首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
BACKGROUND AND AIMS: Following previous findings of high extracellular redox activity in lichens and the presence of laccases in lichen cell walls, the work presented here additionally demonstrates the presence of tyrosinases. Tests were made for the presence of tyrosinases in 40 species of lichens, and from selected species their cellular location and molecular weights were determined. The effects of stress and inhibitors on enzyme activity were also studied. METHODS: Tyrosinase and laccase activities were assayed spectrophotometrically using a variety of substrates. The molecular mass of the enzymes was estimated using polyacrylamide gel electrophoresis. KEY RESULTS: Extracellular tyrosinase and laccase activity was measured in 40 species of lichens from different taxonomic groupings and contrasting habitats. Out of 20 species tested from the sub-order Peltigerineae, all displayed significant tyrosinase and laccase activity, while activity was low or absent in other species tested. Representatives from both groups of lichens displayed low peroxidase activities. Identification of the enzymes as tyrosinases was confirmed by the ability of lichen thalli or leachates derived by shaking lichens in distilled water to metabolize substrates such as L-dihydroxyphenylalanine (DOPA), tyrosine and epinephrine readily in the absence of hydrogen peroxide, the sensitivity of the enzymes to the inhibitors cyanide, azide and hexylresorcinol, activation by SDS and having typical tyrosinase molecular masses of approx. 60 kDa. Comparing different species within the Peltigerineae showed that the activities of tyrosinases and laccase were correlated to each other. Desiccation and wounding stimulated laccase activity, while only wounding stimulated tyrosinase activity. CONCLUSIONS: Cell walls of lichens in sub-order Peltigerineae have much higher activities and a greater diversity of cell wall redox enzymes compared with other lichens. Possible roles of tyrosinases include melanization, removal of toxic phenols or quinones, and production of herbivore deterrents.  相似文献   

2.
Lichens produce various oxidoreductases including heme-containing peroxidases and the copper-containing phenol oxidases tyrosinase and laccase. Our earlier findings suggested that significant oxidoreductase activity occurs mainly in lichens from the order Peltigerales. Here we show that the non-Peltigeralean lichen Usnea can display significant activities of peroxidases and laccases. Strong evidence for the involvement of peroxidases and laccases in saprotrophic activities comes from the observation that their activities are induced by “starvation” due to prolonged dark storage, and also by treatment with soluble cellulose and lignin breakdown products. We also show that, given a quinone and chelated Fe, Usnea can produce hydroxyl radicals; these radicals contribute to the break down of carbohydrates or lignin. However, hydroxyl radical production is independent of laccase and peroxidase activity. Laccases and peroxidases are involved in other aspects of lichen biology; here we show that peroxidases, but not laccases, can break down lichen substances. Reduction in the amounts of lichen substances will reduce photoprotection, which will increase the photosynthetic capacity of thalli during winter when light intensities are low.  相似文献   

3.
Aims: Exploitation of natural biodiversity in species Pycnoporus coccineus and Pycnoporus sanguineus to screen for a new generation of laccases with properties suitable for the lignin‐processing sector. Methods and Results: Thirty strains originating from subtropical and tropical environments, mainly isolated from fresh specimens collected in situ, were screened for laccase activity. On the basis of levels of enzyme activity and percentage of similarity between protein sequences, the laccases from strains BRFM 938, BRFM 66 and BRFM 902 were selected for purification and characterization. Each BRFM 938, BRFM 66 and BRFM 902 laccase gene encoded a predicted protein of 518 amino acids; the three deduced proteins showed 68·7–97·5% similarity with other Polyporale laccases. The three laccases (59·5–62·9 kDa with 7–10% carbohydrate content) had high redox potentials (0·72–0·75 V vs normal hydrogen electrode at pH 6), remained highly stable up to 75–78°C and at pH 5–7 mixtures, and were resistant to methyl and ethyl alcohols, acetonitrile and dimethylsulfoxide at concentrations as high as 50% (v/v). The best laccase‐1‐hydroxybenzotriazole systems permitted almost 100% of various polyphenolic dye decolourization and oxidation of adlerol and veratryl alcohol. Conclusions: The three laccases showed complementary biochemical features. BRFM 938 laccase had the highest thermo‐ and pH stability, catalytic efficiency towards 2,2′‐azino‐bis‐[3‐ethylthiazoline‐6‐sulfonate] and resistance to alcoholic solvents. BRFM 66 laccase had the highest rates of dye decolourization and oxidation of nonphenolic compounds. Significance and Impact of the Study: This study identified P. coccineus and P. sanguineus as outstanding producers of high redox potential laccases, easy to purify and scale‐up for industrial production. Three new laccases proved to be suitable models for white biotechnology processes and for further molecular breeding to create a new generation of tailor‐made enzymes.  相似文献   

