首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have used HSCA-2, an mAb that recognizes a sialic acid-dependent epitope on the low molecular mass (approximately 115-kDa) glycoform of CD43 that is expressed in resting T and NK cells, to examine the expression characteristics and stimulatory functions of CD43 in human CD4+ memory T cells. Having previously reported that the memory cells that respond to recall Ags in a CD4+ CD45RO+ T cell population almost all belong to a subset whose surface CD43 expression levels are elevated, we now find that exposing these same memory T cells to HSCA-2 mAb markedly increases their proliferative responsiveness to recall Ags. We think it unlikely that this increase in responsiveness is a result of CD43-mediated monocyte activation, especially given that the HSCA-2 mAb differs from all previously used CD43 mAbs in having no obvious binding specificity for monocyte CD43. Predictably, treatment with HSCA-2 mAb did not lead to significant recall responses in CD4+ CD45RO+ T cells, whose CD43 expression levels were similar to or lower than those of naive cells. Other experiments indicated that the HSCA-2 mAb was capable of enhancing the proliferative responsiveness of CD4+ memory T cells that had been exposed to polyclonal stimulation by monocyte-bound CD3 mAb and could also act in synergy with CD28 mAb to enhance the responsiveness of CD4+ T cells to CD3 stimulation. Taken together, these findings suggest that the CD43 molecules expressed on CD4+ memory T cells may be capable of enhancing the costimulatory signaling and hence providing accessory functions to TCR-mediated activation processes.  相似文献   

2.
A previously unreported CD8(+)CD28(+)CD11b(+) T cell subset occurs in healthy individuals and expands in patients suffering from primary viral infections. In functional terms, these cells share the features of naive/memory CD8(+)CD28(+)CD11b(-) and terminally differentiated effector CD8(+)CD28(-)CD11b(+) subpopulations. Like CD28(-) cells, CD28(+)CD11b(+) lymphocytes have the ability to produce IFN-gamma, to express perforin granules in vivo, and to exert a potent cytolytic activity. Moreover, these cells can respond to chemotactic stimuli and can efficiently cross the endothelial barrier. In contrast, like their CD11b(-) counterpart, they still produce IL-2 and retain the ability to proliferate following mitogenic stimuli. The same CD28(+)CD11b(+) subpopulation detected in vivo could be generated by culturing naive CD28(+)CD11b(-) cells in the presence of mitogenic stimuli following the acquisition of a CD45RO(+) memory phenotype. Considering both phenotypic and functional properties, we argue that this subset may therefore constitute an intermediate phenotype in the process of CD8(+) T cell differentiation and that the CD11b marker expression can distinguish between memory- and effector-type T cells in the human CD8(+)CD28(+) T cell subset.  相似文献   

3.
Because T cells act primarily through short-distance interactions, homing receptors can identify colocalizing cells that serve common functions. Expression patterns for multiple chemokine receptors on CD4(+) T cells from human blood suggested a hierarchy of receptors that are induced and accumulate during effector/memory cell differentiation. We characterized CD4(+)CD45RO(+) T cells based on expression of two of these receptors, CCR5 and CCR2, the principal subsets being CCR5(-)CCR2(-) (~70%), CCR5(+)CCR2(-) (~25%), and CCR5(+)CCR2(+) (~5%). Relationships among expression of CCR5 and CCR2 and CD62L, and the subsets' proliferation histories, suggested a pathway of progressive effector/memory differentiation from the CCR5(-)CCR2(-) to CCR5(+)CCR2(-) to CCR5(+)CCR2(+) cells. Sensitivity and rapidity of TCR-mediated activation, TCR signaling, and effector cytokine production by the subsets were consistent with such a pathway. The subsets also showed increasing responsiveness to IL-7, and the CCR5(+)CCR2(+) cells were CD127(bright) and invariably showed the greatest response to tetanus toxoid. CCR5(+)CCR2(+) cells also expressed the largest repertoire of chemokine receptors and migrated to the greatest number of chemokines. By contrast, the CCR5(+)CCR2(-) cells had the greatest percentages of regulatory T cells, activated/cycling cells, and CMV-reactive cells, and were most susceptible to apoptosis. Our results indicate that increasing memory cell differentiation can be uncoupled from susceptibility to death, and is associated with an increase in chemokine responsiveness, suggesting that vaccination (or infection) can produce a stable population of effector-capable memory cells that are highly enriched in the CCR5(+)CCR2(+) subset and ideally equipped for rapid recall responses in tissue.  相似文献   

