首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B S Smith 《Teratology》1989,40(6):641-646
Trisomy 1 embryos consistently show eye defects (e.g., aphakia, microphakia, retention of lens stalk). To determine if the plane of division of mitotic figures is abnormal in the eyes of these animals, trisomic embryos (9.5 through 12 gestational days) were produced from mice doubly heterozygous for Robertsonian translocation chromosomes [Rb(1.3)/Rb(1.10)]. To accommodate for the known delay in trisomic embryo development, animals were grouped according to stages of eye development rather than to gestational age. Serial sections were evaluated without knowledge of karyotype for orientation of mitotic figures (parallel, perpendicular, oblique) in lens, optic cup, and diencephalon. Location of mitotic figures was scored as apical (nearest the lumen), middle, and basal. Numerous anomalies were noted in trisomic eye development. No difference was found between orientation of mitotic figures in the lens and optic cup of trisomy 1 and normal embryos. Location of mitotic figures in trisomy 1 lens was significantly different from that of normal littermates. The data confirm earlier studies that trisomy 1 affects the eye, and they tend to corroborate evidence that this trisomy affects the lens more than it affects the optic cup.  相似文献   

2.
The etiology of the eye defects in myelencephalic blebs (my) mutant mice has been poorly understood for almost seventy years. Embryos from 9 to 14 1/2 days of gestation were subjected to Alcian blue 8GX staining for acidic glycosaminoglycan deposition in basement membrane structures of the developing eye in my stock and control specimens. In addition 12 day embryos were subjected to avidinbiotin-peroxidase labelling for laminin. At 9-9 1/2 days of gestation more Alcian blue positive extracellular matrix was found in the region between the optic vesicle and the overlying putative lens ectoderm in the my stock embryos. By 12 days, there was an irregular and lesser amount of deposition of glycosaminoglycans in the len's capsule and in the "inner limiting membrane" of the presumptive neural retina; however, the deposition of laminin appeared to be greater in the inner limiting membrane of the my eye. By 14 days, the damage to the eye in the my embryos can be quite extensive, and the deposition of glycosaminoglycans was very meager in this situation. It appears that irregular deposition of glycosaminoglycans in the extracellular matrix and possible increase in the amount of laminin in basement structures in my embryos indicate disruption of the normal histochemistry involved in the development of the eye. Altered histochemistry may in turn indicate changes in permeability between cells of the developing tissues which result in the blebbing.  相似文献   

3.
花背蟾蜍眼早期形态发生中其主要部分空间联系的研究   总被引:3,自引:0,他引:3  
王子仁  仝允栩 《动物学报》1990,36(3):231-235
本文用扫描电镜研究了花背蟾蜍眼早期形态发生中视泡和预定晶状体、晶状体和预定角膜上皮间的紧密接触,此后在接触处出现间隙,其中存在呈网状的原纤维(fibril),这些原纤维的数量随两侧相连组织的分化,表现出增多、减少和逐渐消失的规律性变化,据此推测其成分属细胞外基质,对促进相连组织的分化起重要作用。  相似文献   

4.
Extracellular matrix material (ECM) present during early lens morphogenesis was analyzed histochemically in normal CFW mice and mutant strain aphakia by the Alcian blue 8GX, pH 2.5, Alcian blue 8GX, pH 2.5/periodic acid-Schiff combined, high-iron diamine, and van Gieson methods. At lens placode formation, the optic vesicle basal lamina in both strains was higher in sulfated glycosaminoglycan content than was the ectodermal basal lamina. In the aphakia strain, ECM components were observed intercellularly in the presumptive neural retina and lens rudiment of some specimens. This observation was peculiar to the aphakia strain. At the lens cup stage (10.5 days), the interface ECM became less uniformly dense in the CFW strain, resulting in the formation of a fibrillar structure in the widening interspace area. In contrast, the interface ECM in the mutant strain stained solidly and continuously for acidic materials, particularly sulfated glycosaminoglycans, for a full 2 days longer than in the normal strain. The optic cup and lens rudiment remained closely apposed and intercellular ECM components were observed in these tissues in most mutant specimens throughout these stages. The exact mechanism resulting in these intercellular deposits is unknown, although it is possible that they are either pulled along on the cell surface away from the interface ECM during cell shape changes related to the cell cycle or that they are secreted abnormally due to some disturbed cellular polarity. It is unclear at this time if these abnormalities of the ECM in the aphakia strain play a role in the pathogenesis of the multiple eye anomalies, or if they are a secondary effect of the gene mutation.  相似文献   