4.
《Fungal biology》2021,125(11):879-885
Our previous work showed that many lichenized Ascomycetes can generate hydroxyl radicals using quinone-based extracellular redox cycling. During cycling, hydroquinones must be formed and subsequently regenerated from quinones using a quinone reductase (QR). However, we also showed that no simple correlation exists between QR activity and rates of hydroxyl radical formation. To further investigate the role of QR in hydroxyl radical formation, three model lichen species, Leptogium furfuraceum, Lasallia pustulata and Peltigera membranacea were selected for further investigation. All possessed QR activity and could metabolize quinones, and both Leptogium furfuraceum and Lasallia pustulata actively produced hydroxyl radicals. By contrast, P. membranacea produced almost no hydroxyl radicals, and although the lichen readily metabolized quinones, no hydroquinone production was detected. Peltigera had laccase (LAC) activity that was c. 50 times higher than in the other two species, suggesting that LAC rapidly oxidizes the hydroquinones, preventing radical formation deriving from auto-oxidation. It appears that in some lichens hydroxyl radical formation is blocked by the presence of high redox enzyme activity. QR from P. didactyla was studied further and found to display similar properties to the enzyme from free-living fungi, although it possessed an unusually high molecular mass (c. 62 kDa).  相似文献   

5.
Pleurotus ostreatus showed atypical laccase production in submerged vs. solid-state fermentation. Cultures grown in submerged fermentation produced laccase at 13,000 U l−1, with a biomass production of 5.6 g l−1 and four laccase isoforms. However, cultures grown in solid-state fermentation had a much lower laccase activity of 2,430 U l−1, biomass production of 4.5 g l−1, and three laccase isoforms. These results show that P. ostreatus performs much better in submerged fermentation than in solid-state fermentation. This is the first report that shows such atypical behavior in the production of extracellular laccases by fungi.  相似文献   

6.
All organisms, even highly stress‐tolerant lichens, produce a variety of reactive oxygen species (ROS) during and after stress. Furthermore, the cell walls of some lichens in Suborder Peltigerineae contain laccases, and therefore can produce quinone radicals that can break down to yield ROS. While the extracellular ROS produced by these enzymes probably play important roles in the biology of these lichens, they may also be potentially harmful and need to be rapidly broken down. To test this, rates of breakdown of exogenously supplied H2O2 were measured in a range of lichen species. Considerable diversity existed in rates of H2O2 breakdown but rates were on average almost double in members of Suborder Peltigerineae. While all lichens tested appeared to lack extracellular peroxidases and catalases, enzymes normally involved in breaking down H2O2, extracellular tyrosinase activity could be readily detected in the Peltigerineae. A role for tyrosinases in H2O2 breakdown was supported by the results from experiments involving inhibitors, and demonstration of the simultaneous release into an incubation solution of tyrosinase activity and the ability to breakdown H2O2. Rates of breakdown were very high, and tyrosinase appeared to break down H2O2 by a catalase‐like mechanism. However, significant rates of breakdown of H2O2 also occurred in species that did not possess cell wall redox enzymes. These species probably took up the exogenously supplied H2O2 intracellularly and then broke it down by the usual catalases and peroxidases. The importance of H2O2 degradation is discussed in terms of its possible role in defence against the harmful effects of ROS.  相似文献   

7.
Some conditions in media composition for laccases production, such as different sources of carbon and organic nitrogen, antifoams and a surfactant, were studied in liquid cultures of Pleurotus sajor-caju strain PS-2001. Cultivation with fructose or glucose as carbon sources produced maximum enzyme activities of 37 and 36 U mL−1, respectively. When sucrose was present in the medium, the best results were obtained using 5 g L−1 of this carbohydrate, on the 11th day of the process, attaining laccase titres of 13 U mL−1. In a medium without casein, practically no enzyme was produced during the experiments; among the sources of nitrogen studied, pure casein led to the highest titres of laccase activity. Different concentrations of pure casein and sucrose were also tested. As to the different concentrations of casein, the addition of 1.5 g L−1 resulted in the highest titres of laccase activity. Negligible levels of manganese peroxidase activity were also detected in the culture medium. In low concentrations, polypropylene glycol or silicon-based antifoams and the surfactant Tween 80 have no significant influence on the formation of laccases by P. sajor-caju. However, enhanced concentration of polypropylene glycol negatively affected the production of laccases but favored the titres in total peroxidases, lignin peroxidase and veratryl alcohol oxidase.  相似文献   

