首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tonometric biosensor for glucose was constructed using a chemo-mechanical reaction unit and a differential pressure sensor. The reaction unit was fabricated by using both liquid and gas cells separated by an enzyme diaphragm membrane, in which glucose oxidase was immobilized onto the single (gas cell) side of the dialysis membrane. By applying glucose solution (0, 25.0, 50.0, 100, 150 and 200 mmol/l) into the liquid cell of the chemo-mechanical reaction unit, the pressure in the gas cell decreased continuously with a steady de-pressure slope because the oxygen consumption in the gas cell was induced by the glucose oxidase (GOD) enzyme reaction at the enzyme side of the porous diaphragm membrane. The steady de-pressure slope in the gas cell showed the linear relationship with the glucose concentration in the liquid cell between 25.0 and 200.0 mmol/l (correlation coefficient of 0.998). A substrate regeneration cycle coupling GOD with l-ascorbic acid (AsA: 0, 1.0, 3.0, 10.0 and 50.0 mmol/l; as reducing reagent system) was applied to the chemo-mechanical reaction unit in order to amplify the output signal of the tonometric biosensor. 3.0 mmol/l concentration of AsA could optimally amplify the sensor signal more than 2.5 times in comparison with that of non-AsA reagent.  相似文献   

2.
Calcium carbonate nanoparticles (nano-CaCO3) may be a promising material for enzyme immobilization owing to their high biocompatibility, large specific surface area and their aggregation properties. This attractive material was exploited for the mild immobilization of glucose oxidase (GOD) in order to develop glucose amperometric biosensor. The GOD/nano-CaCO3-based sensor exhibited a marked improvement in thermal stability compared to other glucose biosensors based on inorganic host matrixes. Amperometric detection of glucose was evaluated by holding the modified electrode at 0.60 V (versus SCE) in order to oxidize the hydrogen peroxide generated by the enzymatic reaction. The biosensor exhibited a rapid response (6s), a low detection limit (0.1 microM), a wide linear range of 0.001-12 mM, a high sensitivity (58.1 mAcm-2M-1), as well as a good operational and storage stability. In addition, optimization of the biosensor construction, the effects of the applied potential as well as common interfering compounds on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

3.
The glucose sensor was constructed by immobilizing glucose oxidase (GOD) with glutaraldehyde solution onto the sensitive area of the transparent oxygen electrode. The oxygen electrode was fabricated by sealing KCl electrolyte solution including the Indium-Tin Oxide (ITO)-electrode with both metal-weldable film and gas-permeable membrane coated with Ag/AgCl electrode. The sensor behavior was evaluated using standard glucose solutions in a batch measurement system with a computer-controlled potentiostat at a reduction potential of -900 mV. The sensor device has flexible structure and good optical transparency (less than 0.6 abs) at the visible wavelength from 400 to 700 nm. The sensor was possible to be used for measuring glucose from 0.06 to 1.24 mmol/l (correlation coefficient: 0.999), including the reported concentration of tear glucose in normal (0.14 mmol/l), with good reproducibility.  相似文献   

4.
Glucose potentiometric biosensor was prepared by immobilizing glucose oxidase on iodide-selective electrode. The hydrogen peroxide formed after the oxidation of glucose catalysed by glucose oxidase (GOD) was oxidized by sodium molybdate (SMo) at iodide electrode in the presence of dichlorometane. The glucose concentration was calculated from the decrease of iodide concentration determined by iodide-selective sensor. The sensitivity of glucose biosensor towards iodide ions and glucose was in the concentration ranges of 1.0 × 10?1–1.0 × 10?6 M and 1.0 × 10?2?1.0 × 10?4 M, respectively. The characterization of proposed glucose biosensor and glucose assay in human serum were also investigated.  相似文献   

5.
In this study, a new chemiluminescence (CL) flow-through biosensor for glucose was developed by immobilizing glucose oxidase (GOD) and horseradish peroxidase (HRP) on the eggshell membrane with glutaraldehyde as a cross-linker. The CL detection involved enzymatic oxidation of glucose to D-gluconic acid and hydrogen peroxide (H2O2) and then H2O2 oxidizing luminol to produce CL emission in the presence of HRP. The immobilization condition (e.g., immobilization time, GOD/HRP ratio, glutaraldehyde concentration) was studied in detail. It showed good storage stability at 4 degrees C over a 5-month period. The proposed biosensor exhibited short response time, high sensitivity, easy operation, and simple sensor assembly, and the proposed biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

