首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All caspases evolved from a common ancestor and subsequently developed into two general classes, inflammatory or apoptotic caspases. The caspase-hemoglobinase fold has been conserved throughout nearly one billion years of evolution and is utilized for both the monomeric and dimeric subfamilies of apoptotic caspases, called initiator and effector caspases, respectively. We compared the folding and assembly of procaspase-3b from zebrafish to that of human effector procaspases in order to examine the conservation of the folding landscape. Urea-induced equilibrium folding/unfolding of procaspase-3b showed a minimum three-state folding pathway, where the native dimer isomerizes to a partially folded dimeric intermediate, which then unfolds. A partially folded monomeric intermediate observed in the folding landscape of human procaspase-3 is not well-populated in zebrafish procaspase-3b. By comparing effector caspases from different species, we show that the effector procaspase dimer undergoes a pH-dependent conformational change, and that the conformational species in the folding landscape exhibit similar free energies. Together, the data show that the landscape for the caspase-hemoglobinase fold is conserved, yet it provides flexibility for species-specific stabilization or destabilization of folding intermediates resulting in changes in stability. The common pH-dependent conformational change in the native dimer, which yields an enzymatically inactive species, may provide an additional, albeit reversible, mechanism for controlling caspase activity in the cell.  相似文献   

2.
Dimeric procaspase-3 unfolds via a four-state equilibrium process.   总被引:2,自引:0,他引:2  
K Bose  A C Clark 《Biochemistry》2001,40(47):14236-14242
We have examined the folding and assembly of a catalytically inactive mutant of procaspase-3, a homodimeric protein that belongs to the caspase family of proteases. The caspase family, and especially caspase-3, is integral to apoptosis. The equilibrium unfolding data demonstrate a plateau between 3 and 5 M urea, consistent with an apparent three-state unfolding process. However, the midpoint of the second transition as well as the amplitude of the plateau are dependent on the protein concentration. Overall, the data are well described by a four-state equilibrium model in which the native dimer undergoes an isomeration to a dimeric intermediate, and the dimeric intermediate dissociates to a monomeric intermediate, which then unfolds. By fitting the four-state model to the experimental data, we have determined the free energy change for the first step of unfolding to be 8.3 +/- 1.3 kcal/mol. The free energy change for the dissociation of the dimeric folding intermediate to two monomeric intermediates is 10.5 +/- 1 kcal/mol. The third step in the unfolding mechanism represents the complete unfolding of the monomeric intermediate, with a free energy change of 7.0 +/- 0.5 kcal/mol. These results show two important points. First, dimerization of procaspase-3 occurs as a result of the association of two monomeric folding intermediates, demonstrating that procaspase-3 dimerization is a folding event. Second, the stability of the dimer contributes significantly to the conformational free energy of the protein (18.8 of 25.8 kcal/mol).  相似文献   

3.
The unfolding equilibrium of the C-terminal domain of human immunodeficiency virus-1 (HIV-1) capsid protein has been analyzed by circular dichroism and fluorescence spectroscopy. The results for the dimeric, natural domain are consistent with a three-state model (N(2)<-->2I<-->2U). The dimer (N(2)) dissociates and partially unfolds in a coupled cooperative process, into a monomeric intermediate (I) of very low conformational stability. This intermediate, which is the only significantly populated form at low (1 microM) protein concentrations, fully preserves the secondary structure but has lost part of the tertiary (intramonomer) interactions found in the dimer. In a second transition, the intermediate cooperatively unfolds into denatured monomer (U). The latter process is the equivalent of a two-state unfolding transition observed for a monomeric domain in which Trp184 at the dimer interface had been truncated to Ala. A highly conserved, disulfide-bonded cysteine, but not the disulfide bond itself, and three conserved residues within the major homology region of the retroviral capsid are important for the conformational stability of the monomer. All these residues are involved also in the association process, despite being located far away from the dimerization interface. It is proposed that dimerization of the C-terminal domain of the HIV-1 capsid protein involves induced-fit recognition, and the conformational reorganization also improves substantially the low intrinsic stability of each monomeric half.  相似文献   

