首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonin at low micromolar concentrations inhibited binding of two [125I]-labeled muramyl peptides to resident mouse peritoneal cells and to a macrophage-derived cell line, PU5-1.8-F7. Binding of [3H]serotonin was inhibited in parallel fashion. Overnight incubation with serotonin or muramyl peptide enhanced the release of superoxide by both types of cells when later stimulated with phorbol myristate acetate. Serotonin antagonists decreased binding of muramyl peptide and serotonin and diminished the subsequent enhancement of superoxide release. A cell line variant lacking detectable binding sites for muramyl peptide was far less responsive (superoxide release) than the parent line, to either drug. The data are consistent with sharing of a common set of receptors on the macrophage by muramyl peptide and serotonin and with involvement of these receptors in enhancing superoxide release.  相似文献   

2.
The present study was designed to identify and characterize specific endothelin binding sites in membranes of rat renal papillae and glomeruli which appear to be target tissues for this new peptide hormone. Saturation binding studies indicate that the sites have a high and uniform affinity. The dissociation constants averaged 662 +/- 151 and 1309 +/- 123 pM and the receptor densities 7666 +/- 920 and 5831 +/- 348 fmol/mg protein for papillary and glomerular membranes, respectively. Endothelin 1, endothelin 3 and sarafotoxin all inhibited [125I]-endothelin binding with IC50's in the 100-300 pM range, whereas unrelated peptides, namely angiotensin II, atrial natriuretic peptide, and platelet-derived growth factor failed to compete for [125I]-endothelin binding. Deletion of the carboxyterminal tryptophan in endothelin 1 reduced its affinity for glomerular binding sites by 2 orders of magnitude. Specific endothelin binding to these membranes was maximal at pH 4 and was markedly inhibited as the pH was raised above 8. When [125I]-endothelin is covalently linked to glomerular membrane binding sites, SDS-PAGE of these solubilized membranes followed by autoradiography reveals a predominant specifically labeled band of 45 kDa. Whether this band represents a subunit of the endothelin receptor(s), the receptor proper, or an intracellular endothelin binding protein remains to be determined.  相似文献   

3.
Two immunostimulating peptides were isolated from human milk proteins by enzymatic digestion, the tripeptide GLF and the hexapeptide VEPIPY. These peptides increased the phagocytosis of human and murine macrophages and protected mice against Klebsiella pneumoniae infection. The present study showed that this activity may be correlated to the presence of specific binding sites on human blood phagocytic cells. The receptor molecules implicated were different for the two peptides. [3H]GLF specifically bound to PMNL and monocytes, whereas [3H]VEPIPY only bound to monocytes. The leukemic promyelocytic cell line HL-60 differentiated into granulocytes or into macrophages (depending on inducer used) coroborated these results. Specific binding of [3H]GLF on plasma membrane preparations of human PMNL (20 degrees C) was saturable and Scatchard analysis indicated two classes of binding sites: high-affinity sites of Kd 2.3 +/- 1.0 nM and Bm 60 +/- 9 fmol/mg protein and low-affinity sites of Kd 26.0 +/- 3.5 nM and Bm 208 +/- 45 fmol/mg protein. [3H]GLF binding was inhibited in a concentration-dependent manner by various analogous peptides, such as LLF, GLY, LLY and RGDGLF, but not by RGD, RGDS, VEPIPY and the chemotactic peptide f-Met-Leu-Phe (f-MLF). Only at high concentrations the direct analog MLF competed with labeled GLF. An important inhibitory effect was also observed with C1q component of the complement whereas C3 and BSA were uneffective. Specific binding of [3H]VEPIPY on monocyte membranes (20 degrees C) was saturable and Scatchard analysis was consistent with one class of binding sites of Kd 3.7 +/- 0.3 nM and Bm 150 +/- 6 fmol/mg protein.  相似文献   

