首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
严重急性呼吸综合征 (SARS) 是一种新出现的人类传染病,该病的病原是 SARS 冠状病毒 (SARS-CoV). S 蛋白是 SARS 冠状病毒的一种主要结构蛋白,它在病毒与宿主细胞受体结合以及诱导机体产生中和抗体中起重要作用 . 研究表明 S 蛋白与受体结合的核心区域为第 318 ~ 510 氨基酸残基的片段 . 首先克隆并用 pGEX-6p-1 载体融合表达了该受体结合结构域,并且通过蛋白质印迹分析表明,该受体结合结构域融合蛋白能被 SARS 康复患者血清和 S 蛋白特异的单克隆抗体所识别 . 为了对这一区域进行抗原表位作图,进一步设计了一套 23 个覆盖受体结合结构域的长 16 个氨基酸残基的部分重叠短肽,并进行了 GST 融合表达 . 用免疫动物血清和单克隆抗体 D3D1 对 23 个融合蛋白进行蛋白质印迹和 ELISA 免疫反应性分析,结果鉴定出两个抗原表位 SRBD3(F334PSVYAWERKKISNCV349) 和表位 D3D1 (K447LRPFERDI455). 其结果对进一步分析 S 蛋白结构与功能以及诊断试剂和基因工程疫苗的研究有一定意义 .  相似文献   

2.
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is considered as a protective Ag for vaccine design. We previously demonstrated that the receptor-binding domain (RBD) of S protein contains multiple conformational epitopes (Conf I-VI) that confer the major target of neutralizing Abs. Here we show that the recombinant RBDs derived from the S protein sequences of Tor2, GD03, and SZ3, the representative strains of human 2002-2003 and 2003-2004 SARS-CoV and palm civet SARS-CoV, respectively, induce in the immunized mice and rabbits high titers of cross-neutralizing Abs against pseudoviruses expressing S proteins of Tor2, GD03, and SZ3. We also demonstrate that the Tor2-RBD induced-Conf I-VI mAbs can potently neutralize both human SARS-CoV strains, Tor2 and GD03. However, only the Conf IV-VI, but not Conf I-III mAbs, neutralize civet SARS-CoV strain SZ3. All these mAbs reacted significantly with each of the three RBD variants (Tor2-RBD, GD03-RBD, and SZ3-RBD) that differ at several amino acids. Regardless, the Conf I-IV and VI epitopes were completely disrupted by single-point mutation of the conserved residues in the RBD (e.g., D429A, R441A, or D454A) and the Conf III epitope was significantly affected by E452A or D463A substitution. Interestingly, the Conf V epitope, which may overlap the receptor-binding motif and induce most potent neutralizing Abs, was conserved in these mutants. These data suggest that the major neutralizing epitopes of SARS-CoV have been apparently maintained during cross-species transmission, and that RBD-based vaccines may induce broad protection against both human and animal SARS-CoV variants.  相似文献   

3.
Summary The spike (S) glycoprotein is thought to play a complex and central role in the biology and pathogenesis of SARS coronavirus infection. In this study, a recombinant protein (rS268, corresponding to residues 268–1255 of SARS-CoV S protein) was expressed in Escherichia coli and was purified to near homogeneity. After immunization with rS268, S protein-specific BALB/c antisera and mAbs were induced and confirmed using ELISA, Western blot and IFA. Several BALB/c mAbs were found to be effectively to neutralize the infection of Vero E6 cells by SARS-CoV in a dose-dependent manner. Systematic epitope mapping showed that all these neutralizing mAbs recognized a 15-residues peptide (CB-119) corresponding to residues 1143–1157 (SPDVDLGDISGINAS) that was located to the second heptad repeat (HR2) region of the SARS-CoV spike protein. The peptide CB-119 could specifically inhibit the interaction of neutralizing mAbs and spike protein in a dose-dependent manner. Further, neutralizing mAbs, but not control mAbs, could specifically interact with CB-119 in a dose-dependent manner. Results implicated that the second heptad repeat region of spike protein could be a good target for vaccine development against SARS-CoV.  相似文献   

4.
The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be the first identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-gamma stimulation of blood CD8+ T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.  相似文献   