4.
Caspases are vital to apoptosis and exist in the cell as inactive zymogens. Dimerization is central to procaspase activation because the active sites are comprised of loops from both monomers. Although initiator procaspases are stable monomers until activated on cell death scaffolds, the effector caspases, such as procaspase-3, are stable dimers. The activation mechanisms are reasonably well understood in terms of polypeptide chain cleavage and subsequent active site rearrangements in the dimer, but the mechanisms that govern dimer assembly are not known. To further understand procaspase dimerization, we examined the folding and assembly of procaspase-3 by fluorescence emission, circular dichroism, differential quenching by acrylamide, anisotropy, and enzyme activity assays. Single-mixing stopped-flow refolding studies showed a complex burst phase in which multiple monomeric species form rapidly. At longer times, the monomer folds through several intermediates, some of which appear to be off-pathway or misfolded, before eventually forming a dimerization-competent species. Enzyme activity studies demonstrated a slow rate of dimerization (∼70 M−1 s−1). In addition, single-mixing stopped-flow unfolding studies revealed a complex unfolding process with a slow rate of dimer dissociation. Interestingly, multiple dimeric species were observed in the burst phase for unfolding, suggesting that the native ensemble consists of at least two major conformations. Collectively, these results demonstrate complex folding and unfolding behavior for procaspase-3 and suggest that slow dimerization results from the lack of stabilizing native contacts in the initial encounter complex.  相似文献   

5.
The possible presence of dimeric unfolding intermediates might offer a clue to understanding the relationship between tertiary and quaternary structure formation in dimers. Ascorbate oxidase is a large dimeric enzyme that displays such an intermediate along its unfolding pathway. In this study the combined effect of high pressure and denaturing agents gave new insight on this intermediate and on the mechanism of its formation. The transition from native dimer to the dimeric intermediate is characterized by the release of copper ions forming the tri-nuclear copper center located at the interface between domain 2 and 3 of each subunit. This transition, which is pH-dependent, is accompanied by a decrease in volume, probably associated to electrostriction due to the loosening of intra-subunit electrostatic interactions. The dimeric species is present even at 3 x 10(8) Pa, providing evidence that mechanically or chemically induced unfolding lead to a similar intermediate state. Instead, dissociation occurs with an extremely large and negative volume change (DeltaV approximately -200 mL.mol(-1)) by pressurization in the presence of moderate amounts of denaturant. This volume change can be ascribed to the elimination of voids at the subunit interface. Furthermore, the combination of guanidine and high pressure uncovers the presence of a marginally stable (DeltaG approximately 2 kcal.mol(-1)) monomeric species (which was not observed in previous equilibrium unfolding measurements) that might be populated in the early folding steps of ascorbate oxidase. These findings provide new aspects of the protein folding pathway, further supporting the important role of quaternary interactions in the folding strategy of large dimeric enzymes.  相似文献   

6.
The equilibrium unfolding of the major Physa acuta glutathione transferase isoenzyme (P. acuta GST(3)) has been performed using guanidinium chloride (GdmCl), urea, and acid denaturation to investigate the unfolding intermediates. Protein transitions were monitored by intrinsic fluorescence. The results indicate that unfolding of P. acuta GST(3) using GdmCl (0-3.0M) is a multistep process, i.e., three intermediates coexist in equilibrium. The first intermediate, a partially dissociated dimer, exists at low GdmCl concentration (approximately at 0.7M). At 1.2M GdmCl, a dimeric intermediate with a compact structure was observed. This intermediate undergoes dissociation into structural monomers at 1.75M of GdmCl. The monomeric intermediate started to be completely unfolding at higher GdmCl concentrations (>1.8M). Unfolding using urea (0-7.0M) and acid-induced structures as well as the fluorescence of 8-anilino-1-naphthalenesulfonate in the presence of different GdmCl concentrations confirmed that the unfolding is a multistep process. At concentrations of GdmCl or urea less than the midpoints or at the midpoint pH (pH 4.2-4.6), the unfolding transition is protein concentration independent and involved a change in the subunit tertiary structure yielding a partially active dimeric intermediate. The binding of glutathione to the enzyme active site stabilizes the native dimeric state.  相似文献   

