共查询到20条相似文献,搜索用时 0 毫秒
1.
UTA MAIER-MAERCKER 《Plant, cell & environment》1983,6(5):369-380
Abstract. Peristomatal transpiration is defined as the relative high local rate of cuticular water loss from external and internal surfaces around the stomatal pore and its decisive role in the control of stomatal movement is re-emphasized. As the resistance towards changes in air humidity is low in the pore surroundings, the state of turgor is particularly unsteady there. Due to the inherent instability the guard cell 'senses' fluctuations in the supply-demand relationship of water and is thus the control unit proper. The environmental variables (supply and demand) are cross-correlated within the subsidiary cell and the information is transmitted to the guard cell through the water potential gradient between the two cells. A conceptual segregation of a 'humidity response' by 'passive' stomatal movements is rejected.
As ions always accumulate at the most distant point of the liquid path and as this point varies with pore width according to the prevailing water potential gradients, it is felt that the water stream is causing the characteristic pattern of ion distribution within the epidermis. Passive import of ions is attributed to local concentration gradients which are steepened by continuous supply and by water uptake into the guard cell in response to starch hydrolysis. A mechanistic model supplements the discussion. 相似文献
As ions always accumulate at the most distant point of the liquid path and as this point varies with pore width according to the prevailing water potential gradients, it is felt that the water stream is causing the characteristic pattern of ion distribution within the epidermis. Passive import of ions is attributed to local concentration gradients which are steepened by continuous supply and by water uptake into the guard cell in response to starch hydrolysis. A mechanistic model supplements the discussion. 相似文献
2.
麦田冠层气孔导度的分层研究 总被引:2,自引:0,他引:2
小麦灌浆期和乳熟期冠层各层叶片上、下表面的气孔导度之间呈正相关关系;冠层不同层的叶片气孔导度从早到傍晚有平行变化的趋势,数值上存在较大的差异,一般从冠层上到下递减。经分析,这主要与冠层叶片接受的光强自上而下递减有关,且这时所对应的叶片水势自冠层上到下递增的幅度大。测算结果表明,冠层气孔导度白天亦呈明显的日变化,灌浆期的值大于乳熟期的值。 相似文献
3.
A new mechanism for stomatal responses to humidity and temperature is proposed. Unlike previously-proposed mechanisms, which rely on liquid water transport to create water potential gradients within the leaf, the new mechanism assumes that water transport to the guard cells is primarily through the vapour phase. Under steady-state conditions, guard cells are assumed to be in near-equilibrium with the water vapour in the air near the bottom of the stomatal pore. As the water potential of this air varies with changing air humidity and leaf temperature, the resultant changes in guard cell water potential produce stomatal movements. A simple, closed-form, mathematical model based on this idea is derived. The new model is parameterized for a previously published set of data and is shown to fit the data as well as or better than existing models. The model contains mathematical elements that are consistent with previously-proposed mechanistic models based on liquid flow as well as empirical models based on relative humidity. As such, it provides a mechanistic explanation for the realm of validity for each of these approaches. 相似文献
4.
The role of the mesophyll in stomatal responses to light and CO2 总被引:1,自引:0,他引:1
Stomatal responses to light and CO2 were investigated using isolated epidermes of Tradescantia pallida , Vicia faba and Pisum sativum . Stomata in leaves of T. pallida and P. sativum responded to light and CO2 , but those from V. faba did not. Stomata in isolated epidermes of all three species could be opened on KCl solutions, but they showed no response to light or CO2 . However, when isolated epidermes of T. pallida and P. sativum were placed on an exposed mesophyll from a leaf of the same species or a different species, they regained responsiveness to light and CO2 . Stomatal responses in these epidermes were similar to those in leaves in that they responded rapidly and reversibly to changes in light and CO2 . Epidermes from V. faba did not respond to light or CO2 when placed on mesophyll from any of the three species. Experiments with single optic fibres suggest that stomata were being regulated via signals from the mesophyll produced in response to light and CO2 rather than being sensitized to light and CO2 by the mesophyll. The data suggest that most of the stomatal response to CO2 and light occurs in response to a signal generated by the mesophyll. 相似文献
5.
气孔是植物叶片内外气体交换的场所。斑驳气孔在形态结构、动态变化、光合气体交换机制等方面都与常见的普通气孔不同,是植物体响应环境变化而形戍的特殊气孔形式。本文介绍了斑驳气孔的特点及其形成机理。 相似文献
6.