4.
Published reports indicate that CD45RO-CD45RAbright T cells are native T cells, CD45RObrightCD45RA- T cells are memory T cells, and that concomitant loss of CD45RA expression and gain of CD45RO expression occurs during transition from naive to memory status. Thus, following in vitro activation of CD45RO- CD45RAbright T cells, a subset of transitional CD45ROdimCD45RAdim T cells is observed before conversion to a CD45RObrightCD45RA- phenotype is completed. Interestingly, all three of these phenotypic subsets are represented in the circulating human lymphocyte pool. We thus used dual-color flow cytometry to phenotypically characterize CD45RObrightCD45RA-, CD45ROdimCD45RAdim, and CD45RO- CD45RAbright lymphocytes. Both the CD45RObrightCD45RA- and CD45ROdimCD45RAdim subsets consisted almost entirely of T cells, whereas the CD45RO-CD45RAbright subset contained T cells plus essentially all of the B and natural killer cells. Additional studies used three-color flow cytometry to assess activation markers on T cells within the three subsets defined by CD45RO/CD45RA expression. CD25 expression increased with conversion from naive to memory status (5% of CD45RO-CD45RAbright, 24% of CD45ROdimCD45RAdim, and 42% of CD45RObrightCD45RA- T cells), whereas CD38 expression decreased during conversion (76, 53, and 27%, respectively). We also assessed the fluorescent intensities of CD11a, CD2, and CD44, shown by others to be increased on memory, compared to naive T cells. Visual inspection of fluorescence cytograms confirmed these findings, and further showed that transitional T cells express these markers at levels indistinguishable from those for naive T cells. These findings suggest that acquisition of CD25 and loss of CD38 occur relatively early in the naive-to-memory transition process, being evident in the transitional cell subset. In contrast, increased expression of CD11a, CD2, and CD44 appear to represent late events, occurring after loss of CD45RA and gain of CD45RO has been completed.  相似文献   

5.
In elderly subjects and in patients with chronic inflammatory diseases, there is an increased subset of monocytes with a CD14(+)CD16(+) phenotype, whose origin and functional relevance has not been well characterized. In this study, we determined whether prolonged survival of human CD14(++)CD16(-) monocytes promotes the emergence of senescent cells, and we analyzed their molecular phenotypic and functional characteristics. We used an in vitro model to prolong the life span of healthy monocytes. We determined cell senescence, intracellular cytokine expression, ability to interact with endothelial cells, and APC activity. CD14(+)CD16(+) monocytes were senescent cells with shortened telomeres (215 ± 37 relative telomere length) versus CD14(++)CD16(-) cells (339 ± 44 relative telomere length; p < 0.05) and increased expression of β-galactosidase (86.4 ± 16.4% versus 10.3 ± 7.5%, respectively; p = 0.002). CD14(+)CD16(+) monocytes exhibited features of activated cells that included expression of CD209, release of cytokines in response to low-intensity stimulus, and increased capacity to sustain lymphocyte proliferation. Finally, compared with CD14(++)CD16(-) cells, CD14(+)CD16(+) monocytes showed elevated expression of chemokine receptors and increased adhesion to endothelial cells (19.6 ± 8.1% versus 5.3 ± 4.1%; p = 0.033). In summary, our data indicated that the senescent CD14(+)CD16(+) monocytes are activated cells, with increased inflammatory activity and ability to interact with endothelial cells. Therefore, accumulation of senescent monocytes may explain, in part, the development of chronic inflammation and atherosclerosis in elderly subjects and in patients with chronic inflammatory diseases.  相似文献   

6.
Decreased CD4(+) T cell counts are the best marker of disease progression during HIV infection. However, CD4(+) T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4(+) T cell subsets influences disease severity. CD4(+) T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127(+)CD25(low/-) subset includes IL-2-producing naive and central memory T cells; the CD127(-)CD25(-) subset includes mainly effector T cells expressing perforin and IFN-gamma; and the CD127(low)CD25(high) subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4(+)CD127(-)CD25(-) T cells that is related to an absolute decline of CD4(+)CD127(+)CD25(low/-) T cells. Interestingly, this expansion of CD4(+)CD127(-) T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4(+)CD127(-)CD25(-) T cells correlated directly with the levels of total CD4(+) T cell depletion and immune activation. CD4(+)CD127(-)CD25(-) T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4(+) T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4(+) T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4(+) T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals.  相似文献   