5.
Abstract: Microtubule-associated protein 2 (MAP-2) is an abundant neuronal cytoskeletal protein that binds to tubulin and stabilizes microtubules. Using fusion protein constructs we have defined the epitopes of 10 monoclonal antibodies (mAbs) to discrete regions of human MAP-2. Proteins were expressed in pATH vectors. After electrophoresis, immunoblotting was performed. By western blot analysis five of the mAbs (AP-14, AP-20, AP-21, AP-23, and AP-25) share epitopes with only the high molecular weight isoforms (MAP-2a, MAP-2b); two of the mAbs (AP-18 and tau 46) recognize MAP-2a, MAP-2b, and MAP-2c. Although AP-18 immunoreactivity was detected within heat-stable protein homogenates isolated from a human neuroblastoma cell line MSN, fusion protein constructs encompassing human MAP-2 were negative, suggesting that the AP-18 epitope is phosphorylated. Furthermore, AP-18 immunoreactivity was lost after alkaline phosphatase treatment of heat-stable protein preparations from MSN cells. Four of the mAbs (322, 636, 635, and 39) recognize epitopes located within amino acids 169–219 of human MAP-2. AP-21 maps to a region between amino acids 553 and 645. AP-23 maps between amino acids 645 and 993, whereas AP-20, AP-14, and AP-25 map between amino acids 995 and 1332. Expression of the region of MAP-2 between amino acids 1787 and 1824 was positive to tau 46.  相似文献   

6.
为确定SARS-CoV N蛋白的特异抗原表位,对3种人冠状病毒SARS-CoV、HCoV-OC43和HCoV-229E N蛋白之间的交叉免疫反应进行了系统研究。构建了分别表达SARS-CoV、HCoV-OC43和HCoV-229E N蛋白的重组痘苗病毒,并制备了相应的小鼠免疫血清。用间接免疫荧光方法,检测了3种N蛋白的表达及其与3种冠状病毒免疫动物血清和SARS病人恢复期血清之间的反应。与此同时,用Western blot方法分析了原核表达的39个不同区段的SARS-CoV N蛋白与3种冠状病毒动物免疫血清和SARS病人恢复期血清之间的交叉反应性。免疫荧光检测结果表明,SARS-CoV、HCoV-OC43和HCoV-229E3种病毒的N蛋白在重组痘苗病毒感染的HeLa细胞中均可以特异表达;3种N蛋白之间存在明显交叉免疫反应。Western blot结果显示,SARS-CoV N蛋白的表位主要位于30~60aa、170~184aa、301~320aa和360~422aa;与HCoV-OC43的交叉反应表位主要位于30~60aa、90~120aa、204~214aa和320~360aa;与HCoV-229E的交叉反应表位主要位于30~60aa、150~160aa和301~360aa。含SARS-CoV N蛋白特异表位的重组肽N155b(60~214aa)和N185(30~214aa)只与SARS病人恢复期血清和灭活SARS-CoV免疫小鼠的血清反应,而不与灭活HCoV-OC43和HCoV-229E免疫的山羊血清产生交叉反应。上述结果为使用SARS-CoV N蛋白抗原进行特异诊断试剂的研究,提供了重要的实验依据。  相似文献   

7.
Identification of two antigenic epitopes on SARS-CoV spike protein   总被引:9,自引:0,他引:9  
The spike (S) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a major virion structural protein. It plays an important role in interaction with receptor and inducing neutralizing antibodies. In the study, six tentative antigenic epitopes (S1 S2 S3 S4 S5 S6) of the spike protein of SARS-CoV were predicted by bio-informatics analysis, and a multi-epitope chimeric gene of S1-S2-S3-S4-S5-S6 was synthesized and fused to downstream GST gene in pGEX-6p-1. The Western blotting demonstrated that SARS patient convalescent serum could recognize the recombinant fusion protein. A number of monoclonal antibodies were developed against the fusion protein. In further, the six predicted epitope genes were individually fused to GST of pGEX-6p-1 and expressed in Escherichia coli BL21, respectively. Among six fusion peptides, S5 reacted with monoclonal antibody D3C5 and S2 reacted with monoclonal antibody D3D1 against spike protein of SARS-CoV. The epitopes recognized by monoclonal antibodies D3C5 and D3D1 are linear, and correspond to 447-458 and 789-799 amino acids of spike protein of SARS-CoV, respectively. Identification of antigenic epitope of spike protein of SARS-CoV could provide the basis for the development of immunity-based prophylactic, therapeutic, and diagnostic techniques for the control of severe acute respiratory syndrome.  相似文献   