7.
The blood coagulation protein factor XI (FXI) consists of a pair of disulfide-linked chains each containing four apple domains and a catalytic domain. The apple 4 domain (A4; F272-E362) mediates non-covalent homodimer formation even when the cysteine involved in an intersubunit disulfide is mutated to serine (C321S). To understand the role of non-covalent interactions stabilizing the FXI dimer, equilibrium unfolding of wild-type A4 and its C321S variant was monitored by circular dichroism, intrinsic tyrosine fluorescence and dynamic light scattering measurements as a function of guanidine hydrochloride concentration. Global analysis of the unimolecular unfolding transition of wild-type A4 revealed a partially unfolded equilibrium intermediate at low to moderate denaturant concentrations. The optically detected equilibrium of C321S A4 also fits best to a three-state model in which the native dimer unfolds via a monomeric intermediate state. Dimer dissociation is characterized by a dissociation constant, K(d), of approximately 90 nM (in terms of monomer), which is in agreement with the dissociation constant measured independently using fluorescence anisotropy. The results imply that FXI folding occurs via a monomeric equilibrium intermediate. This observation sheds light on the effect of certain naturally occurring mutations, such as F283L, which lead to intracellular accumulation of non-native forms of FXI. To investigate the structural and energetic consequences of the F283L mutation, which perturbs a cluster of aromatic side-chains within the core of the A4 monomer, it was introduced into the dissociable dimer, C321S A4. NMR chemical shift analysis confirmed that the mutant can assume a native-like dimeric structure. However, equilibrium unfolding measurements show that the mutation causes a fourfold increase in the K(d) value for dissociation of the native dimer and a 1 kcal/mol stabilization of the monomer, resulting in a highly populated intermediate. Since the F283 side-chain does not directly participate in the dimer interface, we propose that the F283L mutation leads to increased dimer dissociation by stabilizing a monomeric state with altered side-chain packing that is unfavorable for homodimer formation.  相似文献   

8.
The dimeric yeast protein Ure2 shows prion-like behaviour in vivo and forms amyloid fibrils in vitro. A dimeric intermediate is populated transiently during refolding and is apparently stabilized at lower pH, conditions suggested to favour Ure2 fibril formation. Here we present a quantitative analysis of the effect of pH on the thermodynamic stability of Ure2 in Tris and phosphate buffers over a 100-fold protein concentration range. We find that equilibrium denaturation is best described by a three-state model via a dimeric intermediate, even under conditions where the transition appears two-state by multiple structural probes. The free energy for complete unfolding and dissociation of Ure2 is up to 50 kcal mol(-1). Of this, at least 20 kcal mol(-1) is contributed by inter-subunit interactions. Hence the native dimer and dimeric intermediate are significantly more stable than either of their monomeric counterparts. The previously observed kinetic unfolding intermediate is suggested to represent the dissociated native-like monomer. The native state is stabilized with respect to the dimeric intermediate at higher pH and in Tris buffer, without significantly affecting the dissociation equilibrium. The effects of pH, buffer, protein concentration and temperature on the kinetics of amyloid formation were quantified by monitoring thioflavin T fluorescence. The lag time decreases with increasing protein concentration and fibril formation shows pseudo-first order kinetics, consistent with a nucleated assembly mechanism. In Tris buffer the lag time is increased, suggesting that stabilization of the native state disfavours amyloid nucleation.  相似文献   