8.
The ability of Streptomyces ipomoea laccase to polymerize secoisolariciresinol lignan and technical lignins was assessed. The reactivity of S. ipomoea laccase was also compared to that of low redox fungal laccase from Melanocarpus albomyces using low molecular mass p-coumaric, ferulic and sinapic acid as well as natural (acetosyringone) and synthetic 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) mediators as substrates. Oxygen consumption measurement, MALDI-TOF MS and SEC were used to follow the enzymatic reactions at pH 7, 8, 9 and 10 at 30 °C and 50 °C. Polymerization of lignins and lignan by S. ipomoea laccase under alkaline reaction conditions was observed, and was enhanced in the presence of acetosyringone almost to the level obtained with M. albomyces laccase without mediator. Reactivities of the enzymes towards acetosyringone and TEMPO were similar, suggesting exploitation of the compounds and low redox laccase in lignin valorization under alkaline conditions. The results have scientific impact on basic research of laccases.  相似文献   

9.
Laccases could prevent fabrics and garments from re-deposition of dyes during washing and finishing processes by degrading the solubilized dye. However, laccase action must be restricted to solubilized dye molecules thereby avoiding decolorization of fabrics. Chemical modification of enzymes can provide a powerful tool to change the adsorption behaviour of enzymes on water insoluble polymers. Polyethylene glycol (PEG) was covalently attached onto a laccase from Trametes hirsuta. Different molecular weights of the synthetic polymer were tested in terms of adsorption behaviour and retained laccase activity. Covalent attachment of PEG onto the laccase resulted in enhanced enzyme stability while with increasing molecular weight of attached PEG the substrate affinity for the laccase conjugate decreased. The activity of the modified laccases on fibre bound dye was drastically reduced decreasing the adsorption of the enzyme on various fabrics. Compared to the 5 kDa PEG laccase conjugate (K/S value 47.60) the K/S value decreased much more (47.96–46.35) after the treatment of dyed cotton fabrics with native laccase.  相似文献   

10.
The antimicrobial properties of acetone, methanol, and aqueous extracts of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica were studied comparatively in vitro. Antimicrobial activities of the extracts of different lichens were estimated by the disk diffusion test for Gram-positive bacteria, Gram-negative bacteria, and fungal organisms, as well as by determining the MIC (minimal inhibitory concentration). The obtained results showed that the acetone and methanol extracts of Lasallia pustulata, Parmelia sulcata, and Umbilicaria crustulosa manifest antibacterial activity against the majority of species of bacteria tested, in addition to selective antifungal activity. The MIC of lichen extracts was lowest (0.78 mg/ml) for the acetone extract of Lasallia pustulata against Bacillus mycoides. Aqueous extracts of all of the tested lichens were inactive. Extracts of the lichen Umbilicaria cylindrica manifested the weakest activity, inhibiting only three of the tested organisms.  相似文献   

11.
Natural and recombinant fungal laccases for paper pulp bleaching   总被引:10,自引:0,他引:10  
Three laccases, a natural form and two recombinant forms obtained from two different expression hosts, were characterized and compared for paper pulp bleaching. Laccase from Pycnoporus cinnabarinus, a well known lignolytic fungus, was selected as a reference for this study. The corresponding recombinant laccases were produced in Aspergillus oryzae and A. niger hosts using the lacI gene from P. cinnabarinus to develop a production process without using the expensive laccase inducers required by the native source. In flasks, production of recombinant enzymes by Aspergilli strains gave yields close to 80 mg l–1. Each protein was purified to homogeneity and characterized, demonstrating that the three hosts produced proteins with similar physico-chemical properties, including electron paramagnetic resonance spectra and N-terminal sequences. However, the recombinant laccases have higher Michaelian (K m) constants, suggesting a decrease in substrate/enzyme affinity in comparison with the natural enzyme. Moreover, the natural laccase exhibited a higher redox potential (around 810 mV), compared with A. niger (760 mV) and A. oryzae (735 mV). Treatment of wheat straw Kraft pulp using laccases expressed in P. cinnabarinus or A. niger with 1-hydroxybenzotriazole as redox mediator achieved a delignification close to 75%, whereas the recombinant laccase from A. oryzae was not able to delignify pulp. These results were confirmed by thioacidolysis. Kinetic and redox potential data and pulp bleaching results were consistent, suggesting that the three enzymes are different and each fungal strain introduces differences during protein processing (folding and/or glycosylation).  相似文献   

