首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 890 毫秒
1.
糖基化能够增加化合物的结构多样性,有效改善水溶性、药理活性和生物利用度,对植物天然产物的药物开发至关重要。UDP-糖基转移酶(UGTs)能够催化糖基从活化的核苷酸糖供体转移到受体形成糖苷键,植物中天然产物的糖基化修饰主要通过UGTs实现。但是大多数天然UGTs的催化活性、稳定性和底物特异性较低,难以满足工业用酶的要求,限制了它们的工业化应用。近年来,通过分子改造技术改进天然UGTs的催化特性取得了突破性的研究进展。为此,概述了植物源UGTs的挖掘与表征、三维结构和催化机制,归纳了UGTs分子改造的思路和方法,包括理性设计和定向进化,重点介绍了结构域替换、序列保守分析和结构分析与定点突变的结合,总结了定向进化中的高通量筛选方法,为植物天然产物酶法糖基化的工业应用提供了参考和借鉴。  相似文献   

2.
三萜皂苷具有独特的化学性质和丰富的药理活性,在医药、保健品、化妆品、食品添加剂、农业等方面被广泛应用.尿苷二磷酸(UDP)依赖的糖基转移酶(UGTs)是催化三萜皂苷生成的关键酶,对三萜皂苷的结构及其药理活性多样性的形成有重要作用.文中基于UGTs来源及受体底物结构类型对参与植物三萜皂苷生物合成的UGTs进行了综述,并展...  相似文献   

3.
糖基转移酶Alg11作为N-糖基化途径中一个重要蛋白,功能为催化将甘露糖转移到底物DPGn_2M_3(Dolichyl-pyrophosphate-Glc NAc_2Mannose_3)上进而生成DPGn_2M_4和DPGn_2M_5这两种多萜醇寡糖前体的反应。在本研究中,首先通过对酿酒酵母Alg11的蛋白质结构进行分析,设计了去除跨膜域的蛋白Alg11_(45-548)并成功在大肠杆菌中表达,进而对诱导时间、诱导剂浓度进行了产量最大化的优化,最终得到了纯化蛋白。以PPGn_2(Phytanyl-pyrophosphate-Glc NAc_2)为底物,利用体外表达的重组蛋白Alg1ΔTM和Trx-Alg2以酶法合成出Alg11的天然底物类似物PPGn_2M_3。用纯化的Alg11_(45-548)蛋白催化转糖基反应,并通过液质联用(LC-MS)的方法检测产物,证实Alg11_(45-548)蛋白具有催化PPGn_2M_3生成PPGn_2M_4和PPGn_2M_5的糖基转移酶活性。产物PPGn_2M_5通过不同的甘露糖苷酶酶切反应,验证了两个新加上的甘露糖以α-1,2糖苷键的形式连接到底物PPGn_2M_3上。底物特异性实验表明Alg11_(45-548)可以特异性识别底物PPGn_2M_3,而其他N-糖基化中间体类似物如PPGn_2和PPGn_2M_1无法被识别,且底物中的脂肪链结构也对酶的识别具有重要作用。Alg11的底物特异性保证了多萜醇寡糖前体的有序合成,具有重要的生理意义。  相似文献   

4.
糖基转移酶(glycosyltransferases,GT;EC 2.4.x.y)是一个多成员的基因家族,根据其底物特异性和催化特异性被分为99个不同的家族。糖基化反应是由GT催化的一些糖类或非糖类生物分子附加糖基形成共价结合的过程。家族1糖基转移酶一般以尿苷二磷酸-糖(UDP-糖)作为糖基供体,催化糖分子转移到受体分子上,从而调节受体分子生物活性,水溶性和稳定性等。在调节植物激素平衡、内外源物质的解毒以及防御反应和次生代谢产物的修饰方面发挥着重要作用。本综述对UDP-糖基转移酶的分类、命名、功能以及进化进行综述,以期为糖基转移酶相关研究提供一定参考。  相似文献   