7.
Dendritic cells (DC) represent a rather heterogeneous cell population with regard to morphology, phenotype, and function and, like most cells of the immune system, are subjected to a continuous renewal process. CD103(+) (integrin alpha(E)) DC have been identified as a major mucosal DC subset involved in the induction of tissue-specific homing molecules on T cells, but little is known about progenitors able to replenish this DC subset. Herein we report that lineage (lin)(-)CX(3)CR1(+)c-kit(+) (GFP(+)c-kit(+)) bone marrow cells can differentiate to either CD11c(+)CD103(-) or CD11c(+)CD103(+) DC in vitro and in vivo. Gene expression as well as functional assays reveal distinct phenotypical and functional properties of both subsets generated in vitro. CD103(-) DC exhibit enhanced phagocytosis and respond to LPS stimulation by secreting proinflammatory cytokines, whereas CD103(+) DC express high levels of costimulatory molecules and efficiently induce allogeneic T cell proliferation. Following adoptive transfer of GFP(+)c-kit(+) bone marrow cells to irradiated recipients undergoing allergic lung inflammation, we identified donor-derived CD103(+) DC in lung and the lung-draining bronchial lymph node. Collectively, these data indicate that GFP(+)c-kit(+) cells contribute to the replenishment of CD103(+) DC in lymphoid and nonlymphoid organs.  相似文献   

8.
A subset of T cells in human peripheral blood expresses CD161 (NKR-P1A) receptors that are primarily associated with NK cells. In the current study we isolated blood T cell subsets according to the expression of CD161 and examined their contents of naive, central memory, and effector memory cells and their capacities for proliferation, cytokine secretion, and natural cytolysis. We found that CD4+CD161- and CD8+CD161- subsets contained predominantly naive T cells that secreted high levels of IL-2 after in vitro stimulation, and CD4+CD161int and CD8+CD161int subsets contained predominantly effector and central memory T cells that secreted high levels of IFN-gamma and TNF-alpha. All of these subsets showed vigorous proliferation after stimulation in vitro, but none had NK lytic activity. Unexpectedly, the CD8+CD161+ cells contained an anergic CD8alpha+CD8betalow/-CD161high T cell subset that failed to proliferate, secrete cytokines, or mediate NK lytic activity.  相似文献   

9.
To examine whether functionally different CD4+ cells respond uniformly to the immunoregulatory influences of allogeneic activated CD8+ cells (*CD8+), we subfractionated the CD4+ population into two subsets, based on the high expression of either CD45RA or CD29. We confirmed that the CD45RA+ cells proliferated poorly in response to soluble anti-CD3 mAb, compared to the vigorous response obtained with the CD29+ subset; the CD45RA+ cells were more responsive to stimulation with Con A. Using normal healthy controls, we found that whereas *CD8+ had a significant suppressive effect on the proliferation of the CD29+ subset, they augmented the mitogen-induced proliferative response of the CD45RA+ cells. We further demonstrated that *CD8+ derived from MS patients augmented the response of the CD45RA+ subset to a significantly higher degree compared to healthy age- and sex-matched controls. There were no significant differences between the degree of suppression exerted by the *CD8+ of either the MS or the control group on the CD29+ cells. These results demonstrate that helper/memory CD4+CD29+ cells are more sensitive to the suppressive influences of *CD8+ compared to the CD4+CD45RA+ subset. In addition, in MS, *CD8+ may contribute to a more pronounced "on" signal for virgin CD4+CD45RA+ cells, which might serve as a means to perpetuate the autoimmune disease process.  相似文献   