Interpretation of an empirical model for stomatal conductance in terms of guard cell function 总被引:7,自引:7,他引:7
R. C. DEWAR 《Plant, cell & environment》1995,18(4):365-372
An empirical model for stomatal conductance (g), proposed by Leuning (1995, this issue) as a modification of Ball, Woodrow & Berry's (1987) model, is interpreted in terms of a simple, steady-state model of guard cell function. In this model, stomatal aperture is a function of the relative turgor between guard cells and epidermal cells. The correlation between g and leaf surface vapour pressure deficit in Leuning's model is interpreted in terms of stomatal sensing of the transpiration rate, via changes in the gradient of total water potential between guard cells and epidermal cells. The correlation between g, CO2 assimilation rate and leaf surface CO2 concentration in Leuning's model is interpreted as a relationship between the corresponding osmotic gradient, irradiance, temperature, intercellular CO2 concentration and stomatal aperture itself. The explicit relationship between osmotic gradient and stomatal aperture (possibly describing the effect of changes in guard cell volume on the membrane permeability for ion transport) results in a decrease in the transpiration rate in sufficiently dry air. Possible extension of the guard cell model to include stomatal responses to soil water status is discussed. 相似文献
7.
Stomatal responses to leaf temperature (Tl) and to the mole fractions of water vapour in the ambient air (wa) and the leaf intercellular air spaces (wi) were determined in darkness to remove the potential effects of changes in photosynthesis and intercellular CO2 concentration. Both the steady‐state and kinetic responses of stomatal conductance (gs) to wa in darkness were found to be indistinguishable from those in the light. gs showed a steep response to the difference (Δw) between wa and wi when wa was varied. The response was much less steep when wi was varied. Although stomatal apertures responded steeply to Tl when Δw was held constant at 17 mmol mol?1, the response was much less steep when Δw was held constant at about zero. Similar results were obtained in the light for Δw = 15 mmol mol?1 and Δw ≈ 0 mmol mol?1. These results are discussed in the context of mechanisms for the stomatal response to humidity. 相似文献
8.
The relationship between guard cell water potential and the aperture of stomata in Populus 总被引:1,自引:0,他引:1
Abstract Previous work with clones of Populus trichocarpa demonstrated that the water vapour conductance of leaves from well-watered cuttings of this species does not decline with loss of turgor from the bulk leaf. In the present study, stomatal responses to water potential in Populus were examined with detached epidermal strips. Stomata in epidermal strips from well-watered plants of P. trichocarpa did not close at low water potentials which led to plasmolysis of the guard cells. In contrast, stomata of P. deltoides and a P. trichocarpa×deltoides hybrid closed when the guard cells lost turgor. A period of water stress preconditioning resulted in modified stomatal responses in P. trichocarpa such that stomata of stressed and re-watered plants nearly closed when guard cell turgor was lost. 相似文献
9.
Timothy J. Brodribb Frances Sussmilch Scott A. M. McAdam 《The Plant journal : for cell and molecular biology》2020,101(4):756-767
The best predictor of leaf level photosynthetic rate is the porosity of the leaf surface, as determined by the number and aperture of stomata on the leaf. This remarkable correlation between stomatal porosity (or diffusive conductance to water vapour gs) and CO2 assimilation rate (A) applies to all major lineages of vascular plants (Figure 1) and is sufficiently predictable that it provides the basis for the model most widely used to predict water and CO2 fluxes from leaves and canopies. Yet the Ball–Berry formulation is only a phenomenological approximation that captures the emergent character of stomatal behaviour. Progressing to a more mechanistic prediction of plant gas exchange is challenging because of the diversity of biological components regulating stomatal action. These processes are the product of more than 400 million years of co‐evolution between stomatal, vascular and photosynthetic tissues. Both molecular and structural components link the abiotic world of the whole plant with the turgor pressure of the epidermis and guard cells, which ultimately determine stomatal pore size and porosity to water and CO2 exchange (New Phytol., 168, 2005, 275). In this review we seek to simplify stomatal behaviour by using an evolutionary perspective to understand the principal selective pressures involved in stomatal evolution, thus identifying the primary regulators of stomatal aperture. We start by considering the adaptive process that has locked together the regulation of water and carbon fluxes in vascular plants, finally examining specific evidence for evolution in the proteins responsible for regulating guard cell turgor. 相似文献
10.