5.
糖基转移酶(glycosyltransferases, GTs)广泛存在于各种有机体中,通过糖基化反应参与维持细胞代谢稳态.糖基转移酶能够识别多种受体,催化活化的糖基从供体分子转移到受体分子上,改变受体分子的化学稳定性、水溶性以及受体分子的转运能力和生物活性等,进而有助于提高其生物利用度和生物活性等.许多被糖基化修饰的化合物成为药物分子的重要来源.然而,天然产物中的糖苷类化合物存在含量低、提取难度大和提取产物纯度差等问题.在利用化学合成方法合成糖苷类化合物的过程中,无法实现特定位点的糖基化修饰,同时原料试剂和副产物易对环境造成污染.因此,近年来对糖基转移酶的研究日渐增多.本文简要综述了植物糖基转移酶的结构和生物技术应用的研究进展,为基于植物糖基转移酶结构的糖基化工程和生物活性糖苷化合物的生产提供有用信息.  相似文献   

6.
植物类型Ⅲ聚酮化合物合酶(PKS)催化合成多种植物次生代谢产物的基本分子骨架,参与植物体许多重要生物学功能的行使,一直是研究蛋白结构与功能关系、基于结构进行分子改造的重要模式分子家族。目前在蛋白质数据库(PDB)中有超过80个不同种属来源的类型Ⅲ PKS的三维结构被报道,其中包括了研究最为透彻的查尔酮合酶在内的7种酶的晶体结构,这些结构的发表对于阐明该类酶复杂多变的底物专一性、链延伸和不同的环化反应机制奠定了结构基础。三维空间结构解析以及基于定点突变的结构功能分析是进行酶工程、基因工程的基础。以下系统综述了植物类型Ⅲ PKS超家族晶体结构和功能的研究进展。  相似文献   

7.
类泛素蛋白--SUMO   总被引:10,自引:0,他引:10  
SUMO(small ubiquitin-related modifier)是泛素(ubiquitin)类蛋白家族的重要成员之一。尽管SUMO的生化反应途径与泛素相似,但不像泛素那样诱导底物蛋白降解。SUMO化能够使蛋白质更加稳定,进而调节许多关键的细胞活动。现从分类、结构、生化途径和生物学功能等方面介绍SUMO及SUMO化过程。  相似文献   

8.
陶江  刘斌  王荃  郭宏杰  冯露 《微生物学报》2004,44(3):345-350
利用生物信息学手段对大肠杆菌和志贺氏菌的 1 1 0个O 抗原糖基转移酶与 39个O 抗原聚合酶的序列进行分析 ,探讨这两种酶的序列和结构特点。统计了其序列一致性 ,密码子使用和 (G C) %含量的特点 ;讨论了O 抗原糖基转移酶和聚合酶对底物的特异性 ;推测了 6组糖基转移酶的功能 ;通过对蛋白拓扑结构的预测 ,发现O 抗原聚合酶中广泛存在一个位于细胞周质中的亲水环 (Loop) ,是可能的功能区域 ;通过对蛋白高级结构的预测 ,发现O 抗原糖基转移酶属于两个不同的蛋白超家族。  相似文献   

9.
糖基转移酶(glycosyltransferases,GTs)将糖基从活化的供体转移到糖、脂、蛋白质和核酸等受体,其参与的蛋白质糖基化是最重要的翻译后修饰(post-translational modifications,PTMs)之一。近年来越来越多的研究证明,糖基转移酶与致病菌毒力密切相关,在致病菌的黏附、免疫逃逸和定殖等生物学过程中发挥关键作用。目前,已鉴定的糖基转移酶根据其蛋白质三维结构特征分为3种类型GT-A、GT-B和GT-C,其中常见的是GT-A和GT-B型。在致病菌中发挥黏附功能的糖基转移酶,在结构上属于GT-B或GT-C型,对致病菌表面蛋白质(黏附蛋白、自转运蛋白等)进行糖基化修饰,在致病菌黏附、生物被膜的形成和毒力机制发挥具有重要作用。糖基转移酶不仅参与致病菌黏附这一感染初始过程,其中属于GT-A型的一类致病菌糖基转移酶会进入宿主细胞,通过糖基化宿主蛋白质影响宿主信号传导、蛋白翻译和免疫应答等生物学功能。本文就常见致病菌糖基转移酶的结构及其糖基化在致病机制中的作用进行综述,着重介绍了特异性糖基化高分子量(high-molecular-weight,HMW)黏附蛋白的糖基转移酶、针对富丝氨酸重复蛋白(serine-rich repeat proteins,SRRP)糖基化修饰的糖基转移酶、细菌自转运蛋白庚糖基转移酶(bacterial autotransporter heptosyltransferase,BAHT)家族、N-糖基化蛋白质系统和进入宿主细胞发挥毒力作用的大型梭菌细胞毒素、军团菌(Legionella)葡萄糖基转移酶以及肠杆菌科的效应子NleB。为揭示致病菌中糖基转移酶致病机制的系统性研究提供参考,为未来致病菌的诊断、药物设计研发以及疫苗开发等提供科学依据和思路。  相似文献   

