首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the mitochondrial DNA of Saccharomyces cerevisiae, the genes cob-box and oxi3, coding for apocytochrome b and cytochrome oxidase subunit I respectively, are split. Several mutations located in the introns of the cob-box gene prevent the synthesis of cytochrome b and cytochrome oxidase subunit I (this is known as the 'box effect').-We have elucidated the molecular basis of this phenomenon: these mutants are unable to excise the fourth intron of oxi3 from the cytochrome oxidase subunit I pre-mRNA; the absence of a functional bI4 mRNA maturase, a trans-acting factor encoded by the fourth intron of the cob-box gene explains this phenomenon. This maturase was already known to control the excision of the bI4 intron; consequently we have demonstrated that it is necessary for the processing of two introns located in two different genes. Mutations altering this maturase can be corrected, but only partially, by extragenic suppressors located in the mitochondrial (mim2) or in the nuclear (NAM2) genome. The gene product of these two suppressors should, therefore, control (directly or indirectly) the excision of the two introns as the bI4 mRNA maturase normally does.  相似文献   

2.
The sequence of intron 1 in the cob gene in mtDNA (bI1) of the yeast strain 777-3A has been determined. Furthermore, we have performed a systematic search for complementary sequence stretches within this intron RNA, and within the RNA of intron 5 gamma of the oxi3 gene (aI5 gamma) which shares distinctive sequences with bI1. Possible secondary structure models derived from this analysis show nearly identical core structures for bI1 and aI5 gamma RNA with conserved sequence stretches in prominent positions. These core structures are similar to those previously reported for RNAs of introns having very limited sequence homology with bI1 and aI5 gamma. In two mutants which are defective in bI1 excision from cob pre-mRNA, nucleotide sequence alterations in bI1 have been determined. One mutation (G5049) apparently affects the stability of a hybrid stretch in the proposed secondary structure of bI1 RNA whereas the other one (M1301), a deletion of one A in a run of five As, affects a sequence which is conserved in bI1 and aI5 gamma and is involved in the formation of a distinct secondary structure. Out of seven revertants of M1301, three were found to have restored the wild-type bI1 sequence AAAAA, three others had the related sequence AAAAG which is functionally indistinguishable from wild-type, whereas one revertant had a nuclear mutation which suppresses the splicing defect exerted by the mitochondrial mutation M1301. This nuclear suppressor (SUP-101) is allele specific and dominant. The possible role of the sequence affected by M1301 in terms of a recognition site for a nuclear gene product will be discussed.  相似文献   

3.
We have determined the complete sequence of the mitochondrial gene coding for cytochrome b in Saccharomyces douglasii. The gene is 6310 base-pairs long and is interrupted by four introns. The first one (1311 base-pairs) belongs to the group ID of secondary structure, contains a fragment open reading frame with a characteristic GIY ... YIG motif, is absent from Saccharomyces cerevisiae and is inserted in the same site in which introns 1 and 2 are inserted in Neurospora crassa and Podospora anserina, respectively. The next three S. douglasii introns are homologous to the first three introns of S. cerevisiae, are inserted at the same positions and display various degrees of similarity ranging from an almost complete identity (intron 2 and 4) to a moderate one (intron 3). We have compared secondary structures of intron RNAs, and nucleotide and amino acid sequences of cytochrome b exons and intron open reading frames in the two Saccharomyces species. The rules that govern fixation of mutations in exon and intron open reading frames are different: the relative proportion of mutations occurring in synonymous codons is low in some introns and high in exons. The overall frequency of mutations in cytochrome b exons is much smaller than in nuclear genes of yeasts, contrary to what has been found in vertebrates, where mitochondrial mutations are more frequent. The divergence of the cytochrome b gene is modular: various parts of the gene have changed with a different mode and tempo of evolution.  相似文献   