4.
The murine neuroblastoma N1E-115 cell line contains binding sites for the angiotensin II (Ang II) receptor antagonist 125I-[Sarc1,Ile8]-Ang II (125I-SARILE). Binding of 125I-SARILE to N1E-115 membranes was rapid, reversible, and specific for Ang II-related peptides. The rank order potency of 125I-SARILE binding was the following: [Sarc1]-Ang II = [Sarc1,Ile8]-Ang II greater than Ang II greater than Ang III = [Sarc1,Thr8]-Ang II much greater than Ang I. Scatchard analysis of membranes prepared from confluent monolayers revealed a homogenous population of high affinity (KD = 383 +/- 60 pM) binding sites with a Bmax of 25.4 +/- 1.6 fmol/mg of protein. Moreover, the density, but not the affinity, of the binding sites increased as the cells progressed from logarithmic to stationary growth in culture. Finally, agonist, but not antagonist, binding to N1E-115 cells was regulated by guanine nucleotides. Collectively, these results suggest that the murine neuroblastoma N1E-115 cell line may provide a useful model in which to investigate the signal transduction mechanisms utilized by neuronal Ang II receptors.  相似文献   

5.
W Kloas  W Hanke 《Peptides》1992,13(2):349-354
Angiotensin II (AII) binding sites were localized and quantified in kidney and adrenal of the frog Rana temporaria by quantitative in vitro autoradiography. AII binding was present in kidney glomeruli and in interrenal tissue of the outer zone of the adrenal gland. Saturation experiments showed that [125I]-[Val5]AII binds to a single class of binding sites with a dissociation constant (Kd) of 548 +/- 125 pM in glomeruli and 593 +/- 185 pM in interrenal tissue (n = 8). The corresponding maximal binding capacities (Bmax) were 2.48 +/- 0.71 and 3.05 +/- 1.02 fmol/mm2, respectively. AII binding was displaced by unlabeled angiotensin analogues in the rank order: [Sar1]AII greater than human AII greater than [125I]-[Val5]AII = [Val5]AII = human AIII much greater than human AI. The AII binding sites in glomeruli and interrenal tissue suggest an influence of AII on glomerular filtration rate and adrenal steroid secretion to take part in osmomineral regulation of the frog.  相似文献   

6.
K O Badellino  P N Walsh 《Biochemistry》2001,40(25):7569-7580
Inhibition of factor XIa by protease nexin II (K(i) approximately 450 pM) is potentiated by heparin (K(I) approximately 30 pM). The inhibition of the isolated catalytic domain of factor XIa demonstrates a similar potentiation by heparin (K(i) decreasing from 436 +/- 62 to 88 +/- 10 pM) and also binds to heparin on surface plasmon resonance (K(d) 11.2 +/- 3.2 nM vs K(d) 8.63 +/- 1.06 nM for factor XIa). The factor XIa catalytic domain contains a cysteine-constrained alpha-helix-containing loop: (527)CQKRYRGHKITHKMIC(542), identified as a heparin-binding region in other coagulation proteins. Heparin-binding studies of coagulation proteases allowed a grouping of these proteins into three categories: group A (binding within a cysteine-constrained loop or a C-terminal heparin-binding region), factors XIa, IXa, Xa, and thrombin; group B (binding by a different mechanism), factor XIIa and activated protein C; and group C (no binding), factor VIIa and kallikrein. Synthesized peptides representative of the factor XIa catalytic domain loop were used as competitors in factor XIa binding and inhibition studies. A native sequence peptide binds to heparin with a K(d) = 86 +/- 15 nM and competes with factor XIa in binding to heparin, K(i) = 241 +/- 37 nM. A peptide with alanine substitutions at (534)H, (535)K, (538)H, and (539)K binds and competes with factor XIa for heparin-binding in a manner nearly identical to that of the native peptide, whereas a scrambled peptide is approximately 10-fold less effective, and alanine substitutions at residues (529)K, (530)R, and (532)R result in loss of virtually all activity. We conclude that residues (529)K, (530)R, and (532)R comprise a high-affinity heparin-binding site in the factor XIa catalytic domain.  相似文献   

7.
[3H]Naltrindole binding characteristics were determined using homogenized rat brain tissue. Saturation binding studies at 25 degrees C measured an equilibrium dissociation constant (Kd) value of 37.0 +/- 3.0 pM and a receptor density (Bmax) value of 63.4 +/- 2.0 fmol/mg protein. Association binding studies showed that equilibrium was reached within 90 min at a radioligand concentration of 30 pM. Naltrindole, as well as the ligands selective for delta (delta) opioid receptors, such as pCI-DPDPE and Deltorphin II inhibited [3H]naltrindole binding with nanomolar IC50 values. Ligands selective for mu (mu) and kappa (kappa) opioid receptors were only effective in inhibiting [3H]naltrindole binding at micromolar concentrations. From these data, we conclude that [3H]naltrindole is a high affinity, selective radioligand for delta opioid receptors.  相似文献   