10.
非受体型酪氨酸激酶(non-receptor tyrosine kinase,nRTK)是一个较大的激酶家族,其功能是催化蛋白的酪氨酸磷酸化。nRTK家族中的几种常见亚型,比如Src和Fyn,可以在神经系统内表达。近年来的研究表明,神经元的突触部位含有多个nRTK的底物蛋白,这些底物蛋白主要包括谷氨酸受体(离子型和代谢型谷氨酸受体)、突触后构架蛋白、突触前调节蛋白和突触富含的多种蛋白激酶。在基础或刺激的状态下,nRTK可催化这些底物蛋白内特定酪氨酸的磷酸化,从而调节这些底物蛋白的多种生理、生化和生物物理功能。因为突触内的nRTK对突触变化信号非常敏感,所以突触nRTK被认为参与了突触传导活动的强度和效率等方面的调节。  相似文献   

11.
Flavonoids are most commonly conjugated with various sugar moieties by UDP-sugar:glycosyltransferases (UGTs) in a lineage-specific manner. Generally, the phylogenetics and regiospecificity of flavonoid UGTs are correlated, indicating that the regiospecificity of UGT differentiated prior to speciation. By contrast, it is unclear how the sugar donor specificity of UGTs evolved. Here, we report the biochemical, homology-modeled, and phylogenetic characterization of flavonoid 7-O-glucuronosyltransferases (F7GAT), which is responsible for producing specialized metabolites in Lamiales plants. All of the Lamiales F7GATs were found to be members of the UGT88-related cluster and specifically used UDP-glucuronic acid (UDPGA). We identified an Arg residue that is specifically conserved in the PSPG box in the Lamiales F7GATs. Substitution of this Arg with Trp was sufficient to convert the sugar donor specificity of the Lamiales F7GATs from UDPGA to UDP-glucose. Homology modeling of the Lamiales F7GAT suggested that the Arg residue plays a critical role in the specific recognition of anionic carboxylate of the glucuronic acid moiety of UDPGA with its cationic guanidinium moiety. These results support the hypothesis that differentiation of sugar donor specificity of UGTs occurred locally, in specific plant lineages, after establishment of general regiospecificity for the sugar acceptor. Thus, the plasticity of sugar donor specificity explains, in part, the extraordinary structural diversification of phytochemicals.  相似文献   

12.
Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published. Despite low sequence conservation, the UGTs show a highly conserved secondary and tertiary structure. The sugar acceptor and sugar donor substrates of UGTs are accommodated in the cleft formed between the N- and C-terminal domains. Several regions of the primary sequence contribute to the formation of the substrate binding pocket including structurally conserved domains as well as loop regions differing both with respect to their amino acid sequence and sequence length. In this review we provide a detailed analysis of the available plant UGT crystal structures to reveal structural features determining substrate specificity. The high 3D structural conservation of the plant UGTs render homology modeling an attractive tool for structure elucidation. The accuracy and utility of UGT structures obtained by homology modeling are discussed and quantitative assessments of model quality are performed by modeling of a plant UGT for which the 3D crystal structure is known. We conclude that homology modeling offers a high degree of accuracy. Shortcomings in homology modeling are also apparent with modeling of loop regions remaining as a particularly difficult task.  相似文献   