9.
Rat micro class glutathione transferases M1-1 and M2-2 are homodimers that share a 78% sequence identity but display differences in stability. M1-1 is more stable at the secondary and tertiary structural levels, whereas its quaternary structure is less stable. Each subunit in these proteins consists of two structurally distinct domains with intersubunit contacts occurring between domain 1 of one subunit and domain 2 of the other subunit. The chimeric subunit variants M(12), which has domain 1 of M1 and domain 2 of M2, and its complement M(21), were used to investigate the conformational stability of the chimeric homodimers M(12)-(12) and M(21)-(21) to determine the contribution of each domain toward stability. Exchanging entire domains between class micro GSTs is accommodated by the GST fold. Urea-induced equilibrium unfolding data indicate that whereas the class micro equilibrium unfolding mechanism (i.e., N(2) <--> 2I <--> 2U) is not altered, domain exchanges impact significantly on the conformational stability of the native dimers and monomeric folding intermediates. Data for the wild-type and chimeric proteins indicate that the order of stability for the native dimer (N(2)) is M2-2 > M(12)-(12) M1-1 approximately M(21)-(21), and that the order of stability of the monomeric intermediate (I) is M1 > M2 approximately M(12) > M(21). Interactions involving Arg 77, which is topologically conserved in GSTs, appear to play an important role in the stability of both the native dimeric and folding monomeric structures.  相似文献   

10.
The effect of alkaline denaturation on the structural and functional characteristics of rabbit muscle pyruvate kinase (PK) was investigated using enzymatic activity measurements and a combination of optical methods such as circular dichroism, fluorescence, and ANS binding. At a critical pH, 10.5, PK exists in an intermediate state (alkaline unfolded state) with predominant secondary structure along with some of the tertiary interactions and a strong binding to the hydrophobic dye ANS. This intermediate retains the enzymatic activity and corresponds to a dimeric state of the molecule. Above pH 10.5, a sudden fall in the spectral properties and enzymatic activity occurs suggesting the dissociation of the molecule followed by unfolding at very high pH. Addition of salts such as NaCl, KCl, and Na2SO4 to the alkali-induced state induces both secondary and tertiary structure to a level equivalent to that of native tetramer (salt-induced state). Chemical- and temperature-induced unfolding of the alkali-induced state as well as the salt-induced refolded state of PK reveal the presence of intermediate conformations in the unfolding pathway. The unfolding transition curves are noncoinciding and noncooperative along with ANS binding at intermediate concentrations of denaturants during unfolding. The observations presented in this paper suggest that the native pyruvate kinase tetramer dissociates to an active dimer around pH 10.5 and further to inactive monomer before attaining a completely unfolded monomeric conformation.  相似文献   

11.
The urea-induced unfolding transition of equine -lactoglobulin was studied at pH 8.7 using circular dichroism (CD), ultracentrifugation, and gel filtration chromatography. The unfolding transition curves showed that at least one intermediate accumulates at moderate concentrations of urea. Furthermore, analytical ultracentrifugation experiments indicated that the intermediate forms a dimer. Thus, the urea-induced unfolding transition was measured by CD at various protein concentrations and was analyzed by a model assuming the four conformational states (the native, intermediate, dimeric intermediate, and unfolded states). The characteristics of the intermediate are markedly different from those of the intermediate previously observed at pH 4.0 or 1.5. The intermediate at pH 8.7 does not show the intense far-ultraviolet CD suggestive of the nonnative -helix.  相似文献   