8.
Specific receptors for atrial natriuretic factor (ANF) have been identified and solubilized in glomeruli from rat kidney. Radioiodinated synthetic ANF (Arg 101-Tyr 126) bound to a single class of high affinity (Kd 27 +/- 24 pM) sites with a density of 390 +/- 230 fmole/mg protein. The binding was time- and temperature-dependent, saturable and reversible. The ANF-receptor complex was not affected by angiotensin II, ACTH or vasopressin. Solubilization with 10 mM 3-[(3-cholamidopropyl)-dimethylammonio]- 1-propane sulfonate (CHAPS) slightly increased the affinity for ANF (Kd 5.0 +/- 3.3 pM) without affecting the density (250 +/- 110 fmole/mg protein). Similar results were found with 1% Triton X-100. ANF-related peptides interact generally in the same way with non-solubilized and solubilized receptors, indicating a fully preserved specificity of the receptors.  相似文献   

9.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind bacterial peptidoglycans (PGNs). We determined the crystal structure, to 2.1 A resolution, of the C-terminal PGN-binding domain of human PGRP-I alpha in complex with a muramyl pentapeptide (MPP) from Gram-positive bacteria containing a complete peptide stem (L-Ala-D-isoGln-L-Lys-D-Ala-D-Ala). The structure reveals important features not observed previously in the complex between PGRP-I alpha and a muramyl tripeptide lacking D-Ala at stem positions 4 and 5. Most notable are ligand-induced structural rearrangements in the PGN-binding site that are essential for entry of the C-terminal portion of the peptide stem and for locking MPP in the binding groove. We propose that similar structural rearrangements to accommodate the PGN stem likely characterize many PGRPs, both mammalian and insect.  相似文献   

10.
Specific binding sites of high affinity and low capacity for 125I-angiotensin II have been identified in a membrane fraction derived from arterial arcades of the rat mesentery. Heterogeneity of binding sites and extensive tracer degradation necessitated the use of nonlinear regression methods for the analysis of radioligand binding data. Forward and reverse rate constants for the high affinity sites obtained by three experimental approaches were in good agreement and gave a dissociation equilibrium constant (Kd) of 19-74 pM (95% confidence interval). Affinities for a number of angiotensin-related peptides calculated from competitive binding curves were in the order 125I-angiotensin II = angiotensin II greater than angiotensin III greater than [Sar1,Ile8]angiotensin II greater than [Sar1,Gly8]angiotensin II. Angiotensin I and biochemically unrelated peptides had virtually no effect on binding of tracer angiotensin II. The divalent cations Mn2+, Mg2+ and Ca2+ stimulated 125I-angiotensin II binding at concentrations of 2-10 mM, as did Na+ at 50-100 mM. In the presence of Na+ or Li+, K+ had a biphasic effect. The chelating agents EDTA and EGTA were inhibitory, as were the thiol reagents dithiothreitol and cysteine. This study defined angiotensin II binding sites in a vascular target tissue of sufficiently high affinity to interact rapidly with plasma angiotensin II at physiological concentrations.  相似文献   

11.
Rabbit histidine-rich glycoprotein (HRG) binds low-spin heme and metals tightly at several sites that contain histidine. As part of an on-going effort to define and locate the binding sites for these and the other ligands of HRG, the sequence: NH2-Gly-His-Phe-Pro-Phe-His-Trp-... was found in a 16 kDa heme-binding peptide isolated from HRG. The spacing of the histidyl residues in this peptide, which contains the C-terminal 79 residues of HRG, together with molecular modeling suggested that this sequence might constitute one heme binding site of HRG by accommodating heme in a bis-histidyl linkage. Three peptides based on this sequence (I, HFPFHW; II, WHFPFH; and III, HFGFHW) were synthesized, and their ability to bind heme and metals examined. All three peptides bind heme as demonstrated by the changes produced in the absorbance of heme when mixed with the peptides. Substituting glycine for proline in the central position or moving the location of the tryptophan did not affect heme binding. The apparent Kd's of the mesoheme/peptide I, II and III complexes are 75 +/- 25 microM, indicative of heme binding approximately 100 times less avid than the mesoheme/HRG complex (Kd ca. 1 microM), but nearly 1000 times tighter than that of the mesoheme/histidine complex (Kd ca. 60 mM). The absorbance spectra of the mesoheme/peptide complexes, the loss of binding caused by modification of histidine residues, and the pH dependence of heme binding, all indicate that heme forms a low spin, bis-histidyl type of complex with these peptides, like that formed with HRG itself. Copper, but not cadmium or nickel, was an effective inhibitor of heme binding by the peptides. The sequence of HRG congruent with the sequence of peptide I is proposed to be one heme- and metal-binding site of rabbit HRG.  相似文献   