8.
Luo H  Ye F  Chen K  Shen X  Jiang H 《Biochemistry》2005,44(46):15351-15358
The nucleocapsid (N) protein of SARS coronavirus (SARS-CoV) is reported to function in encapsidating the viral genomic RNA into helical nucleocapsid, and its self-association is believed to be vital in coating the viral genomic RNA. Characterization of SARS-CoV N multimerization may thereby help us better understand the coronavirus assembly. In the current work, using the yeast two-hybrid technique, an unexpected interaction between residues 1-210 and 211-290 (central region) of the SARS-CoV N protein was detected, and SPR results further revealed that the SR-rich motif (amino acids 183-197) of SARS-CoV N protein is responsible for such an interaction. Chemical cross-linking and gel-filtration analyses indicated that the residues 283-422 of the SARS-CoV N protein have multimeric ability, although the full-length N protein is prone to exist predominantly as dimers. In addition, the multimeric ability of the C-terminal domain of SARS-CoV N protein could be weakened by the SR-rich motif interaction with the central region (amino acids 211-290). All of these data suggested that the SR-rich motif of the SARS-CoV N protein might play an import role in the transformation of the SARS-CoV N protein between the dimer and multimer during its binding to its central region for self-association or dissociation. This current paper will hopefully provide some new ideas in studying SARS-CoV N multimerization.  相似文献   

9.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is responsible for SARS infection. Nucleocapsid (N) protein of SARS-CoV encapsidates the viral RNA and plays an important role in virus particle assembly and release. In this study, the N protein of SARS-CoV was found to associate with B23, a phosphoprotein in nucleolus, in vitro and in vivo. Mapping studies localized the critical N sequences for this interaction to amino acid residues 175-210, which included a serine/arginine (SR)-rich domain. In vitro phosphorylation assay showed that the N protein inhibited the B23 phosphorylation at Thr199.  相似文献   

10.
The epitope study on the SARS-CoV nucleocapsid protein   总被引:6,自引:0,他引:6  
The nucleocapsid protein (N protein) has been found to be an antigenic protein in a number of coronaviruses. Whether the N protein in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is antigenic remains to be elucidated. Using Western blot and Enzyme-linked Immunosorbent Assay (ELISA), the recombinant N proteins and the synthesized peptides derived from the N protein were screened in sera from SARS patients. All patient sera in this study displayed strong positive immunoreactivities against the recombinant N proteins, whereas normal sera gave negative immunoresponses to these proteins, indicating that the N protein of SARS-CoV is an antigenic protein. Furthermore, the epitope sites in the N protein were determined by competition experiments, in which the recombinant proteins or the synthesized peptides competed against the SARS-CoV proteins to bind to the antibodies raised in SARS sera. One epitope site located at the C-terminus was confirmed as the most antigenic region in this prot  相似文献   

11.
In 2002, severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged in humans, causing a global epidemic. By phylogenetic analysis, SARS-CoV is distinct from known CoVs and most closely related to group 2 CoVs. However, no antigenic cross-reactivity between SARS-CoV and known CoVs was conclusively and consistently demonstrated except for group 1 animal CoVs. We analyzed this cross-reactivity by an enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using specific antisera to animal CoVs and SARS-CoV and SARS patient convalescent-phase or negative sera. Moderate two-way cross-reactivity between SARS-CoV and porcine CoVs (transmissible gastroenteritis CoV [TGEV] and porcine respiratory CoV [PRCV]) was mediated through the N but not the spike protein, whereas weaker cross-reactivity occurred with feline (feline infectious peritonitis virus) and canine CoVs. Using Escherichia coli-expressed recombinant SARS-CoV N protein and fragments, the cross-reactive region was localized between amino acids (aa) 120 to 208. The N-protein fragments comprising aa 360 to 412 and aa 1 to 213 reacted specifically with SARS convalescent-phase sera but not with negative human sera in ELISA; the fragment comprising aa 1 to 213 cross-reacted with antisera to animal CoVs, whereas the fragment comprising aa 360 to 412 did not cross-react and could be a potential candidate for SARS diagnosis. Particularly noteworthy, a single substitution at aa 120 of PRCV N protein diminished the cross-reactivity. We also demonstrated that the cross-reactivity is not universal for all group 1 CoVs, because HCoV-NL63 did not cross-react with SARS-CoV. One-way cross-reactivity of HCoV-NL63 with group 1 CoVs was localized to aa 1 to 39 and at least one other antigenic site in the N-protein C terminus, differing from the cross-reactive region identified in SARS-CoV N protein. The observed cross-reactivity is not a consequence of a higher level of amino acid identity between SARS-CoV and porcine CoV nucleoproteins, because sequence comparisons indicated that SARS-CoV N protein has amino acid identity similar to that of infectious bronchitis virus N protein and shares a higher level of identity with bovine CoV N protein within the cross-reactive region. The TGEV and SARS-CoV N proteins are RNA chaperons with long disordered regions. We speculate that during natural infection, antibodies target similar short antigenic sites within the N proteins of SARS-CoV and porcine group 1 CoVs that are exposed to an immune response. Identification of the cross-reactive and non-cross-reactive N-protein regions allows development of SARS-CoV-specific antibody assays for screening animal and human sera.  相似文献   

