首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pivotal question in the debate on the ecological effects of climate change is whether species will be able to adapt fast enough to keep up with their changing environment. If we establish the maximal rate of adaptation, this will set an upper limit to the rate at which temperatures can increase without loss of biodiversity.The rate of adaptation will primarily be set by the rate of microevolution since (i) phenotypic plasticity alone is not sufficient as reaction norms will no longer be adaptive and hence microevolution on the reaction norm is needed, (ii) learning will be favourable to the individual but cannot be passed on to the next generations, (iii) maternal effects may play a role but, as with other forms of phenotypic plasticity, the response of offspring to the maternal cues will no longer be adaptive in a changing environment, and (iv) adaptation via immigration of individuals with genotypes adapted to warmer environments also involves microevolution as these genotypes are better adapted in terms of temperature, but not in terms of, for instance, photoperiod.Long-term studies on wild populations with individually known animals play an essential role in detecting and understanding the temporal trends in life-history traits, and to estimate the heritability of, and selection pressures on, life-history traits. However, additional measurements on other trophic levels and on the mechanisms underlying phenotypic plasticity are needed to predict the rate of microevolution, especially under changing conditions.Using this knowledge on heritability of, and selection on, life-history traits, in combination with climate scenarios, we will be able to predict the rate of adaptation for different climate scenarios. The final step is to use ecoevolutionary dynamical models to make the link to population viability and from there to biodiversity loss for those scenarios where the rate of adaptation is insufficient.  相似文献   

2.
To investigate the relationships between tick-borne encephalitis (TBE) virus and the bacterial spirochaete Borrelia burgdorferi sensu lato in vectors with mixed infections, unfed adult Ixodes persulcatus ticks were collected by flagging from vegetation in southern-taiga forests of the Pre-Urals region of Russia where both infections circulate sympatrically. Prevalences of TBE and Borrelia infections in a total of 4234 ticks were compared over 5 years. No significant differences were revealed between the prevalence of Borrelia infection in ticks with and without TBE virus (29.4+/-7.8% vs 23+/-3.6%), or between the prevalence of TBE virus infection in ticks with and without Borrelia (24.0+/-6.6% vs 18.4+/-3.4%). In ticks with mixed infection (40/689 = 5.8%), concentrations of TBE virus and Borrelia were not significantly correlated with one another. Field observations showed parallel trends in the prevalence of these pathogens in tick populations from year to year (1993-1997) indicating that, in I. persulcatus with mixed infection, Borrelia and TBE virus do not seem to interfere with each other and are apparently not involved in any antagonistic relationships.  相似文献   

3.
F. P. O'Mara 《Annals of botany》2012,110(6):1263-1270

Background

Grasslands are a major part of the global ecosystem, covering 37 % of the earth''s terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world''s natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change.

Scope

Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO2 equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective.

Conclusions

Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world''s existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and they are continuing to sequester carbon with considerable potential to increase this further. Grassland adaptation to climate change will be variable, with possible increases or decreases in productivity and increases or decreases in soil carbon stores.  相似文献   

4.
Interval between clutches, fitness, and climate change   总被引:2,自引:0,他引:2  
Timing of optimal reproduction can be affected by the presenceof multiple broods, with multi-brooded species breeding earlier(and later) than the optimal timing of breeding as comparedwith single-brooded species that only need to optimize the timingof a single brood. Approximately two-thirds of barn swallowsHirundo rustica produce 2 broods per year, and I tested whetherthe constraints on timing of reproduction were affected by climatechange because climatic amelioration would allow both an earlierstart and a later termination of reproduction. The durationof the interval between first and second clutches and the variancein the duration increased during 1971–2005 when temperatureduring spring, but not summer, increased rapidly. Interclutchinterval was shorter when mean date of breeding was late andalso among late-breeding individuals during individual years.When clutch size and brood size of the first clutch were large,interval until the second brood increased. Pairs with a longinterval produced more fledglings than pairs with a short interval.Pairs with first broods with strong mean T-cell–mediatedimmune responses took shorter time to start their second clutch,whereas mean body mass or tarsus length of first broods werenot significantly related to interclutch interval. Interclutchinterval increased with the size of a secondary sexual character,the length of the outermost tail feathers of adult male barnswallows, but not with tail length of females, or with sizeof several other phenotypic characters in either sex. Thesefindings are consistent with the hypothesis that the durationof the interclutch interval is determined by a combination ofenvironmental conditions, reproductive effort, and sexual selection.  相似文献   

