleoids from mouse embryo 3T3 fibroblasts cultured in the presence or absence of different cell growth factors. The results clearly showed that rapidly sedimenting nucleoids are obtained only when cells are supplied with any of the following competence growth factors: platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or the product of the oncogene v-sis (a peptide homologous to PDGF). The tumor promoter phorbol 12-myristate 13-acetate, an activator of protein kinase C and a partial mitogen, shares this property with the competence growth factors. Removal of these factors from the medium causes cells to enter Go and nucleoids to sediment at a slower rate. Protein synthesis is required for growth factor induction of change in nucleoid sedimentation, but inhibition of either DNA synthesis or DNA repair does not antagonize the effect of growth factors. Titration of nucleoids with ethidium bromide indicates that one possible mechanism for the nucleoid change is the unwinding of DNA in supercoiled loops. The results indicated that the nucleoid change constitutes a cell response to competence factors that might have an important role in cell proliferation.  相似文献   

7.
Regulation of thymidine kinase activity in the cell cycle by a labile protein   总被引:10,自引:0,他引:10  
Previous studies have shown that the onset of DNA synthesis in Balb/c 3T3 cells appears to be regulated by a labile protein. We have found that induction of thymidine kinase (TK) activity, after quiescent cells are stimulated by the addition of serum, is similarly regulated by a labile protein. Eight hours after serum stimulation, a 6-h pulse of cycloheximide (CHM) caused an excess delay of 2 h in TK induction. A similar delay also was found in the induction of thymidylate synthase (TS). In contrast, the benzo(a)pyrene transformed 3T3 cell line, BP-A31, which had previously been shown to have no excess delay for the onset of DNA synthesis also had no excess delay for the induction of TK activity after a pulse of CHM. The induction of TK was inhibited by actinomycin D and dichlororibofuranosylbenzimidizole (DRB) suggesting a requirement for new RNA synthesis. It did not appear to depend on DNA synthesis as it was not blocked by aphidicolin. In conclusion, the induction of TK activity appears to be regulated by the same labile cellular signal as the onset of DNA synthesis, and to depend on an increase in the level of TK mRNA in late G1 or early S phase.  相似文献   

8.
9.
The effect of inhibition of the cell membrane Na+-K+ pump on the Balb/c-3T3 cell growth cycle was studied. Inhibition of the Na+-K+ pump resulted in a dose-dependent reduction of intracellular K+ concentration ((K+)i). However, inhibition of protein synthesis in Go/G1 and of subsequent entry into S phase occurred only after (K+)i fell below a critical threshold (50-60 mmoles/liter). Thus, when the (K+)i falls below a critical threshold, protein synthesis is inhibited, preventing cells from entering the S phase. The platelet-derived growth factor (PDGF) induces cells to become "competent" to traverse the cell cycle; the platelet-poor plasma component of serum allows competent cells to progress through G0/G1 and enter S phase. Inhibition of the Na+-K+ pump did not prevent the induction of competence by PDGF, but it did reversibly inhibit plasma-mediated events in early G0/G1. Similarly, cycloheximide inhibited plasma-mediated events but did not prevent PDGF-induced competence. Thus, protein synthesis may not be required for induction of competence; alternatively, the induction of the competent state may occur in these cells after removal of PDGF and protein synthesis inhibitor. Protein synthesis is required for subsequent plasma-mediated events in G0/G1.  相似文献   

10.
To investigate the contribution that ERK/mitogen-activated protein kinase signalling makes to cell cycle progression and gene expression, we have constructed cell lines to express an inducible version of activated MEK1. Using these cells, we show that activation of MEK leads to the expression of Fra-1 and Fra-2 but not c-Fos. Treatment of Ras-transformed cells with the MEK inhibitor PD098059 blocks expression of Fra-1 and Fra-2, showing that in Ras transformation ERK signalling is responsible for Fra-1 and Fra-2 expression. Activation of MEK1 in growth-arrested cells leads to DNA synthesis; however, ERK activation alone is insufficient because the induction of DNA synthesis is blocked by inhibition of phosphatidylinositol 3-kinase (PI3-kinase). Activation of PI3-kinase is indirect, perhaps through autocrine growth factors, and is required for the induction of cyclin D1.  相似文献   