4.
Dominant mutations in the yeast nuclear gene NAM2 cure the RNA splicing deficiency resulting from the inactivation of the bI4 maturase encoded by the fourth intron of the mitochondrial cytochrome b gene. This maturase is required to splice the fourth intron of this gene and to splice the fourth intron of the mitochondrial gene oxi3 encoding cytochrome oxidase subunit I. We have cloned the nuclear gene NAM2, which codes for two overlapping RNAs, 3.2 kb and 3.0 kb long, which are transcribed in the same direction but differ at their 5' ends. NAM2 compensating mutations probably result from point mutations in the structural gene. Integration of the cloned gene occurs at its homologous locus on the right arm of chromosome XII. Inactivation of the NAM2 gene either by transplacement with a deleted copy of the gene, or by disruption, is not lethal to the cell, but leads to the destruction of the mitochondrial genome with the production of 100% cytoplasmic petites.  相似文献   

5.
Unstable pseudorevertants of mitochondrial mutants of Saccharomyces cerevisiae lacking the maturase function encoded by the fourth intron of the cytochrome b gene (bI4) were isolated. They were found to be heteroplasmic cells owing their regained ability to respire (and grow on glycerol medium) to the presence of a rearranged (rho-) mtDNA that contains an in-frame fusion of the reading frames of the group I introns bI4 and intron 4 alpha of the coxl gene encoding subunit I of cytochrome c oxidase (aI4 alpha). The products of those gene fusions suppress the bI4 maturase deficiency still present in those heteroplasmic cells. Similar heteroplasmic pseudorevertants of a group II maturaseless mutant of the first intron of the coxI gene were characterized; they result from partial deletion of the coxI gene that fuses the reading frames of introns 1 and 2. These heteroplasms provide independent support for the existence of RNA maturases encoded by group I and group II introns. Also, since the petite/mit- heteroplasms arise spontaneously at very high frequencies they provide a system that can be used to obtain mutants unable to form or maintain heteroplasmic cells.  相似文献   

6.
The terminal intron (bI2) of the yeast mitochondrial cytochrome b gene is a group I intron capable of self-splicing in vitro at high concentrations of Mg2+. Excision of bI2 in vivo, however, requires a protein encoded by the nuclear gene CBP2. The CBP2 protein has been partially purified from wild-type yeast mitochondria and shown to promote splicing at physiological concentrations of Mg2+. The self-splicing and protein-dependent splicing reactions utilized a guanosine nucleoside cofactor, the hallmark of group I intron self-splicing reactions. Furthermore, mutations that abolished the autocatalytic activity of bI2 also blocked protein-dependent splicing. These results indicated that protein-dependent excision of bI2 is an RNA-catalyzed process involving the same two-step transesterification mechanism responsible for self-splicing of group I introns. We propose that the CBP2 protein binds to the bI2 precursor, thereby stabilizing the catalytically active structure of the RNA. The same or a similar RNA structure is probably induced by high concentrations of Mg2+ in the absence of protein. Binding of the CBP2 protein to the unspliced precursor was supported by the observation that the protein-dependent reaction was saturable by the wild-type precursor. Protein-dependent splicing was competitively inhibited by excised bI2 and by a splicing-defective precursor with a mutation in the 5' exon near the splice site but not by a splicing-defective precursor with a mutation in the core structure. Binding of the CBP2 protein to the precursor RNA had an effect on the 5' splice site helix, as evidenced by suppression of the interaction of an exogenous dinucleotide with the internal guide sequence.  相似文献   

7.
J Banroques  A Delahodde  C Jacq 《Cell》1986,46(6):837-844
bI4 maturase, encoded by the fourth intron of the yeast mitochondrial cytochrome b gene, controls the splicing of both the fourth intron of the cytochrome b gene and the fourth intron of the gene encoding subunit I of cytochrome oxidase. By fusing the encoding presequence of subunit 9 of the Neurospora ATPase to a restriction fragment containing the bI4 maturase coding sequence, we have constructed a hybrid gene that can be translated on yeast cytosolic ribosomes. The resulting protein is imported into mitochondria, which was revealed by its ability to restore to respiratory competence a yeast mutant defective in the bI4 maturase. Moreover, a protein reacting with antimaturase antibodies was detected in the mitochondria of the transformed cells; this imported maturase functioned similarly to the endogenous maturase.  相似文献   