HARTMUT KAISER 《Plant, cell & environment》2009,32(8):1091-1098
The quantitative relation between stomatal aperture and gas exchange through the stomatal pore can be described by physical models derived from Fick's first law of diffusion. Such models, usually based on a simplified pore geometry, are used to calculate leaf conductance from stomatal pore dimensions or vice versa. In this study a combination of gas-exchange measurements and simultaneous microscopical observations of stomatal apertures was used to empirically determine this relationship. The results show a substantial deviation between measured stomatal conductance and that calculated from the simplified models. The main difference is a much steeper increase of conductance with aperture at small apertures. When the calculation was based on a realistic pore geometry derived from confocal laser scanning microscopy, a good fit to the experimentally found relationship could be obtained if additionally a significant contribution of a mesophyll diffusional resistance was taken into account. 相似文献
11.
12.
Net photosynthetic and transpiration rates in a chlorophyll-deficient isoline of soybean under well-watered and drought conditions 总被引:1,自引:0,他引:1
The gas exchange traits of wild type soybeans (cv. Clark) and a near-isogenic, chlorophyll-deficient line homozygous for the recessive allele y9 (y9y9) were compared under either well-watered or water-stress conditions. Mature leaves of y9 had a 65% lower chlorophyll content than wild type. However, the net photosynthetic rate (PN) of y9 leaves was only 20% lower than in the wild type, irrespective of water availability. Transpiration rates (E) were significantly higher in leaves of y9, compared to the wild type, either under well-watered or stress conditions. The higher E of y9 correlated with increased stomatal conductance, particularly in the abaxial epidermis, where more than 70% of the stomata were located. The combination of lower PN and increased E resulted in a significant decrease of water use efficiency in y9, at both water availability levels. The relative water content decreased in stressed leaves, much more in y9 than in wild type leaves, probably because of the higher E of the mutant line. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
13.
Roth-Nebelsick A 《Annals of botany》2007,100(1):23-32
BACKGROUND AND AIMS: The influence of stomatal architecture on stomatal conductance and on the developing concentration gradient was explored quantitatively by comparing diffusion rates of water vapour and CO(2) occurring in a set of three-dimensional stoma models. The influence on diffusion of an internal cuticle, a sunken stoma, a partially closed stoma and of substomatal chambers of two different sizes was considered. METHODS: The study was performed by using a commercial computer program based on the Finite Element Method which allows for the simulation of diffusion in three dimensions. By using this method, diffusion was generated by prescribed gas concentrations at the boundaries of the substomatal chamber and outside of the leaf. The program calculates the distribution of gas concentrations over the entire model space. KEY RESULTS: Locating the stomatal pore at the bottom of a stomatal antechamber with a depth of 20 microm decreased the conductance significantly (at roughly about 30 %). The humidity directly above the stomatal pore is significantly higher with the stomatal antechamber present. Lining the walls of the substomatal chamber with an internal cuticle which suppresses evaporation had an even stronger effect by reducing the conductance to 60 % of the original value. The study corroborates therefore the results of former studies that water will evaporate preferentially at sites in the immediate vicinity to the stomatal pore if no internal cuticle is present. The conductance decrease affects only water vapour and not CO(2). Increasing the substomatal chamber increases CO(2) uptake, whereas transpiration increases if an internal cuticle is present. CONCLUSIONS: Variation of stomatal structure may, with unchanged pore size and depth, profoundly affect gas exchange and the pathways of liquid water inside the leaf. Equations for calculation of stomatal conductance which are solely based on stomatal density and pore depth and size can significantly overestimate stomatal conductance. 相似文献
14.
Evidence is building that stomatal conductance to water vapour (g(s)) can be quite high in the dark in some species. However, it is unclear whether nocturnal opening reflects a mechanistic limitation (i.e. an inability to close at night) or an adaptive response (i.e. promoting water loss for reasons unrelated to carbon gain). Further, it is unclear if stomatal responses to leaf-air vapour pressure difference (D) persist in the dark. We investigated nocturnal stomatal behaviour in castor bean (Ricinus communis L.) by measuring gas exchange and stomatal responses to D in the light and in the dark. Results were compared among eight growth environments [two levels for each of three treatment variables: air saturation deficit (D(a)), light and water availability]. In most plants, stomata remained open and sensitive to D at night. g(s) was typically lower at night than in the day, whereas leaf osmotic pressure (Pi) was higher at night. In well-watered plants grown at low D(a), stomata were less sensitive to D in the dark than in the light, but the reverse was found for plants grown at high D(a). Stomata of droughted plants were less sensitive to D in the dark than in the light regardless of growth D(a). Drought also reduced g(s) and elevated Pi in both the light and the dark, but had variable effects on stomatal sensitivity to D. These results are interpreted with the aid of models of stomatal conductance. 相似文献
15.