12.
13.
Electrospray ionization mass spectrometry, isothermal titration calorimetry (ITC), fluorescence spectroscopy, and glutaraldehyde cross-linking SDS-PAGE have been used to study the unfolding of rabbit muscle creatine kinase (MM-CK) induced by acid. The mass spectrometric experiments show that MM-CK is unfolded gradually when titrated with acid. MM-CK is a dimer (the native state) at pH 7.0 and becomes an equilibrium mixture of the dimer and a partially folded monomer (the intermediate) between pH 6.7 and 5.0. The dimeric protein becomes an equilibrium mixture of the intermediate and an unfolded monomer (the unfolded state) between pH 5.0 and 3.0 and is almost fully unfolded at pH 3.0 reached. The results from a "phase diagram" method of fluorescence show that the conformational transition between the native state and the intermediate of MM-CK occurs in the pH range of 7.0-5.2, and the transition between the intermediate and the unfolded state of the protein occurs between pH 5.2 and 3.0. The intrinsic molar enthalpy changes for formation of the unfolded state of MM-CK induced by acid at 15.0, 25.0, 30.0, and 37.0 degrees C have been determined by ITC. A large positive molar heat capacity change of the unfolding, 8.78 kcal mol-1 K-1, at all temperatures examined indicates that hydrophobic interaction is the dominant driving force stabilizing the native structure of MM-CK. Combining the results from these four methods, we conclude that the acid-induced unfolding of MM-CK follows a "three-state" model and that the intermediate state of the protein is a partially folded monomer.  相似文献   

14.
The type 1 human immunodeficiency virus presents a conical capsid formed by several hundred units of the capsid protein, CA. Homodimerization of CA occurs via its C-terminal domain, CA-C. This self-association process, which is thought to be pH-dependent, seems to constitute a key step in virus assembly. CA-C isolated in solution is able to dimerize. An extensive thermodynamic characterization of the dimeric and monomeric species of CA-C at different pHs has been carried out by using fluorescence, circular dichroism (CD), absorbance, nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and size-exclusion chromatography (SEC). Thermal and chemical denaturation allowed the determination of the thermodynamic parameters describing the unfolding of both CA-C species. Three reversible thermal transitions were observed, depending on the technique employed. The first one was protein concentration-dependent; it was observed by FTIR and NMR, and consisted of a broad transition occurring between 290 and 315 K; this transition involves dimer dissociation. The second transition (Tm approximately 325 K) was observed by ANS-binding experiments, fluorescence anisotropy, and near-UV CD; it involves partial unfolding of the monomeric species. Finally, absorbance, far-UV CD, and NMR revealed a third transition occurring at Tm approximately 333 K, which involves global unfolding of the monomeric species. Thus, dimer dissociation and monomer unfolding were not coupled. At low pH, CA-C underwent a conformational transition, leading to a species displaying ANS binding, a low CD signal, a red-shifted fluorescence spectrum, and a change in compactness. These features are characteristic of molten globule-like conformations, and they resemble the properties of the second species observed in thermal unfolding.  相似文献   

15.
Silinski P  Fitzgerald MC 《Biochemistry》2002,41(13):4480-4491
4-Oxalocrotonate tautomerase (4-OT) is a multimeric, bacterial enzyme comprised of 6 identical 62-amino acid subunits, which associate under native conditions to form a homo-hexameric structure stabilized entirely by noncovalent interactions. We have previously shown that the GuHCl-induced equilibrium unfolding of 4-OT at pH 8.5 is well modeled as a two-state process involving only hexamer and unfolded monomer; and we have obtained spectroscopic evidence that intermediate state(s) is (are) populated in the equilibrium unfolding reaction at pHs 6.0 and 7.4 [Silinski, P., Allingham, M. J., and Fitzgerald, M. C. (2001) Biochemistry 40, 4493-4502]. Here, we report on the pH-induced equilibrium unfolding of 4-OT using size-exclusion chromatography (SEC), far-UV-circular dichroism (CD) spectroscopy, and catalytic activity measurements over the pH range from 1.5 to 10.1. Our results indicate that the native hexamer of 4-OT is the predominant species in solution at pHs > or =6.2, that a partially folded dimeric state of 4-OT is stabilized in solution at pH 4.8, and that the enzyme is largely denatured in strongly acidic solutions (pH < or =3.1). GuHCl-induced equilibrium unfolding studies on 4-OT at pH 4.8 indicate that the folded 4-OT dimer populated at this pH is stabilized by 11.7 kcal.mol(-1). The results of biophysical studies on a fluorescent analogue of the enzyme, 4-OT(F50Y), and the results of UV photo-cross-linking studies on a synthetically derived 4-OT analogue, 4-OT(P1Bpa), suggest the polypeptide chains in the 4-OT dimer are nativelike in structure with the exception of their C-termini.  相似文献   