8.
The sequence and organization of the Chlamydomonas reinhardtii genes encoding cytochrome c(1) ( Cyc1) and the Rieske-type iron-sulfur protein ( Isp), two key nucleus-encoded subunits of the mitochondrial cytochrome bc(1) complex, are presented. Southern hybridization analysis indicates that both Cyc1 and Isp are present as single-copy genes in C. reinhardtii. The Cyc1 gene spans 6404 bp and contains six introns, ranging from 178 to 1134 bp in size. The Isp gene spans 1238 bp and contains four smaller introns, ranging in length from 83 to 167 bp. In both genes, the intron/exon junctions follow the GT/AG rule. Internal conserved sequences were identified in only some of the introns in the Cyc1 gene. The levels of expression of Isp and Cyc1 genes are comparable in wild-type C. reinhardtii cells and in a mutant strain carrying a deletion in the mitochondrial gene for cytochrome b (dum-1). Nevertheless, no accumulation of the nucleus-encoded cytochrome c(1) or of core proteins I and II was observed in the membranes of the respiratory mutant. These data show that, in the green alga C. reinhardtii, the subunits of the cytochrome bc(1) complex fail to assemble properly in the absence of cytochrome b.  相似文献   

9.
P Netter  C Jacq  G Carignani  P P Slonimski 《Cell》1982,28(4):733-738
We have established the DNA sequence of two cis-dominant mutations located in the fourth intron, a14, of the yeast mitochondrial gene oxi3. These mutations prevent the synthesis of subunit I of cytochrome oxidase. Both mutations affect a very short DNA sequence located several hundred base pairs from the intron-exon junctions. An identical sequence is found in the cob-box gene; and this sequence is critical for the excision of the cytochrome b intron. Our interpretation is that this short sequence represents a common signal that must be recognized by the box7-encoded mRNA maturase, in conjunction with the mitochondrial ribosome, to splice out the introns in the two nonhomologous genes, cob-box and oxi3.  相似文献   

10.
J Banroques  J Perea    C Jacq 《The EMBO journal》1987,6(4):1085-1091
bI4 maturase encoded by the fourth intron of the yeast mitochondrial cytochrome b gene, controls the splicing of both the fourth intron of the cytochrome b gene and the fourth intron of the gene encoding subunit I of cytochrome oxidase. It has been shown previously that a cytoplasmically translated hybrid protein composed of the pre-sequence of subunit 9 of Neurospora ATPase fused to a part of the bI4 maturase can be guided to mitochondria where it could compensate maturase deficiencies. This in vivo complementation of maturase mutants can be easily estimated by restoration of respiration. This work examines the efficiency of different bI4 maturase constructions to restore respiration in different yeast maturase-deficient strains. It is shown that the N-terminal end of the bI4 maturase plays a crucial role in the maturase activity. Moreover, the 12 N-terminal amino acids of the mitochondrial outer membrane protein constitute the most efficient mitochondrial targeting sequence in this system. Surprisingly enough, it was found that the cytoplasmically translated bI4 maturase containing the 254 C-terminal amino acid coded by the intron open reading frame can complement maturase mutations without any added mitochondrial-targeting sequence.  相似文献   

11.
The region coding for apocytochrome b in the mitochondrial genome of Saccharomyces cerevisiae is believed to exhibit a mosaic organization, consisting in certain strains of five exons and four introns. This model can be tested by the use of double mutants, each containing two physically, genetically and phenotypically defined mit- lesions in cis, (that is, in the same mitochondrial chromosome). Such mutants have been constructed, and the phenotypes of several examples of each of the four possible classes--exon-exon, exon-intron (downstream), intron (upstream)-exon and intron-intron--have been examined. Our results have shown that upstream mutations are always epistatic to downstream ones for polypeptide products, and that regulation of expression of cytochrome oxidase subunit I by introns is epistatic regardless of position. These findings have provided an independent verification of the mosaic model, and also suggest that at least the majority of novel polypeptides accumulating in intron mutants are hybrid products that contain sequences of the wild-type polypeptide.  相似文献   