5.
B S Smith  N J Walker 《Teratology》1990,42(5):581-591
The optic cups of two gestational day 11 trisomy (ts) 1 mouse embryos and a normal littermate control were examined using transmission electron microscopy (TEM). One trisomic embryo had a small lens with a lens stalk; the other was aphakic. The resolution available with TEM allowed detailed evaluation of cell organelles, spatial relationships, and the intra- and extracellular structural environment of the optic cup in normal and abnormal mouse embryos. Differences between the normal littermate and the trisomic optic cups, as well as between the two ts 1 structures, included the following: 1) melanin granules in the retinal layer and intraretinal space as well as in the pigment layer, 2) neither pseudostratified nor cuboidal neuroepithelium in trisomic optic cups, 3) increasing cell lysis with severity of eye defect, 4) fusion between retinal and pigment layer cells and cells from the pigment layer and head mesoderm. This investigation not only confirmed some of the abnormal morphology found in light microscopic studies of ts 1 at this gestational age but also identified other anomalies in the ts 1 eye that may play a part in the dysgenesis of this organ. The roles of larger than normal intercellular lacunae, disorganized microtubules, and the connections between different cell types in the ts 1 optic cup require further investigation.  相似文献   

6.
Extracellular matrix material present during early lens morphogenesis in anophthalmic strain ZRDCT-Ch mice was studied histochemically by the Alcian blue 8GX pH 2.5, Alcian blue 8GX pH 2.5/periodic acid-Schiff combined, high iron diamine, and Van Gieson methods. Observed staining patterns were compared with results from an analysis of a normal strain of mice (E.H. Webster, Jr., A.F. Silver, and N.I. Gonsalves, 1983, Develop. Biol. 100, 147-157). No differences in constituents were found between the strains in staining patterns of the ectodermal basal lamina. However, the optic vesicle basal lamina in the anophthalmic strain was found to have a relatively lower staining intensity for sulfated glycosaminoglycan associated with it than was observed in the normal strain, although these mutant optic vesicles were morphologically normal. Results from this and the earlier study on normal mice indicate that one function of sulfated glycosaminoglycan in early lens morphogenesis may be to serve as a cementing medium between the optic and lens rudiments. This sulfated glycosaminoglycan deficiency on the anophthalmic optic vesicle basal lamina is temporally correlated with and may be causally related to precocious lens cup formation and frequently observed separation of the normally adherent eye rudiments. Conclusions drawn from this study are consistent with the speculation of H.B. Chase and E.B. Chase (1941, J. Morphol. 68, 279-301) that there may be abnormal contact between the optic vesicle and presumptive lens ectoderm in the mutant strain, although there is a differing view on the cause of the abnormal contact.  相似文献   

7.
8.
Extracellular matrix material (ECM) present during mouse lens morphogenesis was studied histologically by the periodic acid-Schiff, Alcian blue 8GX, pH 2.5, high iron diamine, and Van Gieson methods, and enzymatically with bovine testicular hyaluronidase, Streptomyces hyaluronidase, malt diastase, and collagenase. The basal lamina of the optic vesicle prior to lens placode formation was found to be higher in glycosaminoglycan (GAG) content than was the ectodermal basal lamina. Upon apposition of the optic vesicle and presumptive lens ectoderm, the ECM plus basal laminae appeared as the equivalent of adding both optic vesicle-associated and ectodermal-associated basal lamina. The proposal is made that the initial triggering mechanism of lens morphogenesis consists of a cross-linking and polymerization of optic vesicle-associated GAG to ectodermal-associated glycoproteins resulting in a firm attachment between the structures. Basal lamina associated with the presumptive pigmented retina and also the more ventral part of the interface matrix were found to change from predominantly GAG in early stages to collagen deposits in more advanced stages, temporally coinciding with the appearance of differentiative markers in each structure. This pattern of GAG turnover and replacement by collagen during the course of development is also seen in mouse salivary gland morphogenesis (M. R. Bernfield, S. D. Banerjee, and R. H. Cohn (1972). J. Cell Biol. 52, 674-686.).  相似文献   