6.
《IRBM》2008,29(2-3):202-207
This paper deals with the development of a disposable electrochemical sensor for the detection of hydrogen peroxide, using screen-printed carbon-based electrodes (SPCEs) modified with multi-wall carbon nanotubes (MWCNs) dispersed in a polyethylenimine (PEI) mixture. The modified sensors showed an excellent electrocatalytic activity towards the analyte, respect to the high overvoltage characterising unmodified screen-printed sensors. The composition of the PEI/MWCNT dispersion was optimised in order to improve the sensitivity and reproducibility. The optimised sensor showed good reproducibility (10% RSD calculated on three experiments repeated on the same electrode), whereas a reproducibility of 15% as RSD was calculated on electrodes from different preparations. Preliminary experiments carried out using glucose oxidase (GOD) as biorecognition element gave rise to promising results indicating that these new devices may represent interesting components for biosensor construction.  相似文献   

7.
This paper presents a glucose biosensor, which was developed using a Au/Ni/copper electrode. Until now, research regarding the low electrical resistance and uniformity of this biosensor electrode has not been conducted. Glucose oxidase (GOD) immobilized on the electrode effectively plays the role of an electron shuttle, and allows glucose to be detected at 0.055 V with a dramatically reduced resistance to easily oxidizable constituents. The Au/Ni/copper electrode has a low electrical resistance, which is less than 0.01 Ω, and it may be possible to mass produce the biosensor electrode with a uniform electrical resistance. The low electrical resistance has the advantage in that the redox peak occurs at a low applied potential. Using a low operating potential (0.055 V), the GOD/Au/Ni/copper structure creates a good sensitivity to detect glucose, and efficiently excludes interferences from common coexisting substances. The GOD/Au/Ni/copper sensor exhibits a relatively short response time (about 3 s), and a sensitivity of 0.85 μA mM−1 with a linear range of buffer to 33 mM of glucose. The sensor has excellent reproducibility with a correlation coefficient of 0.9989 (n = 100 times) and a total non-linearity error of 3.17%.  相似文献   

8.
An amperometric glucose biosensor with glucose oxidase (GOx) immobilized into palladium hexacyanoferrate (PdHCF) hydrogel has been prepared and evaluated. The sensor was based on a two-layer configuration with biocatalytic and electrocatalytic layers separately deposited onto the electrode. To reduce the overpotential for reduction of hydrogen peroxide liberated in the enzyme catalyzed oxidation of glucose, an inner thin layer of nickel hexacyanoferrate (NiHCF) electrodeposited onto the surface of graphite electrode was used as an electrocatalyst. As an outer layer, the hydrogel of palladium hexacyanoferrate with entrapped glucose oxidase was used. Under optimal operating conditions (pH 5.0 and E = -0.075 V versus calomel (3.0 M KCl) reference electrode), sensor showed high sensitivity to glucose (0.3-1.0 microA/mM) and a response time of less than 30s. The linear response to glucose was obtained in the concentration range between 0.05 and 1.0 mM in batch analysis mode and 0-7.0 mM in FIA. During the 32 days testing period, no significant decrease in the sensor sensitivity was observed. The sensor was applied for the determination of glucose concentration in fruit juice and yoghurt drink, and the results obtained showed good correlation with results obtained by reference spectrophotometric enzyme method.  相似文献   

9.
An electrochemical biosensor is described consisting of a thin-layer gold film electrode prepared by cathodic sputtering using a poly(vinyl chloride) sheet as substrate, with voltammetric behaviour comparable to that of conventional polycrystalline gold electrodes, coated with the hydrolysed copolymer hydroxyethyl methacrylate-co-methyl methacrylate onto which glucose oxidase was immobilized. The mechanical properties of the plastic foil substrate permit easy construction of circular-shaped electrodes which were employed as working electrodes for batch injection analysis. The electrochemical biosensor fabrication is inexpensive and can be used as disposable enzyme sensor for the detection of hydrogen peroxide. The biosensor was tested for the determination of glucose in serum and a good correlation was obtained with the measurement using the electrochemical and the spectrophotometric methods.  相似文献   