11.
12.
Dual effect of activin A on cell growth in Balb/c 3T3 cells   总被引:5,自引:0,他引:5  
Effects of activin A on cell growth were studied in Balb/c 3T3 cells. When incubated with serum, activin A inhibited serum-induced increase in DNA synthesis in a concentration-dependent manner. Activin A also inhibited serum-induced increase in cell number. When added in quiescent cells, activin A did not affect competence-inducing activity of PDGF. Activin A by itself had a small competence-inducing activity. In contrast, when added in competent cells, activin A inhibited progression activity of platelet-poor plasma. These results indicate that activin A has dual action on cell proliferation in Balb/c 3T3 cells.  相似文献   

13.
The platelet-derived growth factor (PDGF), which is found in serum but not in plasma, has been purified to homogeneity; it stimulates replication at a concentration of 10?10M. Brief treatment with PDGF causes densityinhibited Balb/c-3T3 cells to become competent to synthesize DNA; pituitary fibroblast growth factor (FGF) or precipitates of calcium phosphate also induce competence. Continuous treatment with plasma allows competent, but not incompetent, cells to synthesize DNA. A critical component of plasma is somatomedin, a group of hormones with insulin-like activity; multiplication-stimulating activity (MSA) or insulin replace plasma somatomedin in promoting DNA synthesis. We have studied the molecular correlates of competence and the role of SV40 gene A products in regulating DNA synthesis. Treatment of quiescent cells with pure PDGF or FGF causes the preferential synthesis of five cytoplasmic proteins (approximate molecular weight 29,000, 35,000, 45,000, 60,000, and 72,000 detected by SDS-PAGE under reducing conditions). Two of these competence-associated proteins (29,000 and 35,000 daltons) are found within 40 min of PDGF addition; they are not induced by plasma, insulin, or epidermal growth factor (EGF), PDGF, FGF, or calcium phosphate induce an ultrastructure change within the centriole of 3T3 cells; this ultrastructural modification of the centriole is detectable by immunofluorescence within 2 h of PDGF treatment. Plasma, EGF, or MSA do not modify the centriole. SV40 induces replicative DNA synthesis in growth-arrested 3T3 cells but does not cause this alteration in centriole structure. Gene A variants of SV40, including a mutant with temperature-sensitive (ts) T-antigen (ts A209), a deletion in t-antigen (dl 884), and several ts A209 strains containing t-antigen deletions were used to induce DNA synthesis in Balb/c-3T3 cells. Like wild type SV40, all strains induced DNA synthesis equally well under permissive or nonpermissive conditions. Addition of PDGF or plasma had little effect on SV40-induced DNA synthesis. Thus, the viral function that induces replicative DNA synthesis in Balb/c-3T3 cells is not t and is not temperature sensitive. This SV40 gene function overrides the cellular requirement for hormonal growth factors. It does not induce transient centriole deciliation, a hormonally regulated event.  相似文献   

14.
Stimulation of Balb/c-3T3 cell growth by TPA requires factors found in serum. We examined the interaction between TPA and serum growth factors in the stimulation of cell growth. The number of cells synthesizing DNA (incorporating 3H-thymidine) within 24 to 30 hours after the addition of TPA and the growth factors to density-inhibited Balb/c-3T3 cultures in serum-free medium was determined by autoradiography. With no additions or with TPA (30--300 ng/ml) alone, only 3--7% of cells synthesized DNA. However, TPA synergistically promoted DNA synthesis in combination with each of the defined serum growth fractions, platelet derived growth factor and platelet poor plasma. TPA also synergistically promoted DNA synthesis in combination with purified growth factors including fibroblast growth factor, insulin (10(-6)--10(-5)M), and epidermal growth factor. In all conditions, TPA enhancement of DNA synthesis also resulted in an increase in cell number. Because TPA synergistically enhanced the activity of each growth factor tested, it did not act identically to any of the growth factors.  相似文献   