13.
Plants produce a plethora of structurally diverse natural products. The final step in their biosynthesis is often a glycosylation step catalyzed by a family 1 glycosyltransferase (GT). In biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor, the UDP-glucosyltransferase UGT85B1 catalyzes the conversion of p-hydroxymandelonitrile into dhurrin. A structural model of UGT85B1 was built based on hydrophobic cluster analysis and the crystal structures of two bacterial GTs, GtfA and GtfB, which each showed approximately 15% overall amino acid sequence identity to UGT85B1. The model enabled predictions about amino acid residues important for catalysis and sugar donor specificity. p-Hydroxymandelonitrile and UDP-glucose (Glc) were predicted to be positioned within hydrogen-bonding distance to a glutamic acid residue in position 410 facilitating sugar transfer. The acceptor was packed within van der Waals distance to histidine H23. Serine S391 and arginine R201 form hydrogen bonds to the pyrophosphate part of UDP-Glc and hence stabilize binding of the sugar donor. Docking of UDP sugars predicted that UDP-Glc would serve as the sole donor sugar in UGT85B1. This was substantiated by biochemical analyses. The predictive power of the model was validated by site-directed mutagenesis of selected residues and using enzyme assays. The modeling approach has provided a tool to design GTs with new desired substrate specificities for use in biotechnological applications. The modeling identified a hypervariable loop (amino acid residues 156-188) that contained a hydrophobic patch. The involvement of this loop in mediating binding of UGT85B1 to cytochromes P450, CYP79A1, and CYP71E1 within a dhurrin metabolon is discussed.  相似文献   

14.
(Iso)flavonoids are a diverse group of plant secondary metabolites with important effects on plant, animal and human health. They exist in various glycosidic forms. Glycosylation, which may determine their bioactivities and functions, is controlled by specific plant uridine diphosphate glycosyltransferases (UGTs). We describe a new multifunctional (iso)flavonoid glycosyltransferase, UGT85H2, from the model legume Medicago truncatula with activity towards a number of phenylpropanoid-derived natural products including the flavonol kaempferol, the isoflavone biochanin A, and the chalcone isoliquiritigenin. The crystal structure of UGT85H2 has been determined at 2.1 A resolution, and reveals distinct structural features that are different from those of other UGTs and related to the enzyme's functions and substrate specificities. Structural and comparative analyses revealed the putative binding sites for the donor and acceptor substrates that are located in a large cleft formed between the two domains of the enzyme, and indicated that Trp360 may undergo a conformational change after sugar donor binding to the enzyme. UGT85H2 has higher specificity for flavonol than for isoflavone. Further substrate docking combined with enzyme activity assay and kinetic analysis provided structural insights into this substrate specificity and preference.  相似文献   

15.
Glycosyltransferases (GTs) (EC 2.4.x.y) catalyze the transfer of sugar moieties to a wide range of acceptor molecules, such as sugars, lipids, proteins, nucleic acids, antibiotics and other small molecules, including plant secondary metabolites. These enzymes can be classified into at least 92 families, of which family 1 glycosyltransferases (GT1), often referred to as UDP glycosyltransferases (UGTs), is the largest in the plant kingdom. To understand how UGTs expanded in both number and function during evolution of land plants, we screened genome sequences from six plants (Physcomitrella patens, Selaginella moellendorffii, Populus trichocarpa, Oryza sativa, Arabidopsis thaliana and Arabidopsis lyrata) for the presence of a conserved UGT protein domain. Phylogenetic analyses of the UGT genes revealed a significant expansion of UGTs, with lineage specificity and a higher duplication rate in vascular plants after the divergence of Physcomitrella. The UGTs from the six species fell into 24 orthologous groups that contained genes derived from the common ancestor of these six species. Some orthologous groups contained multiple UGT families with known functions, suggesting that UGTs discriminate compounds as substrates in a lineage-specific manner. Orthologous groups containing only a single UGT family tend to play a crucial role in plants, suggesting that such UGT families may have not expanded because of evolutionary constraints.  相似文献   

16.
Plant glucosyltransferases (GTs) play a crucial role in natural product biosynthesis and metabolization of xenobiotics. We expressed the arbutin synthase (AS) cDNA from Rauvolfia serpentina cell suspension cultures in Escherichia coli with a 6 x His tag and purified the active enzyme to homogeneity. The recombinant enzyme had a temperature optimum of 50 degrees C and showed two different pH optima (4.5 and 6.8 or 7.5, depending on the buffer). Out of 74 natural and synthetic phenols and two cinnamyl alcohols tested as substrates for the AS, 45 were accepted, covering a broad range of structural features. Converting rates comparable to hydroquinone were not achieved. In contrast to this broad acceptor substrate specificity, only pyrimidine nucleotide activated glucose was tolerated as a donor substrate. Nucleotide and amino acid sequence analysis revealed AS to be a new member of the NRD1beta family of glycosyl transferases and placed the enzyme into the group of plant secondary product GTs. Arbutin synthase is therefore the first example of a broad spectrum multifunctional glucosyltransferase.  相似文献   