10.
The electrochemical performance of a new glucose biosensor is reported. The glucose biosensor is developed using glucose oxidase (GOD) and ferrocene encapsulated palladium (Pd)-linked organically modified sol-gel glass (ORMOSIL) material incorporated within graphite paste electrode. The ORMOSIL material incorporated within graphite paste electrode behaves as an excellent electrocatalyst for the oxidation of enzymatically reduced GOD. The electrochemical behavior of new glucose biosensor has been examined by cyclic volammetry and amperometric measurements. The bioelectrocatalysis of ORMOSIL embedded within graphite paste as a function of storage time and varying concentration of ORMOSIL is reported. The initial amperometric response on glucose sensing is recorded to be 145 microA at 15% (w/w) concentration of the ORMOSIL which is decreased to 20 microA at 5% of the same keeping GOD concentration constant. The variation of electrochemical behavior of the ORMOSIL embedded within graphite paste as a function of time has also been studied based on cyclic voltammetry. The voltammograms showing the reversible electrochemistry of ORMOSIL encapsulated ferrocene is changed into a plateau shape as a function of time, however, the electrocatalytic behavior is still retained. The practical usability of new glucose sensor has been compared with earlier developed glucose sensor. The sensitivity, response time and linearity of the new glucose biosensor are found to be excellent over earlier reported glucose biosensor. The amperometric response, calibration curve and practical applications of new glucose sensor are reported.  相似文献   

11.
Mediated biosensors consisting of an oxidase and peroxidase (POx) have attracted increasing attention because of their wider applicability. This work presents a novel approach to fabricate nanobiocomposite bienzymatic biosensor based on functionalized multiwalled carbon nanotubes (MWNTs) with the aim of evaluating their ability as sensing elements in amperometric transducers. Electrochemical behavior of the bienzymatic nanobiocomposite biosensor is investigated by Faradaic impedance spectroscopy and cyclic voltammetry. The results indicate that glucose oxidase (GOD) and horseradish peroxidase (HRP) are strongly adsorbed on the surface of the thionin (TH) functionalized MWNTs and demonstrate a facile electron transfer between immobilized GOD/HRP and the electrode via the functionalized MWNTs in a Nafion film. The functionalized carbon nanotubes act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centres of enzymes through TH. Linear ranges for these electrodes are from 10 nM to 10 mM for glucose and 17 nM to 56 mM for hydrogen peroxide with the detection limit of 3 and 6 nM, respectively. A remarkable feature of the bienzyme electrode is the possibility to determine glucose and hydrogen peroxide at a very low applied potential where the noise level and interferences from other electroactive compounds are minimal. Performance of the biosensor is evaluated with respect to response time, detection limit, selectivity, temperature and pH as well as operating and storage stability.  相似文献   

12.
In order to eliminate the interference of impurities, such as ascorbic acid, a noninterference polypyrrole glucose biosensor was constructed with a four-electrode cell consisting of a polypyrrole film electrode, a polypyrrole-glucose oxidase electrode, a counter electrode and a reference electrode. The pure catalytic current of glucose oxidase (GOD) can be obtained from the difference between response currents of two working electrodes with and without GOD. The effects of potential, pH and temperature on analytical performance of the glucose biosensor were discussed. The optimum pH and apparent activation energy of enzyme-catalyzed reaction are 5.5 and 25 kJ mol(-1), respectively. The response current of the biosensor increases linearly with the increasing glucose concentration from 0.005 to 20.0 mmol dm(-3). The results show the glucose biosensor with under 2% of relative deviation has good ability of anti-interference. The glucose biosensor was also characterized with FT-IR and UV-vis spectra.  相似文献   