12.
Two peptides corresponding to amino acid sequences predicted from the nucleotide sequence of the dopamine D2 receptor were synthesized. Peptide I (CGSEG-KADRPHYC) and peptide II (NNTDQNECIIY), corresponding to 24-34 and 176-185 from the NH2 terminus, respectively, were conjugated to keyhold limpet hemocyanin and injected into rabbits. Peptide I showed a greater immunogenic response than did peptide II. Both peptide antibodies exhibited high titer for the homologous antigens, but showed little or no cross-reactivity with heterogeneous peptides. Peptide I antibodies reacted with striatal membrane proteins of apparent molecular masses of 120, 90, 85, and 30 kDa on a western blot. Furthermore, the 90-kDa band was identified as denatured D2 receptor by its high affinity for the D2 selective photoaffinity probe 125I-N'-azidospiperone (125I-NAPS). Photoaffinity labeling of the 90-kDa protein by 125I-NAPS was reduced by 40% in the presence of the peptide I antibody. In addition, evidence is also presented to show the low level of 90-kDa protein in cerebellum which contains little or no D2 ligand binding sites. The antibody to peptide I inhibited the binding of [3H]YM-09151-2, a dopamine D2 receptor selective antagonist, to striatal membranes in a concentration-dependent manner; a 50% inhibition was obtained at a 1:500 dilution of the antisera with 20 pM ligand concentration. The data on the equilibrium inhibition kinetics of [3H]YM-09151-2 binding to striatal membranes were examined in the presence of antibody and showed a 25-30% decrease in Bmax (203.5 +/- 11.0 and 164.6 +/- 3.3 fmol/mg of protein in presence of preimmune and immune sera, respectively) with no change in KD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The characteristics of atrial natriuretic factor (ANF) receptors where studied in rat retinal particulate preparations. Specific 125I-ANF binding to retinal particulate preparations was greater than 90% of total binding and saturable at a density (Bmax) of 40 +/- 8 fmol/mg protein with an apparent dissociation constant (Kd) of 6.0 +/- 2.0 pM (n = 3). Apparent equilibrium conditions were established within 30 min. The Kd value of 125I-ANF binding calculated by kinetic analysis was 4.0 pM. The Bmax of 60 +/- 10 fmol/mg protein and the Kd of 5 +/- 2 pM, calculated by competition analysis, were in close agreement with the values obtained from Scatchard plots or kinetic analysis. The 125I-ANF binding to retinal particulate preparations was not inhibited by 1 microM concentration of somatostatin, vasopressin, vasoactive intestinal peptide, adrenocorticotropin, thyrotropin releasing hormone, or leu-enkephalin. The rank order of potency of the unlabelled atrial natriuretic peptides for competing with specific 125I-ANF (101-126) binding sites was rANF (92-126) greater than rANF (101-126) greater than rANF (99-126) greater than rANF (103-126) greater than Tyro-Atriopeptin I greater than hANF (105-126) greater than rANF (1-126). Similar results have been obtained in peripheral tissues and mammalian brain, indicating that central and peripheral ANF-binding sites have somewhat similar structural requirements. Affinity cross-linking of 125I-ANF to retinal particulate preparations resulted in the labelling of two sites of molecular weight 140 and 66 kDa, respectively. This demonstration of specific high-affinity ANF receptors suggests that the peptide may act as a neurotransmitter or neuromodulator in the retina.  相似文献   