12.
为了明确抗SARS-CoVN蛋白单克隆抗体的特异性,并鉴定其识别表位,首先在E.coli中表达了人类冠状病毒229E(HCoV-229E)和OC43(HCoV-OC4)N蛋白,用Westernblotting和间接免疫荧光方法分别检测了4株抗SARS-CoVN蛋白单克隆抗体(1-1C2、1-1D6、2-8F11和2-2E5)与HCoV-OC43和HCoV-229E及其N蛋白的交叉反应情况,而后应用12种重组截短型SARS-CoVN蛋白对上述4种单克隆抗体的识别表位进行了初步定位。结果显示:(1)在4株抗N蛋白单克隆抗体中,1-1C2、1-1D6和2-2E5不与HCoV-OC43和HCoV-229E及其N蛋白发生交叉反应,为SARS-CoVN蛋白特异性抗体;(2)2-8F11、1-1D6和2-2E5针对的抗原表位位于SARS-CoVN蛋白的aa30-60,1-1C2针对的抗原表位则位于SARS-CoVN蛋白的aa170-184。这一研究为阐明SARS-CoVN蛋白的免疫学特征,建立特异性免疫诊断技术和研究其致病机制提供了必要的依据和材料。  相似文献   

13.
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.  相似文献   

14.
Severe acute respiratory syndrome (SARS) brought aglobal outbreak in spring of 2003 [1–3], and more andmore attention has been paid on it when a new caseresurfaced in Singapore last September [4]. By the endof May in 2003, WHO reported a cumulative total of 8202infected cases with 725 deaths from 28 countries.Because of the high transmission and morality rate ofSARS, scientists in many countries have made theirefforts in studying SARS coronavirus (SARS-CoV)[5, 6]. Several genomes of…  相似文献   

15.
The spike (S) protein of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is a major antigenic determinant capable of inducing protective immunity. Recently, a small fragment on the SARS-CoV S protein (residues 318-510) was characterized as a minimal receptor-binding domain (RBD), which mediates virus binding to angiotensin-converting enzyme 2, the functional receptor on susceptible cells. In this study, we demonstrated that a fusion protein containing RBD linked to human IgG1 Fc fragment (designated RBD-Fc) induced high titer of RBD-specific Abs in the immunized mice. The mouse antisera effectively neutralized infection by both SARS-CoV and SARS pseudovirus with mean 50% neutralization titers of 1/15,360 and 1/24,737, respectively. The neutralization determinants on the RBD of S protein were characterized by a panel of 27 mAbs isolated from the immunized mice. Six groups of conformation-dependent epitopes, designated as Conf I-VI, and two adjacent linear epitopes were identified by ELISA and binding competition assays. The Conf IV and Conf V mAbs significantly blocked RBD-Fc binding to angiotensin-converting enzyme 2, suggesting that their epitopes overlap with the receptor-binding sites in the S protein. Most of the mAbs (23 of 25) that recognized the conformational epitopes possessed potent neutralizing activities against SARS pseudovirus with 50% neutralizing dose ranging from 0.005 to 6.569 microg/ml. Therefore, the RBD of SARS S protein contains multiple conformational epitopes capable of inducing potent neutralizing Ab responses, and is an important target site for developing vaccines and immunotherapeutics.  相似文献   

16.
Identification of an epitope of SARS-coronavirus nucleocapsid protein   总被引:21,自引:0,他引:21  
Lin Y  Shen X  Yang RF  Li YX  Ji YY  He YY  Shi MD  Lu W  Shi TL  Wang J  Wang HX  Jiang HL  Shen JH  Xie YH  Wang Y  Pei G  Shen BF  Wu JR  Sun B 《Cell research》2003,13(3):141-145
The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a majorvirion structural protein. In this study, two epitopes (N1 and N2) of the N protein of SARS-CoV were predicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodies were isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-induced polyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SARS-CoV. Furthermore, itwas confirmed that N1 peptide-specific IgG antibodies were detectable in the sera of severe acute respiratory syndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified andN protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.  相似文献   