13.
An oxygen-rich fill-and-flow channel biosensor has been developed for the measurement of glucose in wine. Glucose oxidase (GOD), immobilised in carbon paste (CP), was located in a well adjacent to a downstream detector electrode. When the analyte solution flows, hydrogen peroxide produced in the enzyme reaction is swept down to the detector electrode. Mineral oil and Kel-F oil (poly(chlorotrifluorethylene)) were used to prepare an enzyme layer of GOD within a CP. The hydrophobicity of the CP confined the reaction between the enzyme and its substrate to the surface of the enzyme layer. The oxidation current of hydrogen peroxide was sensitive to the enzyme loading but insensitive to mass transport variations such as flow rate. This response was, therefore, limited by the kinetics of the reaction between the enzyme and the substrate. For Kel-F oil, which can support a high concentration of dissolved oxygen, good reproducibility and greater dynamic range was obtained and the response did not decrease after degassing for 40 min with argon. Analysis of wine samples showed good agreement with the values obtained by spectrophotometric enzyme assay.  相似文献   

14.
High activity of glucose oxidase (GOD) enzyme (immobilized in porous silica particles) is desirable for a better glucose biosensor. In this work, effect of pore diameter of two porous hosts on enzyme immobilization, activity and glucose sensing was compared. The hosts were amine functionalized: (i) microporous silica (NH2-MS) and (ii) mesoporous silica (NH2-SBA-15). Based on whether the dimension of GOD is either larger or smaller than the pore diameter, GOD was immobilized on either external or internal surface of NH2-MS and NH2-SBA-15, with loadings of 512.5 and 634 mg/g, respectively. However, GOD in NH2-SBA-15 gave a higher normalized absolute activity (NAA), which led to an amperometric sensor with a larger linear range of 0.4–13.0 mM glucose. In comparison, GOD in NH2-MS had a lower NAA and a smaller linear range of 0.4–3.1 mM. In fact, the present GOD-NH2-SBA-15 electrode based sensor was better than other MS and SBA-15 based electrodes reported in literature. Thus, achieving only a high GOD loading (as in NH2-MS) does not necessarily give a good sensor performance. Instead, a host with a relatively larger pore than enzyme, together with optimized electrode composition ensures the sensor to be functional in both hyper- and hypoglycemic range.  相似文献   

15.
Platinum nanowires (PtNWs) prepared by electrodeposition method with the help of porous anodic aluminum oxide (AAO) templates have been solubilized in chitosan (CHIT) together with carbon nantubes (CNTs) to form a PtNW-CNT-CHIT organic-inorganic system. The resulting PtNW-CNT-CHIT material brings capabilities for utilizing synergic action of PtNWs and CNTs to facilitate electron-transfer process in electrochemical sensor design. The PtNW-CNT-CHIT film modified electrode offered a significant decrease in the overvoltage for the hydrogen peroxide and showed to be excellent amperometric sensors for hydrogen peroxide at -0.1 V over a wide range of concentrations, and the sensitivity is 260 microAmM-1cm-2. As an application example, by linking glucose oxidase (GOx), an amplified biosensor toward glucose was prepared. The glucose biosensor exhibits a selective determination of glucose at -0.1 V with a linear response range of 5 x 10(-6) to 1.5 x 10(-2)M with a correlation coefficient of 0.997, and response time <10s. The high sensitivity of the glucose biosensor is up to 30 microAmM-1cm-2 and the detection limit was 3 microM. The biosensor displays rapid response and expanded linear response range, and excellent repeatability and stability.  相似文献   

16.
A bienzymatic glucose biosensor was proposed for selective and sensitive detection of glucose. This mediatorless biosensor was made by simultaneous immobilization of glucose oxidase (GOD) and horseradish peroxidase (HRP) in an electropolymerized pyrrole (PPy) film on a single-wall carbon nanotubes (SWNT) coated electrode. The amperometric detection of glucose was assayed by potentiostating the bienzymatic electrode at -0.1 versus Ag/AgCl to reduce the enzymatically produced H(2)O(2) with minimal interference from the coexisting electroactive compounds. The single-wall carbon nanotubes, sandwiched between the enzyme loading polypyrrole (PPy) layer and the conducting substrate (gold electrode), could efficiently promote the direct electron transfer of HRP. Operational characteristics of the bienzymatic sensor, in terms of linear range, detection limit, sensitivity, selectivity and stability, were presented in detail.  相似文献   