14.
The binding of the monoiodinated alpha-neurotoxin I from Naja mossambica mossambica to the membrane-bound acetylcholine receptor from Torpedo marmorata was investigated using a new picomolar-sensitive microtitration assay. From equilibrium binding studies a non-linear Scatchard plot demonstrated two populations of binding sites characterized by the two dissociation constants Kd1 = 7 +/- 4 pM and Kd2 = 51 +/- 16 pM and having equal binding capacities. These two populations differed in their rate of dissociation (k-1.1 = 25 x 10(-6) s-1 and k-1.2 = 623 x 10(-6) s-1 respectively), but not in their rate of formation of the toxin-receptor complex (k + 1 = 11.7 x 10(6) M-1 s-1). From these rate constants the same two values of dissociation constant were deduced (Kd1 = 2 pM and Kd2 = 53 pM). All the specific binding was prevented by the cholinergic antagonists alpha-bungarotoxin and d-tubocurarine. In addition, a biphasic competition phenomenon allowed us to differentiate between two d-tubocurarine sites (Kda = 103 nM and Kdb = 13.7 microM respectively). Evidence is provided indicating that these two sites are shared by d-tubocurarine and alpha-neurotoxin I, with inverse affinities. Fairly conclusive agreement between our equilibrium, kinetic and competition data demonstrates that the two high-affinity binding sites for this short alpha-neurotoxin are selectively distinguishable.  相似文献   

15.
The interactions of a range of synthetic peptidoglycan derivatives with PGRP-Ialpha and PGRP-S have been studied in real-time using surface plasmon resonance. A dissociation constant of K(D) = 62 mum was obtained for the interaction of peptidoglycan recognition protein (PGRP)-Ialpha with the lysine-containing muramyl pentapeptide (compound 6). The normalized data for the lysine-containing muramyl tetra- (compound 5) and pentapeptide (compound 6) showed that these compounds have similar affinities, whereas a much lower affinity for muramyl tripeptide (compound 3) was measured. Similar affinities were obtained when the lysine moiety of the muramyl peptides was replaced by meso-diaminopimelic acid (DAP). Furthermore, the compounds that contained only a stem peptide (pentapeptide, compound 1) and (DAP-PP, compound 2) as well as muramyldipeptide (compound 3) exhibited no binding indicating that the muramyltripeptide (compound 4) is the smallest peptidoglycan fragment that can be recognized by PGRP-Ialpha. Surprisingly, PGRP-S derived significantly higher affinities for the DAP-containing fragments to similar lysine-containing derivatives, and the following dissociation constants were measured: muramylpentapeptide-DAP, K(D) = 104 nm; muramyltetrapeptide-DAP, 92.4 nm; and muramyltripeptide-DAP, 326 nm. The binding profiles were rationalized by using a recently reported x-ray crystal structure of PGRP-Ialpha with the lysine-containing muramyltripeptide (4).  相似文献   

16.
We synthesized the N-terminal hexapeptide fragment of IGF II to study potential binding to NMDA receptors in analogy to the N-terminal tripeptide of IGF I. The amino acid sequence of the hexapeptide is furthermore identical with the C-terminal sequence of the casiragua insulin B chain. The hexapeptide did not bind to the NMDA receptors, but was found to promote [3H]-thymidine incorporation into fibroblasts at concentrations of 10(-8) - 10(-5) M in a dose-dependent manner. Since [125I]-hexapeptide did not bind to IGF receptors, indirect competition studies using either labelled IGFs or insulin had to be used. The competition of hexapeptide at a concentration of 10(-5) M with labelled IGF I or II was about equal to that of 10(-9) M IGF I or II. IGF receptors were apparently up-regulated by the hexapeptide, as has also been described for insulin. When using casiragua insulin as labelled ligand, IGF II and casiragua insulin competed with equal potency, whereas the hexapeptide at 10(-7) M caused an apparent up-regulation of the casiragua insulin binding sites. Our results that the hexapeptide stimulates [3H]-thymidine incorporation and up-regulates IGF II and casiragua insulin binding sites may be connected to one or several of the following findings: the hystricomorph insulins--of which the casiragua insulin is a member--stimulate DNA synthesis to a greater extent than other insulins; the insulin and type 1 IGF receptor binding regions are localized predominantly in the C-terminal region of the insulin B chain; and the "cooperative" site regulating the affinity of the insulin receptor is also located in the C-terminal region of the insulin B chain. Further experiments will be needed to clarify the exact mechanism.  相似文献   