5.
6.
Protandry, sexual selection and climate change   总被引:6,自引:0,他引:6  
Protandry refers to the earlier appearance of males before females at sites of reproduction. Sexual selection has been hypothesized to give rise to sex differences in benefits and costs of early arrival, thereby selecting for earlier appearance by the sex subject to more intense sexual selection. If sexual selection is more intense, there is a greater premium on early arrival among individuals of the chosen sex because of direct selection for earlier arrival. This hypothesis leads to the prediction that changes in the costs and benefits of early arrival related to changes in environmental conditions should particularly affect the sex that arrives first and hence the degree of protandry. I tested this hypothesis using the Barn Swallow Hirundo rustica. During 1971–2003, the degree of protandry increased significantly in a Danish population because males advanced arrival date while females did not. This earlier arrival by males compared with females was correlated with a significant increase by over 1.2 standard deviations in the length of the outermost tail feathers of males, a secondary sexual character, suggesting direct selection on both protandry and the secondary sexual character. Environmental conditions during spring migration in Northern Africa, as reflected by the normalized difference vegetation index, have deteriorated since 1984, resulting in increased mortality among males during spring migration, but not among females, and this deterioration of climatic conditions was positively correlated with an increasing degree of protandry. Likewise, an increase in April temperatures at the breeding grounds during recent decades is positively correlated with increased protandry, apparently because males can arrive earlier without increasing the fitness cost of early arrival. Local population size did not predict changes in arrival date. These findings suggest that rapid changes in climate can cause a change in degree of protandry and secondary sexual characters.  相似文献   

7.
Impact of expected climate change on mangroves   总被引:6,自引:0,他引:6  
C. D. Field 《Hydrobiologia》1995,295(1-3):75-81
There is a consensus of scientific opinion that the activities of man will cause a significant change in the global climate over the next hundred years. The rising level of carbon dioxide and other industrial gases in the atmosphere may lead to global warming with an accompanying rise in sea-level. Mangrove ecosystems grow in the intertidal zones in tropical and sub-tropical regions and are likely to be early indicators of the effects of climate change. The best estimates of predicted climate change in the literature are presented. It is suggested that a rise in mean sea-level may be the most important factor influencing the future distribution of mangroves but that the effect will vary dramatically depending on the local rate of sea-level rise and the availability of sediment to support reestablishment of the mangroves. The predicted rise in mean air temperature will probably be of little consequence to the development of mangroves in general but it may mean that the presence of mangroves will move further north and south, though this will depend on a number of additional factors. The effect of enhanced atmospheric CO2 on the growth of mangroves is unknown at this time but that there is some evidence that not all species of mangroves will respond similarly. The socio-economic impacts of the effects of climate on mangrove ecosystems may include increased risk of flooding, increased erosion of coast lines, saline intrusion and increased storm surges.  相似文献   

8.
Yuan HY  Zhang XY  Xu HJ  Yang XG 《应用生态学报》2011,22(5):1247-1254
基于1961-2009年宁夏21个气象站点的气象资料,分析了宁夏各区农业气候资源的时空变化趋势.结果表明:研究期间,宁夏各地气温逐渐升高,呈北高南低的空间分布特征,年均气温的气候倾向率为0.4℃·(10 a)-1;大部分地区年降水量呈逐渐减少趋势,年降水量的气候倾向率为4.26 mm·(10 a)-1;无霜期和作物生长季天数随着气候变暖逐渐延长;≥10℃积温在3200℃·d以上的区域向南扩展,宁夏适宜种植中晚熟水稻的区域有所扩大;2001-2009年,宁夏大部分地区适宜种植冬小麦,全区各地几乎都适宜种植春小麦;宁夏南部山区各地7月平均气温≤20℃的区域面积逐渐缩小,适宜种植马铃薯的地域也随之缩小.  相似文献   

9.
气候变化对鸟类影响的研究进展   总被引:1,自引:0,他引:1  
气候变化对生物多样性的影响已成为热点问题.本文以鸟类为研究对象,根据鸟类受气候变化影响的最新研究成果,综述了气候变化对鸟类的分布、物候和种群等方面的影响.结果表明,在气候变化影响下,鸟类分布向高纬度或高海拔区移动,速度比以往加快,繁殖地和非繁殖地的分布移动变化并不相同,并且多数分布范围缩小,物候期发生复杂变化,种群数量下降明显.文章还讨论了该领域主要的预测和评估方法,以及进化适应等生物因素对气候变化预测结果的影响,除了以往单一的相关性模型外,目前应用最多的是集成模型,而未来最具发展潜力的是机理模型.进化适应方面的研究近来取得新进展,证实了生物个体积极应对气候变化影响的事实,从而对人为模型预测的准确性带来挑战.文章最后进行了总结和展望,结合国外研究经验和我国实际情况,提出一些建议:由于气候变化的影响及其研究是长期性的,从而对鸟类的历史监测数据提出很高的要求,当前我国急需建立一套长期、全面和可靠的鸟类数据监测系统;此外,人们需要综合评估现有各种预测模型的可靠性,在此基础上探索新的研究方法.  相似文献   