17.
A new strategy for fabricating glucose biosensor was presented by layer-by-layer assembled chitosan (CS)/gold nanoparticles (GNp)/glucose oxidase (GOD) multilayer films modified Pt electrode. First, a cleaned Pt electrode was immersed in poly(allylamine) (PAA), and then transferred to GNp, followed by the adsorption of GOD (GOD/GNp/PAA/Pt). Second, the GOD/GNp/PAA/Pt electrode was immersed in CS, and then transferred to GNp, followed by the adsorption of GOD (GOD/GNp/CS/GOD/GNp/PAA/Pt). Third, different layers of multilayer films modified Pt electrodes were assembled by repeating the second process. Film assembling and characterization were studied by quart crystal microbalance, and properties of the resulting glucose biosensors were measured by electrochemical measurements. The results confirmed that the assembling process of multilayer films was simple to operate, the immobilized GOD displayed an excellent catalytic property to glucose, and GNp in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. The amperometric response of the biosensors uniformly increased from one to six layers of multilayer films, and then reached saturation after the seven layers. Among the resulting biosensors, the biosensor based on the six layers of multilayer films was best. It showed a wide linear range of 0.5-16 mM, with a detection limit of 7.0 microM estimated at a signal-to-noise ratio of 3, fast response time (within 8s). Moreover, it exhibited good reproducibility, long-term stability and interference free. This method can be used for constructing other thin films, which is a universal immobilization method for biosensor fabrication.  相似文献   

18.
The direct immobilization of glucose oxidase (GOD) on TiO2/SiO2 nanocomposite and its application as glucose biosensor were investigated. The room-temperature phosphorescence of TiO2/SiO2 nanocomposite can be quenched by hydrogen peroxide (H2O2). The detection of glucose may be accomplished by monitoring the formation of hydrogen peroxide which generated in the oxidation process of glucose with the catalysis of GOD. To our surprise, by using a 96-hole polyporous plate accessory of fluorescence spectrophotometer, the biosensor exhibits excellent linear response to glucose concentrations ranging from 1.0 × 10−9 to 1.0 × 10−2 M with a detection limit of 1.2 × 10−10 M. The TiO2/SiO2 nanocomposite can be used as both supporting material and signal transducer. The phosphorescence intensity and color of the biosensor change obviously and even could be observed with naked eyes by continuous addition of glucose. Based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite, a new method of solid substrate-room-temperature phosphorimetry (SS-RTP) for glucose determination is proposed. A glucose biosensor was fabricated with wide determination concentration range, low detection limit, high sensitivity, and fast response time. And the biosensor has been successfully applied to the determination of glucose in human blood serum. The coacervation of GOD enzyme and its interaction with TiO2/SiO2 nanocomposite enlarge the surface area and enhance the chemical stability of GOD. The nice biocompatibility, large surface area, good chemical stability and nontoxicity of the TiO2/SiO2 nanocomposite have made this material suitable for functioning as biosensor.  相似文献   

19.
Glucose oxidase (GOD) and catalase (CAT) were simultaneously co-immobilized onto magnesium silicate (Florisil®) by covalent coupling. Glucose was added in immobilization mixture and hydrogen peroxide, which is the substrate of CAT, was produced in coupling mixture during immobilization time. Therefore, co-immobilization of GOD and CAT was carried out in the presence of both their substrates: glucose and hydrogen peroxide, respectively. The effect of glucose concentration in immobilization mixture on activities of GOD and CAT of co-immobilized samples were investigated. Maximum GOD and CAT activities were determined for samples co-immobilized in the presence of 15 and 20 mM glucose, respectively. Co-immobilization of GOD and CAT in the presence of their substrates highly improved the activity and reusability of both enzymes.  相似文献   

20.
Yin B  Yuan R  Chai Y  Chen S  Cao S  Xu Y  Fu P 《Biotechnology letters》2008,30(2):317-322
A glucose biosensor based on layer-by-layer (LBL) self-assembling of chitosan and glucose oxidase (GOD) on a Prussian blue film was developed. First, Prussian blue was deposited on a cleaned gold electrode then chitosan and GOD were assembled alternately to construct a multilayer film. The resulting amperometric glucose biosensor exhibited a fast response time (within 10 s) and a linear calibration range from 6 μM to 1.6 mM with a detection limit of 3.1 μM glucose (s/n = 3). With the low operating potential, the biosensor showed little interference to the possible interferents, including ascorbic acid, acetaminophen and uric acid, indicating an excellent selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号