17.
We identified two glycosyltransferases that contribute to the structural diversification of flavonol glycosides in grapevine (Vitis vinifera): glycosyltransferase 5 (Vv GT5) and Vv GT6. Biochemical analyses showed that Vv GT5 is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT), and Vv GT6 is a bifunctional UDP-glucose/UDP-galactose:flavonol-3-O-glucosyltransferase/galactosyltransferase. The Vv GT5 and Vv GT6 genes have very high sequence similarity (91%) and are located in tandem on chromosome 11, suggesting that one of these genes arose from the other by gene duplication. Both of these enzymes were expressed in accordance with flavonol synthase gene expression and flavonoid distribution patterns in this plant, corroborating their significance in flavonol glycoside biosynthesis. The determinant of the specificity of Vv GT5 for UDP-glucuronic acid was found to be Arg-140, which corresponded to none of the determinants previously identified for other plant GATs in primary structures, providing another example of convergent evolution of plant GAT. We also analyzed the determinants of the sugar donor specificity of Vv GT6. Gln-373 and Pro-19 were found to play important roles in the bifunctional specificity of the enzyme. The results presented here suggest that the sugar donor specificities of these Vv GTs could be determined by a limited number of amino acid substitutions in the primary structures of protein duplicates, illustrating the plasticity of plant glycosyltransferases in acquiring new sugar donor specificities.  相似文献   

18.
UDP‐glycosyltransferase (UGT) plays a major role in the diversity and reactivity of plant specialized metabolites by catalyzing the transfer of the sugar moiety from activated UDP‐sugars to various acceptors. Arabidopsis UGT89A2 was previously identified from a genome‐wide association study as a key factor that affects the differential accumulation of dihydroxybenzoic acid (DHBA) glycosides in distinct Arabidopsis natural accessions, including Col‐0 and C24. The in vitro enzyme assays indicate that these distinct metabolic phenotypes reflect the divergence of UGT89A2 enzyme properties in the Col‐0 and C24 accessions. UGT89A2 from Col‐0 is highly selective toward UDP‐xylose as the sugar donor, and the isoform from C24 can utilize both UDP‐glucose and UDP‐xylose but with a higher affinity to the glucose donor. The sequences of the two isozymes only differ at six amino acid residues. Examination of these amino acid residues in more natural accessions revealed a strong correlation between the amino acid polymorphism at position 153 and the DHBA glycoside accumulation pattern. Site‐directed mutagenesis that swapped residue 153 between UGT89A2 from Col‐0 and C24 reversed the UDP‐sugar preferences, indicating that residue 153 plays an important role in determining sugar donor specificity of UGT89A2. This study provides insight into the key amino acid changes that confer sugar donor selectivity on UGTs, and demonstrates the usefulness of natural variation in understanding the structure–function relationship of enzymes involved in specialized metabolism.  相似文献   

19.
Glycosyltransferases (GTs) are a large and ubiquitous family of enzymes that specifically transfer sugar moieties to a range of substrates. Mycobacterium tuberculosis contains a large number of GTs, many of which are implicated in cell wall synthesis, yet the majority of these GTs remain poorly characterized. Here, we report the high resolution crystal structures of an essential GT (MAP2569c) from Mycobacterium avium subsp. paratuberculosis (a close homologue of Rv1208 from M. tuberculosis) in its apo- and ligand-bound forms. The structure adopted the GT-A fold and possessed the characteristic DXD motif that coordinated an Mn(2+) ion. Atypical of most GTs characterized to date, MAP2569c exhibited specificity toward the donor substrate, UDP-glucose. The structure of this ligated complex revealed an induced fit binding mechanism and provided a basis for this unique specificity. Collectively, the structural features suggested that MAP2569c may adopt a "retaining" enzymatic mechanism, which has implications for the classification of other GTs in this large superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号