10.
The rapid increase of atmospheric CO2 resulting from anthropogenic activites has stimulated a great deal of interest in the carbon cycle. Important decisions need to be made about future tolerable levels of atmospheric CO2 content, as well as the land and fossil fuel use strategies that will permit us to achieve these goals. The vast amount of new data on atmospheric CO2 content and ancillary properties that has become available during the last decade, and the development of models to interpret these data, have led to significant advances in our capacity to deal with such issues. However, a major continuing source of uncertainty is the role of photosynthesis in providing a sink for anthropogenic emissions. It is thus appropriate that a new evaluation of the status of our understanding of this issue should be made at this time.The aim of this paper is to provide a setting for the papers that follow by giving an overview of the role of carbon dioxide in climate, the biogeochemical processes that control its distribution, and the evolution of carbon dioxide through time from the origin of the earth to the present. We begin with a discussion of relevant processes. We then proceed to a more detailed discussion of the time periods that are best documented: the late Pleistocene (during which time large continental ice sheets waxed and waned) and the modern era of anthropogenic impact on the carbon cycle.  相似文献   

11.
为鉴定我国森林脑炎病毒亚型,了解基因组结构与生物功能的关系,同时为森林脑炎病毒新型疫苗研制打下基础,对森林脑炎病毒森张株编码区序列进行测定。根据已发表的Sofjin-HO、Oshima5-10株序列设计9对重叠引物,通过RT—PCR扩增不同的cDNA片段,分别克隆至pGEM—T载体,转化DH5α菌,挑阳性克隆PCR、酶切鉴定后测序。结果表明森张株编码区全长10245nt,编码3414个氨基酸。我国森林脑炎病毒森张株与Oshima5—10、Sofiin—HO、Sofiin同源性最近,属于远东亚型。  相似文献   

12.
13.
A nonequilibrium, dynamic, global vegetation model, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from the UK Hadley Centre GCM (HadCM2) with simulated daily and interannual variability. Three IPCC emission scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225, and (iii) CO2 stabilization at 550 ppm by 2150. Land use and future N deposition were not included. In the IS92a scenario, boreal and tropical lands warmed 4.5 °C by 2100 with rainfall decreased in parts of the tropics, where temperatures increased over 6 °C in some years and vapour pressure deficits (VPD) doubled. Stabilization at 750 ppm CO2 delayed these changes by about 100 years while stabilization at 550 ppm limited the rise in global land surface temperature to 2.5 °C and lessened the appearance of relatively hot, dry areas in the tropics. Present‐day global predictions were 645 PgC in vegetation, 1190 PgC in soils, a mean carbon residence time of 40 years, NPP 47 PgC y?1 and NEP (the terrestrial sink) about 1 PgC y?1, distributed at both high and tropical latitudes. With IS92a emissions, the high latitude sink increased to the year 2100, as forest NPP accelerated and forest vegetation carbon stocks increased. The tropics became a source of CO2 as forest dieback occurred in relatively hot, dry areas in 2060–2080. High VPDs and temperatures reduced NPP in tropical forests, primarily by reducing stomatal conductance and increasing maintenance respiration. Global NEP peaked at 3–4 PgC y?1 in 2020–2050 and then decreased abruptly to near zero by 2100 as the tropical source offset the high‐latitude sink. The pattern of change in NEP was similar with CO2 stabilization at 750 ppm, but was delayed by about 100 years and with a less abrupt collapse in global NEP. CO2 stabilization at 550 ppm prevented sustained tropical forest dieback and enabled recovery to occur in favourable years, while maintaining a similar time course of global NEP as occurred with 750 ppm stabilization. By lessening dieback, stabilization increased the fraction of carbon emissions taken up by the land. Comparable studies and other evidence are discussed: climate‐induced tropical forest dieback is considered a plausible risk of following an unmitigated emissions scenario.  相似文献   

14.
Despite evidence that organismal distributions are shifting in response to recent climatic warming, we have little information on direct links between species' physiology and vulnerability to climate change. We demonstrate a positive relationship between upper thermal tolerance and its acclimatory ability in a well-defined clade of closely related European diving beetles. We predict that species with the lowest tolerance to high temperatures will be most at risk from the adverse effects of future warming, since they have both low absolute thermal tolerance and poor acclimatory ability. Upper thermal tolerance is also positively related to species' geographical range size, meaning that species most at risk are already the most geographically restricted ones, being endemic to Mediterranean mountain systems. Our findings on the relationship between tolerance and acclimatory ability contrast with results from marine animals, suggesting that generalizations regarding thermal tolerance and responses to future rapid climate change may be premature.  相似文献   