9.
1. Optic cups of 48, 72 and 96 hours old chick embryos were prepared, cultured and recombined with ectoderm. With the optic cups of 48 hours old embryos, lens formation occurred in 16% of the cases. With the optic cups of 72 hours old embryos, lens formation occurred in 28% of the cases. Optic cups of 96 hours old embryos were not able to induce a lens. 2. The optic cup proved to be able to induce a lens more than once. 3. Ectoderm of the head of 72 hours old embryos was still able to form a lens. 4. Using homogenized eye cups of 72 hours old embryos, lens induction occurred only in a few cases. When the optic cups were cut into small pieces, lens induction occurred in 30% of the cases. This suggests that intact cells are necessary to obtain lens induction.  相似文献   

10.
The water-soluble proteins of chick retina were studied during the formation of eye cup and at the early stages of histological differentiation of retina by the micro-method of electrophoresis in 20% polyacrilamide gel. The retina of embryos at the stages under study contains a range of proteins forming over 20 fractions in electrophoresis. The most fractions are formed by the proteins which electrophoretic mobilities exceed that of serum albumin. The early stages of retina development are characterized by the definite changes in its protein composition. These changes manifest themselves in the disappearance of the most anodic fractions beginning from the stage of contact between the optic vesicle and presumptive lens ectoderm. During the subsequent development, these proteins are detected again in the retina, the corresponding anodic fractions being most distinct at the stage of completed eye cup. Their content in the retina decreases repeatedly with the beginning of histogenesis up to their complete disappearance.  相似文献   

11.
The spatial and temporal distribution as well as ultrastructural and biochemical characteristics of apoptotic and mitotic cells during human eye development were investigated in 14 human conceptuses of 4-9 postovulatory weeks, using electron and light microscopy. In the 5th developmental week, apoptotic and mitotic cells were found in the neuroepithelium of the optic cup and stalk, being the most numerous at the borderline between the two layers of the optic cup, and at the place of transition of the optic cup into stalk. They were also found at the region of detachment of the lens pit from the surface ectoderm. In the later developmental stages (the 6th-the 9th week), apoptotic and mitotic cells were observed in the neural retina and the anterior lens epithelium. Throughout all stages examined, mitotic cells were found exclusively adjacent to the lumen either of the intraretinal space or the optic stalk ventricle, or were restricted to the superficial epithelial layer of the lens primordium. Unlike mitotic cells, apoptotic cells occurred throughout the whole width both of the neuroepithelium and the surface epithelium. Ultrastructurally, apoptotic cells were characterised by round- or crescent-shaped condensations of chromatin near the nuclear membrane, while in the more advanced stages of apoptosis by apoptotic bodies. The distribution of caspase-3-positive cells coincided with the location of apoptotic cells described by morphological techniques indicating that the caspase-3-dependent apoptotic pathway operates during the all stages of human eye development. The location of cells positive for anti-apoptotic bcl-2 protein was in accordance with the regions of eye with high mitotic activity, confirming the role of bcl-2 in protecting cells from apoptosis. In the earliest stage of eye development, apoptosis and mitosis might be associated with the sculpturing of the walls of optic cup and stalk, while high mitotic activity along the intraretinal space and optic stalk ventricle indicates its role in the gradual luminal closure. These processes also participate in the detachment of the lens pit epithelium from the surface ectoderm as well as in further closure of the lens vesicle. Later on, both processes seem to be involved in the neural retina differentiation, lens morphogenesis and secondary lens fibre differentiation.  相似文献   