12.
The white rot fungus Pycnoporus sanguineus produced high amount of laccase in the basal liquid medium without induction. Laccase was purified using ultrafiltration, anion-exchange chromatography, and gel filtration. The molecular weight of the purified laccase was estimated as 61.4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme oxidized typical substrates of laccases including 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate), 2,6-dimethoxyphenol, and syringaldazine. The optimum pH and temperature for the purified laccase were 3.0 and 65°C, respectively. The enzyme was stable up to 40°C, and high laccase activity was maintained at pH 2.0–5.0. Sodium azide, l-cysteine, and dithiothreitol strongly inhibited the laccase activity. The purified enzyme efficiently decolorized Remazol Brilliant Blue R in the absence of added redox mediators. The high production of P. sanguineus laccase as well as its decolorization ability demonstrated its potential applications in dye decolorization.  相似文献   

13.
The laccases (EC 1.10.3.2) secreted into solid-state culture by Lentinula edodes were analyzed. The fungus secreted at least two laccases in the solid-state culture. One laccase was purified to a homogeneous preparation using anion-exchange, hydrophobic, and size-exclusion chromatography. SDS-PAGE analysis showed that the purified laccase, Lcc6, was a monomeric protein of 58.5 kDa. The optimum pH for enzyme activity was about 3.5, and the laccase was most active at 40°C. The N-terminal amino acid sequence of Lcc6 did not correspond to the sequence of Lcc1, which was previously purified from L. edodes. Lcc6 had decolorization activity to some chemical dyes.  相似文献   

14.
Guo M  Lu F  Liu M  Li T  Pu J  Wang N  Liang P  Zhang C 《Biotechnology letters》2008,30(12):2091-2096
A recombinant laccase from Trametes versicolor in Pichia methanolica was produced constitutively in a defined medium. The recombinant laccase was purified using ultrafiltration, anion-exchange chromatography, and gel filtration. The molecular weight of the purified laccase was estimated as 64 kDa by SDS-PAGE. The purified recombinant laccase decolorized more than 90% of Remazol Brilliant Blue R (RBBR) initially at 80 mg l−1 after 16 h at 45°C and pH 5 when 25 U laccase ml−1 was used. The purified recombinant laccase could efficiently decolorize RBBR without additional redox mediators.  相似文献   

15.
A new strain producing extracellular laccase (Cerrena maxima 0275) was found by screening of isolates of Basidiomycetes, and the dynamics of laccase biosynthesis by this strain was studied. The enzyme was purified to homogeneity. The molecular weight of the enzyme is 57 kD, and its pI is 3.5. The activity is constant at pH values in the range 3.0-5.0. The temperature optimum for activity is 50°C. The thermal stability of the laccase was studied. The catalytic and Michaelis constants for catechol, hydroquinone, sinapinic acid, and K4 Fe(CN)6 were determined. The standard redox potential of type 1 copper in the enzyme is 750 ± 5 mV. Thus, the investigated laccase is a high redox potential laccase.  相似文献   

16.
This study presents a combined method to analyze extracellular fungal laccases using a new anti-laccase antibody together with the identification of tryptic laccase peptides by mass spectrometry (nanoLC–ESI–MS/MS). The polyclonal anti-laccase antibody LccCbr2 was raised against peptides designed from the copper binding region II of fungal laccases using in silico data obtained from GenBank database. As a consequence, detection requires denaturation of the enzymes due to the stable conformation of the copper binding region II. The specificity of the antibody was shown with denatured laccase Lcc1 of Coprinopsis cinerea and laccase of Hypholoma fasciculare. LccCbr2 detected amounts as low as 5 ng of highly purified laccase, indicating a possible use of the antibody for quantification of laccase proteins. Denatured extracellular laccases from culture supernatants of the basidiomycetes C. cinerea, H. fasciculare, Lentinula edodes, Mycena sp., Piriformospora indica, Pleurotus cornucopiae, Pleurotus ostreatus, Pycnoporus cinnabarinus, Trametes versicolor and furthermore the ascomycete Verpa conica were detected with apparent molecular masses between 60 and 70 kDa by LccCbr2. The identity of extracellular laccases from C. cinerea, H. fasciculare, P. ostreatus, P. cinnabarinus and T. versicolor were verified by tryptic peptides using nanoLC–ESI–MS/MS.  相似文献   