16.
Bovine beta-lactoglobulin A assumes a dimeric native conformation at neutral pH, while the conformation at pH 2 is monomeric but still native. Beta-lactoglobulin A has a free thiol at Cys121, which is buried between the beta-barrel and the C-terminal major alpha-helix. This thiol group was specifically reacted with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the presence of 1.0 M Gdn-HCI at pH 7.5, producing a modified beta-lactoglobulin (TNB-bIg) containing a mixed disulfide bond with 5-thio-2-nitrobenzoic acid (TNB). The conformation and stability of TNB-bIg were studied by circular dichroism (CD), tryptophan fluorescence, analytical ultracentrifugation, and one-dimensional 1H-NMR. The CD spectra of TNB-bIg indicated disordering of the native secondary structure at pH 7.5, whereas a slight increase in the alpha-helical content was observed at pH 2.0. The tryptophan fluorescence of TNB-bIg was significantly quenched compared with that of the intact protein, probably by the energy transfer to TNB. Sedimentation equilibrium analysis indicated that, at neutral pH, TNB-bIg is monomeric while the intact protein is dimeric. In contrast, at pH 2.0, both the intact beta-lactoglobulin and TNB-bIg were monomeric. The unfolding transition of TNB-bIg induced by Gdn-HCl was cooperative in both pH regions, although the degree of cooperativity was less than that of the intact protein. The 1H-NMR spectrum for TNB-bIg at pH 3.0 was native-like, whereas the spectrum at pH 7.5 was similar to that of the unfolded proteins. These results suggest that modification of the buried thiol group destabilizes the rigid hydrophobic core and the dimer interface, producing a monomeric state that is native-like at pH 2.0 but is molten globule-like at pH 7.5. Upon reducing the mixed disulfide of TNB-bIg with dithiothreitol, the intact beta-lactoglobulin was regenerated. TNB-bIg will become a useful model to analyze the conformation and stability of the intermediate of protein folding.  相似文献   

17.
Spontaneous mutations at numerous sites distant from the active site of human immunodeficiency virus type 1 protease enable resistance to inhibitors while retaining enzymatic activity. As a benchmark for probing the effects of these mutations on the conformational adaptability of this dimeric β-barrel protein, the folding free-energy surface of a pseudo-wild-type variant, HIV-PR?, was determined by a combination of equilibrium and kinetic experiments on the urea-induced unfolding/refolding reactions. The equilibrium unfolding reaction was well described by a two-state model involving only the native dimeric form and the unfolded monomer. The global analysis of the kinetic folding mechanism reveals the presence of a fully folded monomeric intermediate that associates to form the native dimeric structure. Independent analysis of a stable monomeric version of the protease demonstrated that a small-amplitude fluorescence phase in refolding and unfolding, not included in the global analysis of the dimeric protein, reflects the presence of a transient intermediate in the monomer folding reaction. The partially folded and fully folded monomers are only marginally stable with respect to the unfolded state, and the dimerization reaction provides a modest driving force at micromolar concentrations of protein. The thermodynamic properties of this system are such that mutations can readily shift the equilibrium from the dimeric native state towards weakly folded states that have a lower affinity for inhibitors but that could be induced to bind to their target proteolytic sites. Presumably, subsequent secondary mutations increase the stability of the native dimeric state in these variants and, thereby, optimize the catalytic properties of the resistant human immunodeficiency virus type 1 protease.  相似文献   