12.
本文用放射自显影追踪注射入胚胎的~(35)S-硫酸盐的方法,研究了花背蟾蜍早期形态发生时眼的各部分组织和细胞外基质中的硫酸糖胺聚糖(Sulfated Glycosaminoglycans简称:硫酸GAG)的合成,并分析了其在眼形态发生中的作用。结果表明:1.在眼早期形态发生时,合成的硫酸GAG主要是硫酸软骨素。2.眼各部分组织中在即将分化时硫酸GAG合成率增高,分化开始后逐渐下降到原基形成时的水平。3.在晶状体被诱导时,在视杯和晶状体相互贴近的组织及两者间的细胞外基质中硫酸GAG的合成率明显增加,提示这是晶状体诱导的重要因素。4.角膜上皮形成时即向角膜上皮下层和细胞外基质分泌硫酸GAG;角膜上皮透明时,合成更多的硫酸角质素。  相似文献   

13.
采用组织学方法观察了胭脂鱼(Myxocyprinus asiaticus) 眼的发生过程, 结果显示: 胭脂鱼眼的发育经历了眼原基形成期、眼囊形成期、视杯形成期、晶体板形成期、晶体囊形成期、角膜原基形成期、角膜上皮形成期、视网膜细胞增殖期、晶状体成熟期、眼色素形成期以及眼成型期等11个时期。视网膜发育最早, 起始于眼原基的形成, 直至眼成型期分化完成, 形成了厚度不一的8层细胞, 由内向外依次为神经纤维层、神经细胞层、内网层、内核层、外网层、外核层、视杆视锥层和色素上皮层, 且发育历时最长, 约264h。晶状体的发育在视网膜之后, 始于晶体板的形成, 于出膜前期成熟, 发育历时最短, 约74h。角膜发育最晚, 始于角膜原基的形成, 出膜1 d分化为透明的成熟角膜, 发育历时约96h。出膜4 d仔鱼眼色素沉积明显, 视网膜各层分化明显, 晶状体内部完全纤维化, 眼的形态结构基本发育完全。  相似文献   

14.
The leg musculature from 11, 14, and 17 day chick embryos was analyzed histochemically to investigate the temporal and spatial distribution of various types of sulfated glycosaminoglycans present during skeletal muscle development. Types of glycans were identified by selective degradation with specific glycosidases and nitrous acid coupled with Alcian blue staining procedures for sulfated polyanions and with [35S]sulfate autoradiography. On day 11, radiolabeled chondroitin sulfate glycosaminoglycans are localized extracellularly in both the myogenic and connective tissue cell populations. By day 17, incorporation of [35S]sulfate into chondroitin sulfate is substantially reduced, although Alcian blue-stained chondroitin sulfate molecules are still detectable. With increasing age and developmental state of the tissues, radiolabeled and stained dermatan sulfate and heparan sulfate progressively increase in relative quantity compared to chondroitin sulfate both in muscle and in associated connective tissue elements. These changes in glycosaminoglycans correlate well with similar changes previously determined biochemically and further document the alterations in extracellular matrix components during embryonic skeletal myogenesis.  相似文献   

15.
Y Atoji  Y Kitamura  Y Suzuki 《Acta anatomica》1990,139(2):151-153
The perineuronal extracellular matrix of the canine superior olivary nuclei was examined by the histochemical method. The extracellular matrix was stained with Alcian blue (pH 1.0 and 2.5), high iron diamine and ruthenium red. The staining intensity of Alcian blue in the extracellular matrix was remarkably reduced after chondroitinase ABC digestion but not after that of heparitinase or hyaluronidase. These results indicate that the extracellular matrix consists of proteoglycans and contains the chondroitin sulfate proteoglycan.  相似文献   