Previous work indicated that long-term exposure to elevated carbon dioxide levels can reduce hydraulic conductance in some species, but the basis of the response was not determined. In this study, hydraulic conductance was measured at concentrations of both 350 and 700 cm3 m–3 carbon dioxide for plants grown at both concentrations, to determine the reversibility of the response. In Zea mays and Amaranthus hypochondriacus , exposure to the higher carbon dioxide concentration for several hours reduced whole-plant transpiration rate by 22–40%, without any consistent change in leaf water potential, indicating reversible reductions in hydraulic conductance at elevated carbon dioxide levels. Hydraulic conductance in these species grown at both carbon dioxide concentrations responded similarly to measurement concentration of carbon dioxide, indicating that the response was reversible. In Glycine max , which in earlier work had shown a long-term decrease in hydraulic conductance at elevated carbon dioxide levels, and in Abutilon theophrasti , no short-term changes in hydraulic conductance with measurement concentration of carbon dioxide were found, despite lower transpiration rates at elevated carbon dioxide. In G. max and Medicago sativa , growth at high dew-point temperature reduced transpiration rate and decreased hydraulic conductance. The results indicate that both reversible and irreversible decreases in hydraulic conductance can occur at elevated carbon dioxide concentrations, and that both could be responses to reduced transpiration rate, rather than to carbon dioxide concentration itself. 相似文献
16.
17.
The role of epidermal turgor in stomatal interactions following a local perturbation in humidity 总被引:7,自引:4,他引:7
Humidity in a small area of a Vicia faba L. leaf was perturbed with a flow of dry air from an 80 µm (inside diameter) needle, while the remainder of the leaf was maintained at high and constant humidity. The influence of the needle flow on the humidity at the leaf surface was quantified by using a spatially explicit dewpoint hygrometer to observe condensation patterns. When the dry air from a needle was applied to the leaf, stomata within the influence of the needle opened within the first few minutes of the perturbation, and local epidermal turgor pressure declined within the same time frame. When the needle flow was removed from the leaf, these responses were reversed, but with more variable kinetics. Stomata and epidermal cells outside the influence of the needle flow, which were exposed to a constant and high humidity, showed similar, but smaller, responses when the needle flow was applied to the leaf. Since the opening of these stomata should have had only a small effect on transpiration (because of the high humidity), it is likely that the reduction in epidermal turgor was the cause (rather than the result) of the stomatal opening. The magnitude of the turgor response was only loosely related to the distance from the needle flow up to distances of almost 400 µm. The data support the idea that neighbouring stomata can interact through the influence of transpiration on epidermal turgor. 相似文献
18.
Moghaieb RE Tanaka N Saneoka H Murooka Y Ono H Morikawa H Nakamura A Nguyen NT Suwa R Fujita K 《Plant, cell & environment》2006,29(2):173-182
19.
Abstract Stomatal conductance per unit leaf area in well-irrigated field- and greenhouse-grown sugarcane increased with leaf area up to 0.2 m2 plant 1, then declined so that maximum transpiration per plant tended to saturate rather than increase linearly with further increase in leaf area. Conductance to liquid water transport exhibited parallel changes with plant size. This coordiantion of vapour phase and liquid phase conductances resulted in a balance between water loss and water transport capacity, maintaining leaf water status remarkably constant over a wide range of plant size and growing conditions. The changes in stomatal conductance were not related to plant or leaf age. Partial defoliation caused rapid increases in stomatal conductance, to re-establish the original relationship with remaining leaf area. Similarly, pruning of roots caused rapid reductions in stomatal conductance, which maintained or improved leaf water status. These results suggest that sugarcane stomata adjusted to the ratio of total hydraulic conductance to total transpiring leaf area. This could be mediated by root metabolites in the transpiration stream, whose delivery per unit leaf area would be a function of the relative magnitudes of root system size, transpiration rate and leaf area. 相似文献
20.
A. L. García L. Marcelis F. Garcia-Sanchez N. Nicolas V. Martínez 《Biologia Plantarum》2007,51(4):707-712
The responses of water relations, stomatal conductance (gs) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate
and progressive water stress by adding 80 % of the water evapotranspirated by the plant the preceding day. Well-watered plants
received 100 % of the water evapotranspirated. Two weeks before starting the drought period, the plants were fertilised with
Hoagland’s solution with 14, 60 and 110 mM NO3
− (N14, N60 and N110, respectively). Plants of the N110 treatment had the highest leaf area. However, gs was higher for N60 plants and lower for N110 plants. At the end of the drought period, N60 plants showed the lowest values
of water potential (Ψw) and osmotic potential (Ψs), and the highest values of pressure potential (Ψp). N60 plants showed the highest Ψs at maximum Ψp and the highest bulk modulus of elasticity. 相似文献