15.
R Bravo  H Macdonald-Bravo 《FEBS letters》1986,195(1-2):309-312
The pH dependence of competence induction and progression to the S-phase in quiescent stimulated cells has been studied. The results show that: (i) induction of competence by fibroblast growth factor in these cells is relatively independent of the external pH between pH 5.6-7.6; (ii) progression of cells to the S-phase is highly sensitive to pH and shows a dramatic increase between pH 6.8-7.2. These observations suggest that the intracellular alkalinization triggered by growth factors is fundamental for progression but not for competence induction.  相似文献   

16.
The nuclear enzyme DNA topoisomerase II catalyzes the breakage and resealing of duplex DNA and plays an important role in several genetic processes. It also mediates the DNA cleavage activity and cytotoxicity of clinically important anticancer agents such as etoposide. We have examined the activity of topoisomerase II during the first cell cycle of quiescent BALB/c 3T3 cells following serum stimulation. Etoposide-mediated DNA break frequency in vivo was used as a parameter of topoisomerase II activity, and enzyme content was assayed by immunoblotting. Density-arrested A31 cells exhibited a much lower sensitivity to the effects of etoposide than did actively proliferating cells. Upon serum stimulation of the quiescent cells, however, there was a marked increase in drug sensitivity which began during S phase and reached its peak just before mitosis. Maximal drug sensitivity during this period was 2.5 times greater than that of log-phase cells. This increase in drug sensitivity was associated with an increase in intracellular topoisomerase II content as determined by immunoblotting. The induction of topoisomerase II-mediated drug sensitivity was aborted within 1 h of exposure of cells to the protein synthesis inhibitor cycloheximide, but the DNA synthesis inhibitor aphidicolin had no effect. In contrast to the sensitivity of cells to drug-induced DNA cleavage, maximal cytotoxicity occurred during S phase. A 3-h exposure to cycloheximide before etoposide treatment resulted in nearly complete loss of cytotoxicity. Our findings indicate that topoisomerase II activity fluctuates with cell cycle progression, with peak activity occurring during the G2 phase. This increase in topoisomerase II is protein synthesis dependent and may reflect a high rate of enzyme turnover. The dissociation between maximal drug-induced DNA cleavage and cytotoxicity indicates that the topoisomerase-mediated DNA breaks may be necessary but are not sufficient for cytotoxicity and that the other factors which are particularly expressed during S phase may be important as well.  相似文献   

17.
The 1246-3A cell line is an insulin-independent variant derived from the adipogenic cell line 1246. Data presented in this paper indicate that the 1246-3A cell line releases in its culture medium two types of transforming growth factors, TGF-alpha- and TGF-beta-like polypeptides, and a growth inhibitor. TGF-alpha like polypeptide eluted from Biogel P60 column into two fractions with an apparent molecular weight of 50 kDa and 13 kDa. These high-molecular-weight TGF-alpha-like factors competed with 125I-EGF for binding to epidermal growth factor (EGF) receptors and were specifically immunoprecipitated by incubation with antirat TGF-alpha antibody, not by incubation with anti-EGF antibody. Both fractions promoted anchorage-independent growth of normal rat kidney NRK cells in the absence of EGF and stimulated DNA synthesis in quiescent Balb/c-3T3 cells in a fashion similar to EGF and synthetic TGF-alpha. In addition to secreting TGF-alpha-like polypeptides, 1246-3A cells produce TGF-beta. This polypeptide, eluted from Biogel P60 chromatography with an apparent molecular weight of 25 kDa, promoted anchorage-independent growth of NRK cells in the presence of EGF and was growth inhibitory for Chinese hamster lung fibroblasts CCL 39 cells. Interestingly, another growth inhibitory activity was detected in Biogel P60 fractions and eluted with an apparent molecular weight of between 9.5-11 kDa. This fraction was different from TGF-beta and TGF-alpha as determined by specific radioreceptor competition assays. TGF-alpha and TGF-beta-like polypeptides could represent autocrine growth stimulators for the insulin-independent 1246-3A cells and act in synergy with insulin-related factor (IRF) for an optimal stimulation of 1246-3A cell proliferation in serum-free medium.  相似文献   