12.
13.
The intron-encoded proteins bI4 RNA maturase and aI4 DNA endonuclease can be faithfully expressed in yeast cytoplasm from engineered forms of their mitochondrial coding sequences. In this work we studied the relationships between these two activities associated with two homologous intron-encoded proteins: the bI4 RNA maturase encoded in the fourth intron of the cytochrome b gene and the aI4 DNA endonuclease (I-SceII) encoded in the fourth intron of the gene coding for the subunit I of cytochrome oxidase. Taking advantage of both the high recombinogenic properties of yeast and the similarities between the two genes, we constructed in vivo a family of hybrid genes carrying parts of both RNA maturase and DNA endonuclease coding sequences. The presence of a sequence coding for a mitochondrial targeting peptide upstream from these hybrid genes allowed us to study the properties of their translation products within the mitochondria in vivo. We thus could analyze the ability of the recombinant proteins to complement RNA maturase deficiencies in different strains. Many combinations of the two parental intronic sequences were found in the recombinants. Their structural and functional analysis revealed the following features. (i) The N-terminal half of the bI4 RNA maturase could be replaced in total by its equivalent from the aI4 DNA endonuclease without affecting the RNA maturase activity. In contrast, replacing the C-terminal half of the bI4 RNA maturase with its equivalent from the aI4 DNA endonuclease led to a very weak RNA maturase activity, indicating that this region is more differentiated and linked to the maturase activity. (ii) None of the hybrid proteins carrying an RNA maturase activity kept the DNA endonuclease activity, suggesting that the latter requires the integrity of the aI4 protein. These observations are interesting because the aI4 DNA endonuclease is known to promote the propagation, at the DNA level, of the aI4 intron, whereas the bI4 RNA maturase, which is required for the splicing of its coding intron, also controls the splicing process of the aI4 intron. We propose a scenario for the evolution of these intronic proteins that relies on a switch from DNA endonuclease to RNA maturase activity.  相似文献   

14.
Summary The Saccharomyces cerevisiae nuclear gene NAM2 codes for mitochondrial leucyl-tRNA synthetase (mLRS). Herbert et al. (1988, EMBO J 7:473–483) proposed that this protein is involved in mitochondrial RNA splicing. Here we present the construction and analyses of nine mutations obtained by creating two-codon insertions within the NAM2 gene. Three of these prevent respiration while maintaining the mitochondrial genome. These three mutants: (1) display in vitro a mLRS activity ranging from 0%–50% that of the wild type: (2) allow in vivo the synthesis of several mitochondrially encoded proteins; (3) prevent the synthesis of the COXII protein but not of its mRNA; (4) abolish the splicing of the group I introns bI4 and aI4; and (5) affect significantly the excision of the group I introns bI2, bI3 and aI3. Importation of the bI4 maturase from the cytoplasm into mitochondria in a nam2 mutant strain does not restore the excision of the introns bI4 and aI4 implying that the splicing deficiency does not result from the absence of the bI4 maturase. We conclude that the mLRS is a splicing factor essential for the excision of the group I introns bI4 and aI4 and probably important for the excision of other group I introns.  相似文献   

15.
16.
RNA splicing defects in mitochondrial intron mutants can be suppressed by a high dosage of several proteins encoded by nuclear genes. In this study we report on the isolation, nucleotide sequence, and possible functions of the nuclear MRS2 gene. When present on high copy number plasmids, the MRS2 gene acts as a suppressor of various mitochondrial intron mutations, suggesting that the MRS2 protein functions as a splicing factor. This notion is supported by the observations that disruption of the single chromosomal copy of the MRS2 gene causes (i) a pet- phenotype and (ii) a block in mitochondrial RNA splicing of all four mitochondrial group II introns, some of which are efficiently self-splicing in vitro. In contrast, the five group I introns monitored here are excised from pre-mRNA in a MRS2-disrupted background although at reduced rates. So far the MRS2 gene product is unique in that it is essential for splicing of all four group II introns, but relatively unimportant for splicing of group I introns. In strains devoid of any mitochondrial introns the MRS2 gene disruption still causes a pet- phenotype and cytochrome deficiency, although the standard pattern of mitochondrial translation products is produced. Therefore, apart from RNA splicing, the absence of the MRS2 protein may disturb the assembly of mitochondrial membrane complexes.  相似文献   