18.
A central theme in prion protein research is the detection of the process that underlies the conformational transition from the normal cellular prion form (PrP(C)) to its pathogenic isoform (PrP(Sc)). Although the three-dimensional structures of monomeric and dimeric human prion protein (HuPrP) have been revealed by NMR spectroscopy and x-ray crystallography, the process underlying the conformational change from PrP(C) to PrP(Sc) and the dynamics and functions of PrP(C) remain unknown. The dimeric form is thought to play an important role in the conformational transition. In this study, we performed molecular dynamics (MD) simulations on monomeric and dimeric HuPrP at 300 K and 500 K for 10 ns to investigate the differences in the properties of the monomer and the dimer from the perspective of dynamic and structural behaviors. Simulations were also undertaken with Asp178Asn and acidic pH, which is known as a disease-associated factor. Our results indicate that the dynamics of the dimer and monomer were similar (e.g., denaturation of helices and elongation of the beta-sheet). However, additional secondary structure elements formed in the dimer might result in showing the differences in dynamics and properties between the monomer and dimer (e.g., the greater retention of dimeric than monomeric tertiary structure).  相似文献   

19.
Doyle SM  Braswell EH  Teschke CM 《Biochemistry》2000,39(38):11667-11676
Though many proteins in the cell are large and multimeric, their folding has not been extensively studied. We have chosen SecA as a folding model because it is a large, homodimeric protein (monomer molecular mass of 102 kDa) with multiple folding domains. SecA is the ATPase for the Sec-dependent preprotein translocase of many bacteria. SecA is a soluble protein that can penetrate into the membrane during preprotein translocation. Because SecA may partially unfold prior to its insertion into the membrane, studies of its stability and folding pathway are important for understanding how it functions in vivo. Kinetic folding transitions in the presence of urea were monitored using circular dichroism and tryptophan fluorescence, while equilibrium folding transitions were monitored using the same techniques as well as a fluorescent ATP analogue. The reversible equilibrium folding transition exhibited a plateau, indicating the presence of an intermediate. Based on the data presented here, we propose a three-state model, N(2) if I(2) if 2U, where the native protein unfolds to a dimeric intermediate which then dissociates into two unfolded monomers. The SecA dimer was determined to have an overall stability (DeltaG) of -22.5 kcal/mol. We also investigated the stability of SecA using analytical ultracentrifugation equilibrium and velocity sedimentation, which again indicated that native or refolded SecA was a stable dimer. The rate-limiting step in the folding pathway was conversion of the dimeric intermediate to the native dimer. Unfolding of native, dimeric SecA was slow with a relaxation time in H(2)O of 3.3 x 10(4) s. Since SecA is a stable dimer, dissociation to monomeric subunits during translocation is unlikely.  相似文献   

20.
The analysis of a recombinant pheromone-binding protein from the silkworm moth, Bombyx mori, by native gel electrophoresis with Coomassie staining showed one single band with a molecular mass consistent with a monomer. A slow migrating band, detected in the recombinant and native samples by a polyclonal antibody, was indistinguishable from the monomer in the mass spectrum fragmentation pattern and chromatographic behavior. Flow injection analyses of the protein by mass spectrometry in the negative mode showed fragments of a dimer. The dimeric form was also supported by estimation of the molecular mass by gel filtration at basic pH. A cross-linked dimer coeluted with the noncovalent dimer on a gel filtration column. The molecular mass of the protein changed in a pH-dependent way with a dramatic transition from dimer to monomer between pH 6 and 4.5. A low pH induced not only dissociation of the dimer, but also a conformational change in the protein. In marked contrast to denaturation with guanidinium chloride, the emission maxima of tryptophan was not significantly changed at low pH. BmPBP is thus a dimer at slightly acid, neutral, and basic pH, which dissociates and then undergoes conformational change at low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号