17.
Laccase is a widespread group of multi-copper enzymes which can catalyze the oxidation of a variety of organic compounds, with concomitant reduction of molecular oxygen to water. It has a wide application in industrial processes, particularly in renewable bio-energy industry. In this study, Pleurotus ostreatus strain 10969 with high yield of laccase, previously isolated from edible fungus growing on Juncao, was applied for optimization of fermentation media and growth parameters for the maximal enzyme production through response surface methodology and further characterization of the laccase activity. The results show that glucose and Mg2+ are the key ingredients for laccase production with the optimum concentration of 0.0988 g/mL and 7.3 mmol/L respectively. Compared to the initial medium, the highest laccase yield observed is approximately increased by 2.5 times under the optimized conditions. Extracellular laccase was then purified and its characters were analyzed. The molecular weight of the laccase is about 40 kDa, and the optimum pH and temperature for its activity is 4.0 and 50 °C with the corresponding Km and Vmax of 0.31 mmol/L and 303.25 mmol/min respectively. DTT, β-mercaptoethanol and NaN3 nearly inhibit all activity of the laccase, as well as the metal ions especially Ag+. In summary, our results will facilitate the utilization of plant lignin in biomass energy industry.  相似文献   

18.
Prokaryotic laccases are emergent biocatalysts. However, they have not been broadly found and characterized in bacterial organisms, especially in lactic acid bacteria. Recently, a prokaryotic laccase from the lactic acid bacterium Pediococcus acidilactici 5930, which can degrade biogenic amines, was discovered. Thus, our study aimed to shed light on laccases from lactic acid bacteria focusing on two Pediococcus laccases, P. acidilactici 5930 and Pediococcus pentosaceus 4816, which have provided valuable information on their biochemical activities on redox mediators and biogenic amines. Both laccases are able to oxidize canonical substrates as ABTS, ferrocyanide and 2,6-DMP, and non-conventional substrates as biogenic amines. With ABTS as a substrate, they prefer an acidic environment and show sigmoidal kinetic activity, and are rather thermostable. Moreover, this study has provided the first structural view of two lactic acid bacteria laccases, revealing new structural features not seen before in other well-studied laccases, but which seem characteristic for this group of bacteria. We believe that understanding the role of laccases in lactic acid bacteria will have an impact on their biotechnological applications and provide a framework for the development of engineered lactic acid bacteria with enhanced properties.  相似文献   

19.
Low-energy ion implantation was employed to breed laccase producing strain Paecilomyces sp. WSH-L07 and a mutant S152 that exhibited an activity of more than three times over the wild strain was obtained. The optimum substrate of both the wild and mutant laccases was 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate), and followed by guaiacol with optimal pH at 3.4 and 5.0, respectively, while the mutant laccase exhibited a broader active pH range. The mutant laccase had a higher optimal catalytic temperature (60–65 °C) than the wild one (55 °C), and the wild laccase deactivated rapidly when temperature increased above 55 °C. Furthermore, the mutant laccase was more stable under neutral and alkaline conditions. A thermostability experiment revealed that the mutant laccase was superior to the wild laccase. Both laccases were stable in the presence of metal ions, mildly inhibited by SDS (0.5 mM), EDTA (1 mM) and 1,4-dithiothreitol (0.5 mM), and almost completely inhibited by 0.1 mM NaN3.  相似文献   

20.
Three species of botryosphaeriaceous fungi,Botryosphaeria sp. isolate MAMB-5,Botryosphaeria ribis andLasiodiplodia theobromae, were compared for the production of pycnidia and laccases. Laccases were produced both intra- and extra-cellularly when the fungi were cultivated on basal medium in the presence and absence of veratryl alcohol, withBotryosphaeria sp. MAMB-5 showing the highest enzyme titres. Electrophoretic examination of intracellular marker proteins (esterases and phosphatases) and laccases indicated that the three species were genetically distinctly different, although the laccase zymograms for the three fungi showed similarity. The production of pycnidia occurred under continuous lighting at 28°C, but conditions differed among the three fungal species. Production could be induced on artificial media (potato-dextrose and oat agar) under stress-induced conditions where the mycelium was stimulated by physical abrasion, and in the case ofBotryosphaeria sp. isolate MAMB-5 on eucalypt woodchips. Evidence is presented that veratryl alcohol facillitated the secretion of intracellular-localised laccases into the extracellular medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号