16.
Abstract

Whole-mount staining with Alcian blue for cartilage and alizarin red for bone has been widely used for visualizing the skeletal patterns of embryos and small adult vertebrates. The possibility of decalcification by the acidic Alcian blue solution is known, but standard staining protocols do not always avoid this issue. We investigated the effects of acidity on the stainability of developing bones in stage 36 chick embryos and developed an optimal procedure for obtaining reliable results with minimal decalcification. The diaphyses of long bone rudiments and the maxillofacial membranous bones progressively lost their stainability with alizarin red when the chick embryos were soaked for long periods in the preceding acidic Alcian blue staining solution for cartilage. Unless the acidity was neutralized with an alkaline solution, the remaining acidity in the specimens rendered the pH sufficiently low to prevent the subsequent alizarin red staining of the bones. These findings indicate that the mineralizing bones at the early stages of development are labile to acidity and become decalcified more substantially during the staining process than previously appreciated. The following points are important for visualizing such labile mineralizing bones in chick embryos: 1) fixing with formaldehyde followed by soaking in 70% ethanol, 2) minimizing the time that the specimens are exposed to the acidic Alcian blue solution, and 3) neutralizing and dehydrating the specimens by an alkaline-alcohol solution immediately after the cartilage staining. When the exact onset and/or an early phase of ossification are of interest, the current double-staining procedure should be accompanied by a control single-staining procedure directed only toward bone.  相似文献   

17.
人毛乳头细胞组织化学研究   总被引:4,自引:0,他引:4  
毛乳头细胞是一种高度特殊化的成纤维细胞。本文通过对体外培养的毛乳头细胞进行组织化学染色研究发现,它对阿新蓝、甲苯胺蓝和PAS染色均呈阳性,并对甲苯胺蓝显异染性.与原位时的细胞染色结果相同,表明在体外培养下.毛乳头细胞合成和分泌酸性、中性粘多糖的能力仍能维持较长时间;在细胞聚集区和多层化细胞团中有丰富的细胞外基质,阿新蓝和PAS染色呈强阳性,说明细胞外基质的存在与毛乳头细胞的聚集有很大关系;另外毛囊真皮鞘细胞对阿新蓝、甲苯胺蓝染色呈阳性反应.无甲苯胺蓝的异染性,PAS染色阴性,而真皮成纤维细胞这些染色均阴性,说明它与毛乳头细胞关系密切。  相似文献   

18.
The formation of the vertebrate optic cup is a morphogenetic event initiated after the optic vesicle contacts the overlying surface/pre-lens ectoderm. Placodes form in both the optic neuroepithelium and lens ectoderm. Subsequently, both placodes invaginate to form the definitive optic cup and lens, respectively. We examined the role of the lens tissue in inducing and/or maintaining optic cup invagination in ovo. Lens tissue was surgically removed at various stages of development, from pre-lens ectoderm stages to invaginating lens placode. Removal of the pre-lens ectoderm resulted in persistent optic vesicles that initiated neural retinal differentiation but failed to invaginate. In striking contrast, ablation of the lens placode gave rise to optic vesicles that underwent invagination and formed the optic cup. The results suggest that: (1) the optic vesicle neuroepithelium requires a temporally specific association with pre-lens ectoderm in order to undergo optic cup morphogenesis; and (2) the optic cup can form in the absence of lens formation. If ectopic BMP is added, a neural retina does not develop and optic cup morphogenesis fails, although lens formation appears normal. FGF-induced neural retina differentiation in the absence of the pre-lens ectoderm is not sufficient to create an optic cup. We hypothesize the presence of a signal coming from the pre-lens ectoderm that induces the optic vesicle to form an optic cup.  相似文献   

19.
It is currently proposed that accumulation of hyaluronic acid (HA) and subsequent hydration of the cardiac extracellular matrix is required for normal looping of the vertebrate heart. To test this hypothesis, we cultured Wistar rat embryos (Gestational Day 9.5) in rat serum plus 20 TRU/ml of Streptomyces hyaluronidase (treated embryos) or rat serum alone (control embryos). Despite degradation of HA as documented by Alcian blue staining at pH 2.5, 57 of 59 treated embryos developed normally looped hearts after 36 hr in culture. These experiments suggest that the accumulation of HA is not required for normal looping of the mammalian heart in situ.  相似文献   

20.
Eye primordia of young chick embryos (stage XII) were transplanted into lensectomized optic cups of older embryos (stage XVII) to analyze the influence of the host retina on the degree of morphological differentiation attained by the donor lens. Embryos were sacrificed 24-96 h later. The donor lens primordium showed a differentiation more in correlation with the host eye cup (stage XXIII) after 24-96 h of incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号