10.
11.
The Gads adaptor protein is critical for TCR-mediated Ca(2+) mobilization. We investigated the effect of Gads deficiency on the proliferation of CD8(+) T cells following peptide stimulation and in the context of infection with an intracellular pathogen. We stimulated CD8(+) T cells from Gads(+/+) OT-I and Gads(-/-) OT-I mice with cognate Ag (SIINFEKL) or altered peptide ligand. In vitro experiments revealed that Gads was required for optimal proliferation of CD8(+) T cells. This defect was most evident at the early time points of proliferation and when low doses of Ag were used as stimuli. Cell cycle analysis demonstrated that Gads(-/-) CD8(+) T cells had impaired TCR-mediated exit from the G(0) phase of the cell cycle. Furthermore, Gads(-/-) CD8(+) T cells had delayed expression of c-myc and CD69 upon the stimulation with SIINFEKL. We then investigated how Gads deficiency would impact CD8(+) T cell-mediated immunity in the context of infection with an intracellular pathogen. At early time points, Gads(+/+) and Gads(-/-) CD8(+) T cells proliferated to a similar extent, despite the fact that expression of CD69 and CD25 was reduced in the absence of Gads. After 5 d postinfection, Gads was required to sustain the expansion phase of the immune response; the peak response of Gads(-/-) cells was significantly lower than for Gads(+/+) cells. However, Gads was not required for the differentiation of naive CD8(+) T cells into memory cells. We conclude that the primary function of Gads is to regulate the sensitivity of the TCR to Ag ligation.  相似文献   

12.
To better characterize the cellular source of lymphotactin (XCL1), we compared XCL1 expression in different lymphocyte subsets by real-time PCR. XCL1 was constitutively expressed in both PBMC and CD4(+) cells, but its expression was almost 2 log higher in CD8(+) cells. In vitro activation was associated with a substantial increase in XCL1 expression in both PBMC and CD8(+) cells, but not in CD4(+) lymphocytes. The preferential expression of XCL1 in CD8(+) cells was confirmed by measuring XCL1 production in culture supernatants, and a good correlation was found between figures obtained by real-time PCR and XCL1 contents. XCL1 expression was mostly confined to a CD3(+)CD8(+) subset not expressing CD5, where XCL1 expression equaled that shown by gammadelta(+) T cells. Compared with the CD5(+) counterpart, CD3(+)CD8(+)CD5(-) cells, which did not express CD5 following in vitro activation, showed preferential expression of the alphaalpha form of CD8 and a lower expression of molecules associated with a noncommitted/naive phenotype, such as CD62L. CD3(+)CD8(+)CD5(-) cells also expressed higher levels of the XCL1 receptor; in addition, although not differing from CD3(+)CD8(+)CD5(+) cells in terms of the expression of most alpha- and beta-chemokines, they showed higher expression of CCL3/macrophage inflammatory protein-1alpha. These data show that TCR alphabeta-expressing lymphocytes that lack CD5 expression are a major XCL1 source, and that the contribution to its synthesis by different TCR alphabeta-expressing T cell subsets, namely CD4(+) lymphocytes, is negligible. In addition, they point to the CD3(+)CD8(+)CD5(-) population as a particular T cell subset within the CD8(+) compartment, whose functional properties deserve further attention.  相似文献   

13.
Multicolor flow cytometric analysis for the expression of three effector molecules, i.e., perforin (Per), granzyme A (GraA), and granzyme B (GraB), in human CD8(+) T cells demonstrated that they included five subpopulations, implying the following pathway for the differentiation of CD8(+) T cells: Per(-)GraA(-)GraB(-)-->Per(-)GraA(+)GraB(-)-->Per(low)GraA(+)GraB(-)--> Per(low)GraA(+)GraB(+)-->Per(high)GraA(+)GraB(+). The analysis of the expression of these molecules in the subsets classified by the combination of the expression of CCR7 and CD45RA or by that of CD27, CD28, and CD45RA showed that functional CD8(+) T cell subsets could be partially identified by these phenotypic classifications. However, the functional subsets could be precisely identified by the classification using five cell surface markers or three cell surface markers and three cytolytic molecules. Per(-)GraA(-)GraB(-) and Per(-/low)GraA(+)GraB(-) cells were predominantly found in CCR5(-)CCR7(+) and CCR5(high/low)CCR7(-) subsets, respectively, of CD8(+) T cells expressing the CD27(+)CD28(+)CD45RA(-) phenotype, whereas Per(low)GraA(+)GraB(+) cells were found in the CCR5(low)CCR7(-) subset of those expressing this phenotype and in a part of the CCR5(-/low)CCR7(-) subset of those expressing the CD27(-/low)CD28(-)CD45RA(-/+) phenotype. Ex vivo EBV-specific CD8(+) T cells, which were Per(low/-)GraA(+)GraB(-/+) cells, hardly or very weakly killed the target cells, indicating that these were not effector T cells. These findings suggest that the Per(-)GraA(-)GraB(-), Per(-/low)GraA(+)GraB(-), and Per(low)GraA(+)GraB(+) cells were central memory, early effector memory, and late effector memory T cells, respectively. Per(-/low)GraA(+)GraB(-) cells gained GraB expression after TCR stimulation, indicating that early effector memory T cells could differentiate into late effector and effector T cells. The present study showed the existence of three memory subsets and the pathway for their differentiation.  相似文献   