18.
Much controversy regarding the relationship between nutrients and serum in regulation of cell growth can be reconciled by recognizing that serum contains multiple factors which regulate different events in the cell cycle. Serum was fractionated into a platelet-derived growth factor (PDGF), which induces cells to become competent to synthesize DNA, and plasma which allows competent cells to traverse G0/G1 and enter the S phase. Nutrients are not required for the cellular response to PDGF; however amino acids are required for plasma to promote the entry of PDGF-treated, competent cells into S phase. The nutrient independent, PDGF-modulated, growth regulatory event (competence) is located 12 hours prior to the G1/S phase boundary in quiescent, density-arrested Balb/c-3T3 cells. The nutrient dependent, plasma-modulated event is located six hours prior to the G1/S phase boundary and corresponds in concentration of amino acids required for DNA synthesis. Infection of density-arrested Balb/c3T3 cells with SV40 overrides both the nutrient independent and the nutrient dependent growth regulatory events.  相似文献   

19.
Extensive evidence indicate that platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) play a key role in the stimulation of the 3T3 fibroblast replication: in this connection, PDGF and EGF act as a competence and a progression factor, respectively. We have previously demonstrated that EGF alone leads density-arrested EL2 rat fibroblasts to synthesize DNA and proliferate in serum-free cultures. Here, we have analyzed the role of EGF in the control of EL2 cell proliferation. Our data show a dose-related effect of EGF on DNA synthesis and cell growth, with maximal stimulation for both parameters at 20 ng/ml. On the other hand, autocrine production of PDGF or PDGF-like substances by EL2 cells is seemingly excluded by experiments with anti-PDGF serum or medium conditioned by EL2 fibroblasts. EGF binding studies show that EL2 cells possess high affinity EGF receptors, at a density level 3 to 4-fold higher than other fibroblastic lines. In addition, EL2 cells show a normal down-regulation of EGF receptors, following exposure to EGF, but PDGF, fibroblast growth factor (FGF), transforming growth factor beta (TGF beta) and bombesin have not decreased the affinity of EGF receptor for its ligand. Moreover, in EL2 cells, the EGF is able to induce the synthesis of putative intracellular regulatory proteins that govern the PDGF-induced competence in 3T3 cells. Our data indicate that EGF in EL2 cells may act as both a competence and a progression factor, via induction of the mechanisms, regulated in other cell lines by cooperation between different growth factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Role of the ø11 Phage Genome in Competence of Staphylococcus aureus   总被引:13,自引:8,他引:5       下载免费PDF全文
Both phage ?11 and 83A, when present as prophage or when used as helper phage, induce competence for transfection and transformation to the same level in Staphylococcus aureus, strain 8325-4. Cells lysogenized with certain temperature-sensitive (ts) mutants of phage ?11 show competence at the nonpermissive temperature (41 C) without production of infectious phages. Phage ?11ts allele 31 can neither as a prophage nor as a helper phage develop competence under nonpermissive conditions. This mutant appears, therefore, to be mutated in the region of the phage genome controlling competence. The competence level for both transfection and transformation is increased by superinfecting strain 8325-4 (?11) or 8325-4 (83A) at high multiplicities with phage ?11 with some of its mutants or with phage 83A. This superinfection enhancement appears to require protein synthesis but not deoxyribonucleic acid synthesis as judged from studies with inhibitors of macromolecular synthesis. Besides the phage particle, no extracellular or cell-bound factors so far detected can induce competence. The phage-induced product conferring competence is rapidly synthesized by strain 8325-4 (ts?11(31)) after shift to permissive conditions, but requires deoxyribonucleic acid and protein synthesis to be expressed. Recombination between the sus mutants of phage ?11 of Kretschmer and Egan and ts?11(31) indicate that competence is controlled by an early gene in the lytic cycle which may be expressed also in lysogenic cells. The phage product inducing competence appears to have a half-life of 10 to 15 min in the conditional lethal mutant at shift to nonpermissive temperature. Ultraviolet inactivation of phage ?11 infectivity occurs more rapidly than inactivation of competence induction. In fact, the number of transformants is increased at low doses of irradiation. Competence induction is, however, decreased at high does of ultraviolet irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号