17.
Five nuclear mutants falling into five different complementation groups are shown to block the maturation of long form mitochondrial cob RNA at five different processing steps. At the same time they prevent complete processing of the oxi 3 RNA, thus exhibiting the same phenotype as mitochondrial box mutants (cyt b- and oxi 3-). The different nuclear factors in question have varying ranges of specificity for the removal of introns from cob RNA, from only one to at the most three introns. Two mutated nuclear elements are shown to be specific for the processing of introns present only in the long form cob gene. One such mutation shows, as expected, no deleterious effect on the processing of the short form cob RNA exchanged into the mutant via cytoduction. The role of nuclear coded factors in the possible translation or activity of introncoded products ("maturases") is discussed for two mutants. Striking parallels are found between diverse polypeptide products, presumably translated from accumulated cob RNA intermediates, in pet- and mit- mutants blocked in the excision of the same intron.  相似文献   

18.
TheNAM2 gene ofSaccharomyces cerevisiae encodes the mitochondrial leucyl tRNA synthetase (mLRS), which is necessary for the excision of the fourth intron of the mitochondrialcytb gene (bI4) and the fourth intron of the mitochondrialcoxI gene (aI4), as well as for mitochondrial protein synthesis. Some dominant mutant alleles of the gene are able to suppress mutations that inactivate the bI4 maturase, which is essential for the excision of the introns aI4 and bI4. Here we report mutagenesis studies which focus on the splicing and suppressor functions of the protein. Small deletions in the C-terminal region of the protein preferentially reduce the splicing, but not the synthetase activity; and all the C-terminal deletions tested abolish the suppressor activity. Mutations which increase the volume of the residue at position 240 in the wild-type mLRS without introducing a charge, lead to a suppressor activity. The mutant 238C, which is located in the suppressor region, has a reduced synthetase activity and no detectable splicing activity. These data show that the splicing and suppressor functions are linked and that the suppressor activity of the mutant alleles results from a modification of the wild-type splicing activity.  相似文献   

19.
The yeast mitochondrial group II intron bI1 is self-splicing in vitro. We have introduced a deletion of hairpin C1 within the structural domain 1 that abolishes catalytic activity of the intron in the normal splicing reaction in cis, but does less severely affect a reaction in trans, the reopening of ligated exons. Since exon reopening is supposed to correspond to a reverse 3' cleavage this suggests that the deletion specifically blocks the first reaction step. The intron regains its activity to self-splice in cis by intermolecular complementation with a small RNA harbouring sequences lacking in the mutant intron. These results demonstrate the feasibility to reconstitute a functionally active structure of the truncated intron by intermolecular complementation in vitro. Furthermore, the data support the hypothesis that group II introns are predecessors of nuclear pre-mRNA introns and that the small nuclear RNAs of the spliceosome arose by segregation from the original intron.  相似文献   

20.
TheNAM2 gene ofSaccharomyces cerevisiae encodes the mitochondrial leucyl tRNA synthetase (mLRS), which is necessary for the excision of the fourth intron of the mitochondrialcytb gene (bI4) and the fourth intron of the mitochondrialcoxI gene (aI4), as well as for mitochondrial protein synthesis. Some dominant mutant alleles of the gene are able to suppress mutations that inactivate the bI4 maturase, which is essential for the excision of the introns aI4 and bI4. Here we report mutagenesis studies which focus on the splicing and suppressor functions of the protein. Small deletions in the C-terminal region of the protein preferentially reduce the splicing, but not the synthetase activity; and all the C-terminal deletions tested abolish the suppressor activity. Mutations which increase the volume of the residue at position 240 in the wild-type mLRS without introducing a charge, lead to a suppressor activity. The mutant 238C, which is located in the suppressor region, has a reduced synthetase activity and no detectable splicing activity. These data show that the splicing and suppressor functions are linked and that the suppressor activity of the mutant alleles results from a modification of the wild-type splicing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号