14.
Studying the activity of homogeneous regulatory T cell (Treg) populations will advance our understanding of their mechanisms of action and their role in human disease. Although isolating human Tregs exhibiting low expression of CD127 markedly increases purity, the resulting Treg populations are still heterogeneous. To examine the complexity of the Tregs defined by the CD127 phenotype in comparison with the previously described CD4(+)CD25(hi) subpopulations, we subdivided the CD25(hi) population of memory Tregs into subsets based on expression of CD127 and HLA-DR. These subsets exhibited differences in suppressive capacity, ability to secrete IL-10 and IL-17, Foxp3 gene methylation, cellular senescence, and frequency in neonatal and adult blood. The mature, short telomere, effector CD127(lo)HLA-DR(+) cells most strongly suppressed effector T cells within 48 h, whereas the less mature CD127(lo)HLA-DR(-) cells required 96 h to reach full suppressive capacity. In contrast, whereas the CD127(+)HLA-DR(-) cells also suppressed proliferation of effector cells, they could alternate between suppression or secretion of IL-17 depending upon the stimulation signals. When isolated from patients with multiple sclerosis, both the nonmature and the effector subsets of memory CD127(lo) Tregs exhibited kinetically distinct defects in suppression that were evident with CD2 costimulation. These data demonstrate that natural and not induced Tregs are less suppressive in patients with multiple sclerosis.  相似文献   

15.
CD4(+) T cells promote effective CD8(+) T cell-mediated immunity, but the timing and mechanistic details of such help remain controversial. Furthermore, the extent to which innate stimuli act independently of help in enhancing CD8(+) T cell responses is also unresolved. Using a noninfectious vaccine model in immunocompetent mice, we show that even in the presence of innate stimuli, CD4(+) T cell help early after priming is required for generating an optimal pool of functional memory CD8(+) T cells. CD4(+) T cell help increased the size of a previously unreported population of IL-6Ralpha(high)IL-7Ralpha(high) prememory CD8(+) T cells shortly after priming that showed a survival advantage in vivo and contributed to the majority of functional memory CD8(+) T cells after the contraction phase. In accord with our recent demonstration of chemokine-guided recruitment of naive CD8(+) T cells to sites of CD4(+) T cell-dendritic cell interactions, the generation of IL-6Ralpha(high)IL-7Ralpha(high) prememory as well as functional memory CD8(+) T cells depended on the early postvaccination action of the inflammatory chemokines CCL3 and CCL4. Together, these findings support a model of CD8(+) T cell memory cell differentiation involving the delivery of key signals early in the priming process based on chemokine-guided attraction of naive CD8(+) T cells to sites of Ag-driven interactions between TLR-activated dendritic cells and CD4(+) T cells. They also reveal that elevated IL-6Ralpha expression by a subset of CD8(+) T cells represents an early imprint of CD4(+) T cell helper function that actively contributes to the survival of activated CD8(+) T cells.  相似文献   

16.
The preservation of the replicative life span of memory CD8(+) T cells is vital for long-term immune protection. Although IL-15 plays a key role in the homeostasis of memory CD8(+) T cells, it is unknown whether IL-15 regulates the replicative life span of memory CD8(+) T cells. In this study, we report an analysis of telomerase expression and telomere length in human memory phenotype CD8(+) T cells maintained by IL-15 in vitro. We demonstrate that IL-15 is capable of activating telomerase in memory CD8(+) T cells via Jak3 and PI3K signaling pathways. Furthermore, IL-15 induces a sustained level of telomerase activity over long periods of time, and in turn minimizes telomere loss in memory CD8(+) T cells after substantial cell divisions. These findings suggest that IL-15 activates stable telomerase expression and compensates telomere loss in memory phenotype CD8(+) T cells, and that telomerase may play an important role in memory CD8(+) T cell homeostasis.  相似文献   