17.
Atrial natriuretic factor (ANF) binding sites in frog kidney and adrenal.   总被引:1,自引:0,他引:1  
W Kloas  W Hanke 《Peptides》1992,13(2):297-303
Atrial natriuretic factor (ANF) binding sites were localized and quantified in kidney and adrenal of the frog Rana temporaria by quantitative in vitro autoradiography. [125I]-rat ANF(99-126) binding was present in kidney glomeruli and in the outer layer of interrenal tissue in the adrenal gland. ANF binding exhibited positive cooperativity with a half-maximal binding concentration (EC50) of 102 +/- 16 pM in glomeruli and 93 +/- 19 pM in interrenal tissue (n = 8). The corresponding maximal binding capacities (Bmax) were 1.33 +/- 0.16 and 1.21 +/- 0.36 fmol/mm2. [125I]-Rat ANF(99-126) binding was competitively displaced by unlabeled ANF analogues with an intact disulfide bridge showing a lower affinity than the iodinated ligand. The presence of ANF binding in glomeruli and steroidogenic interrenal cells suggests physiological functions of ANF for the osmomineral regulation in the frog by influencing glomerular filtration rate and adrenal steroid secretion.  相似文献   

18.
P P Lee  S F Pang 《Life sciences》1992,50(2):117-125
Utilizing 2-[125I]iodomelatonin as the radioligand, melatonin binding sites were identified and characterized in the jejunum of ducks. These sites were found to be reversible, saturable, specific and exhibited high affinity for melatonin. Scatchard analyses have established the equilibrium dissociation constant (Kd) for tissues collected during mid-photophase to be 40.9 +/- 7 pM and the maximum quantity of binding sites (Bmax) to be 2.0 +/- 0.4 fmol/mg protein while Kd of samples collected during mid-scotophase was found to be 54.1 +/- 10 pM with a corresponding Bmax of 1.5 +/- 0.3 fmol/mg protein. These Kd values are in good proximity to the kinetically derived equilibrium dissociation constant of 47.3 +/- 20 pM. No significant difference in Kd or Bmax was detected between the mid-light and mid-dark samples. Pharmacological profile of these binding sites, developed by their interactions with other indoles and compounds, indicated that these binding sites are highly specific for melatonin. Subcellularly, different densities of binding sites were localized to various fractions in the following order: nuclear greater than microsomal greater than mitochondrial greater than cytosolic. These binding sites in the jejunum might be the receptors accountable for promoting paracrine activities for the locally synthesized gastrointestinal melatonin and/or responsible for eliciting hormonal actions via interactions with melatonin of pineal origin.  相似文献   

19.
The administration of 0.00011 mg/g weight/day of bromocriptine (CB154) for 7 days to Wistar rats, improved the peripheral glucose uptake without significant changes in plasma insulin level, during the intravenous glucose tolerance test (0.33 g/kg). The mode of the bromocriptine action on binding of 125I insulin to erythrocyte insulin receptors has been evaluated. The total number of sites was greater with bromocriptine (513.1 +/- 124.1 pM/1,CB154 815.6 +/- 107.9 pM/l) (p less than 0.01). The high affinity/low capacity compound of insulin receptor, in CB154 rats (51.8 +/- 16.8 pM/l) was higher than in normal rats (18.3 +/- 8.9 pM/l) (p less than 0.005). Additional studies indicated that CB154 had no effect on the rate of association and dissociation of 125I insulin from rats erythrocyte insulin receptors. The degradation of insulin or the erythrocyte receptor sites do not change, after the treatment with CB154.  相似文献   

20.
Two distinct binding sites for [125I]human calcitonin gene-related peptide (hCGRP) were found in rat brain, skeletal muscle, and liver. Each tissue had a high affinity site with an average Kd of 46 pM and a low affinity site with an average Kd of 22 nM. Islet amyloid polypeptide (IAPP), which has N- and C-terminal sequence homology to CGRP and is produced by islet beta-cells, bound to both sites but had a potency closer to that of CGRP at the low affinity binding site. A C-terminal fragment of IAPP competed for [125I]hCGRP binding at the low affinity site with potency comparable to that of hIAPP. No specific binding to membrane preparations was found in experiments using [125I]rIAPP, which was iodinated at the C-terminal tyrosyl residue. These results suggest that some of the previously reported biological effects occurring at nM or microM concentrations of IAPP may be mediated by IAPP binding to low affinity CGRP receptors. This study further indicates that the C-terminal region of IAPP is important for binding to low affinity CGRP receptors, and suggests that C-terminal fragments of IAPP may be of biological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号