17.
Zhou B  Liu J  Wang Q  Liu X  Li X  Li P  Ma Q  Cao C 《Journal of virology》2008,82(14):6962-6971
Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, an emerging disease characterized by atypical pneumonia. Using a yeast two-hybrid screen with the nucleocapsid (N) protein of SARS-CoV as a bait, the C terminus (amino acids 251 to 422) of the N protein was found to interact with human elongation factor 1-alpha (EF1alpha), an essential component of the translational machinery with an important role in cytokinesis, promoting the bundling of filamentous actin (F-actin). In vitro and in vivo interaction was then confirmed by immuno-coprecipitation, far-Western blotting, and surface plasmon resonance. It was demonstrated that the N protein of SARS-CoV induces aggregation of EF1alpha, inhibiting protein translation and cytokinesis by blocking F-actin bundling. Proliferation of human peripheral blood lymphocytes and other human cell lines was significantly inhibited by the infection of recombinant retrovirus expressing SARS-CoV N protein.  相似文献   

18.
Pneumococcal surface protein A (PspA) is an antigenic variable vaccine candidate of Streptococcus pneumoniae. Epitope similarities between PspA from the American vaccine candidate strain Rx1 and Norwegian clinical isolates were studied using PspA specific monoclonal antibodies (mAbs) made against clinical Norwegian strains. Using recombinant PspA/Rx1 fragments and immunoblotting the epitopes for mAbs were mapped to two regions of amino acids, 1-67 and 67-236. The discovered epitopes were visualized by modelling of the PspA:Fab part of mAb in three dimensions. Flow cytometric analysis showed that the epitopes for majority of mAbs were accessible for antibody binding on live pneumococci. Also, the epitopes for majority of the mAbs are widely expressed among clinical Norwegian isolates.  相似文献   

19.
运用生物信息学,预测急性呼吸系统综合症冠状病毒2(SARS-CoV-2/2019-nCoV)的基本理化性质、结构、功能和抗原表位等,为新型冠状病毒肺炎(COVID-19)的防治提供思路。应用ExPASy分析S蛋白的消光系数、不稳定系数和半衰期等理化性质;利用SignaIP v5.0分析S蛋白的信号肽;应用TMHMM分析S蛋白的跨膜区;利用NetPhos3.1在线工具预测S蛋白的磷酸化位点;应用Pfam预测S蛋白的结构域;应用PSIPRED分析S蛋白的二级结构特征;利用SWISS-MODEL构建S蛋白的三级结构;利用BLAST分析SARS-CoV-2的S蛋白与其他物种的相似性;利用MEGA软件分析2019-nCoV的S蛋白与其他物种的进化关系。S蛋白由1 273个氨基酸组成,其相对分子质量为141 178.47,等电点为6.24,含有一个跨膜区,是低亲水性分泌蛋白;S蛋白的基本组成单位为纤突蛋白,其二级结构中以无规则卷曲和螺旋结构为主,三级结构中纤突糖蛋白和ACE2复合体具有重要的意义;2019-nCoV与蝙蝠冠状病毒和SARS-CoV同源;S蛋白存在多个潜在的线性T细胞和B细胞表位,1 202~1 210位氨基酸区域的抗原性和应答频率最高。生物信息学技术有利于了解S蛋白的理化性质、结构、功能和潜在的线性T细胞表位等,可为新型冠状肺炎的研究和防治提供参考依据。  相似文献   

20.
Monoclonal antibodies (mAbs) raised against the beta' subunit of the Escherichia coli RNA polymerase were used to probe the structure and function of this subunit. Of the five anti-beta' monoclonal antibodies studied, only mAb 311G2 is a strong inhibitor of RNA polymerase activity. This antibody binds to an epitope which is exposed in both the assembled holoenzyme and isolated beta' subunit. In contrast, the null antibodies bind to the free beta' subunit but very weakly to native RNA polymerase. It would appear that the beta' domain in which their epitopes reside is either conformationally altered or blocked due to interaction with other subunits in native RNA polymerase. In order to locate the positions of the epitopes for these five monoclonal antibodies, a series of overlapping deletion mutants have been constructed by partial restriction and religation of the beta' gene present in pT7 beta' (Zalenskaya, K., Lee, J., Gujuluva, C. N., Shin, Y. K., Slutsky, M., nd Goldfarb, A. (1990) Gene 89, 7-12). The presence of the epitopes for each of the anti-beta' monoclonal antibodies was assessed by Western blotting. The results indicate that the epitopes for mAb 340F11, mAb 370F3, mAb 371D6, and mAb 372B2 are located between amino acids 817-876. This region may be important in enzyme assembly or subunit-subunit interaction. The epitope for the inhibitory antibody, mAb 311G2, is located between amino acids 1047-1093. This region may be involved in the catalytic function of RNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号