17.
T cells with specificity for self-Ags are normally present in the peripheral blood, and, upon activation, may target tissue Ags and become involved in the pathogenesis of autoimmune processes. In multiple sclerosis, a demyelinating disease of the CNS, it is postulated that inflammatory damage is initiated by CD4+ T cells reactive to myelin Ags. To investigate the potential naive vs memory origin of circulating myelin-reactive cells, we have generated myelin basic protein (MBP)- and tetanus toxoid-specific T cell clones from CD45RA+/RO- and CD45RO+/RA- CD4+ T cell subsets from the peripheral blood of multiple sclerosis patients and controls. Our results show that 1) the response to MBP, different from that to TT, predominantly emerges from the CD45RA+ subset; 2) the reactivity to immunodominant MBP epitopes mostly resides in the CD45RA+ subset; 3) in each individual, the recognition of single MBP epitopes is skewed to either subset, with no overlap in the Ag fine specificity; and 4) in spite of a lower expression of costimulatory and adhesion molecules, CD45RA+ subset-derived clones recognize epitopes with higher functional Ag avidity. These findings point to a central role of the naive CD45RA+ T cell subset as the source for immunodominant, potentially pathogenic effector CD4+ T cell responses in humans.  相似文献   

18.
In the present study, the authors compared the interleukin 17 (IL-17 expression of human naive and phenotypically defined memory T cells as well as its regulation by cAMP pathway. Our data showed that IL-17 mRNA was highly expressed in memory human peripheral CD8(+)45RO+T cells and CD4(+)45RO+T cells when peripheral blood mononuclear cells were first stimulated with ionomycin/PMA. IL-17 expression in memory CD8(+)T cells required accessory signals since culture of ionomycin/PMA-activated CD8(+)45RO+T cells alone did not result to IL-17 expression. In contrast, memory CD4(+)T cell population seems to be more independent. IL-17 and interferon gamma(IFN-gamma) mRNA were both inhibited in the presence of PGE2 or the cAMP analogue (dibutyryl-cAMP), while the anti-inflammatory cytokine IL-10 was highly increased. In contrast, naive CD45RA+T cells were unable to express IL-17 whatever the culture conditions. Naive CD4(+)and CD8(+)T cells were sensitive to the PKA regulatory pathway since they represent a significant source of IL-10 when PBMC were first cultured with ionomycin/PMA in the presence of either PGE2 or db-cAMP. The authors showed that naive cells are highly dependent to their microenvironment, since culture of ionomycin/PMA-activated CD45RA+T cells alone did not result in detectable levels of cytokines even in the presence of PGE2. Results also showed that PGE2 induced quite the same levels of intracellular cAMP in naive and memory cells suggesting that these cell populations are equally sensitive to PGE2. However, we suggest that PGE2 may be more efficient in blocking both IL-17 and IFN-gamma expression in already primed memory T cells, rather than in suppressing naive T cells that could represent a significant source of IL-10. Data suggest that PKA activation pathway plays a critical role in the regulation of cytokine profiles and consequently the functional properties of both human naive and memory CD4(+) and CD8(+)T cells during the immune and inflammatory processes.  相似文献   

19.
20.
GRAIL (gene related to anergy in lymphocytes) is an ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase necessary for the induction of CD4(+) T cell anergy in vivo. We have extended our previous studies to characterize the expression pattern of GRAIL in other murine CD4(+) T cell types with a described anergic phenotype. These studies revealed that GRAIL expression is increased in naturally occurring (thymically derived) CD4(+) CD25(+) T regulatory cells (mRNA levels 10-fold higher than naive CD25(-) T cells). Further investigation demonstrated that CD25(+) Foxp3(+) antigen-specific T cells were induced after a "tolerizing-administration" of antigen and that GRAIL expression correlated with the CD25(+) Foxp3(+) antigen-specific subset. Lastly, using retroviral transduction, we demonstrated that forced expression of GRAIL in a T cell line was sufficient for conversion of these cells to a regulatory phenotype in the absence of detectable Foxp3. These data demonstrate that GRAIL is differentially expressed in naturally occurring and peripherally induced CD25(+) T regulatory cells and that the expression of GRAIL is linked to their functional regulatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号