15.
Bird migration times, climate change, and changing population sizes   总被引:1,自引:0,他引:1  
Past studies of bird migration times have shown great variation in migratory responses to climate change. We used 33 years of bird capture data (1970–2002) from Manomet, Massachusetts to examine variation in spring migration times for 32 species of North American passerines. We found that changes in first arrival dates – the unit of observation used in most studies of bird migration times – often differ dramatically from changes in the mean arrival date of the migration cohort as a whole. In our study, the earliest recorded springtime arrival date for each species occurred 0.20 days later each decade. In contrast, the mean arrival dates for birds of each species occurred 0.78 days earlier each decade. The difference in the two trends was largely explained by declining migration cohort sizes, a factor not examined in many previous studies. We found that changes in migration cohort or population sizes may account for a substantial amount of the variation in previously documented changes in migration times. After controlling for changes in migration cohort size, we found that climate variables, migration distance, and date of migration explained portions of the variation in migratory changes over time. In particular, short-distance migrants appeared to respond to changes in temperature, while mid-distance migrants responded particularly strongly to changes in the Southern Oscillation Index. The migration times of long-distance migrants tended not to change over time. Our findings suggest that previously reported changes in migration times may need to be reinterpreted to incorporate changes in migration cohort sizes.  相似文献   

16.
Global climate change is impacting and will continue to impact marine and estuarine fish and fisheries. Data trends show global climate change effects ranging from increased oxygen consumption rates in fishes, to changes in foraging and migrational patterns in polar seas, to fish community changes in bleached tropical coral reefs. Projections of future conditions portend further impacts on the distribution and abundance of fishes associated with relatively small temperature changes. Changing fish distributions and abundances will undoubtedly affect communities of humans who harvest these stocks. Coastal-based harvesters (subsistence, commercial, recreational) may be impacted (negatively or positively) by changes in fish stocks due to climate change. Furthermore, marine protected area boundaries, low-lying island countries dependent on coastal economies, and disease incidence (in aquatic organisms and humans) are also affected by a relatively small increase in temperature and sea level. Our interpretations of evidence include many uncertainties about the future of affected fish species and their harvesters. Therefore, there is a need to research the physiology and ecology of marine and estuarine fishes, particularly in the tropics where comparatively little research has been conducted. As a broader and deeper information base accumulates, researchers will be able to make more accurate predictions and forge relevant solutions.  相似文献   

17.
We used 179 tree ring chronologies of Douglas‐fir [Pseudotsuga menziesii (Mirb.) Franco] from the International Tree‐Ring Data Bank to study radial growth response to historical climate variability. For the coastal variety of Douglas‐fir, we found positive correlations of ring width with summer precipitation and temperature of the preceding winter, indicating that growth of coastal populations was limited by summer dryness and that photosynthesis in winter contributed to growth. For the interior variety, low precipitation and high growing season temperatures limited growth. Based on these relationships, we chose a simple heat moisture index (growing season temperature divided by precipitation of the preceding winter and current growing season) to predict growth response for the interior variety. For 105 tree ring chronologies or 81% of the interior samples, we found significant linear correlations with this heat moisture index, and moving correlation functions showed that the response was stable over time (1901–1980). We proceeded to use those relationships to predict regional growth response under 18 climate change scenarios for the 2020s, 2050s, and 2080s with unexpected results: for comparable changes in heat moisture index, the most southern and outlying populations of Douglas‐fir in Mexico showed the least reduction in productivity. Moderate growth reductions were found in the southern United States, and strongly negative response in the central Rocky Mountains. Growth reductions were further more pronounced for high than for low elevation populations. Based on regional differences in the slope of the growth–climate relationship, we propose that southern populations are better adapted to drought conditions and could therefore contain valuable genotypes for reforestation under climate change. The results support the view that climate change may impact species not just at the trailing edges but throughout their range due to genetic adaptation of populations to local environments.  相似文献   

18.
To test models predicting biological reponse to future climate change, it is essential to find climatically-sensitive, easily monitored biological indicators that respond to climate change. Routine monitoring of airborne pollen, now undertaken on a near-global basis, could be adapted for this purpose. Analysis of spatial and seasonal variations in pollen levels in New Zealand suggests that the timing of onset and peak abundance of certain pollen taxa should be explored as possible bio-indicators of climate change. The onset of the airborne grass pollen season during the summer of 1988/89 varied consistently with latitude, and hence temperature, with the season in Southland commencing 8--9 days after Northland. However, these patterns were only apparent after sampling sites were separated into two groups reflecting predominantly urban or rural pollen sources. A less consistent north to south trend was apparent in the frequency of high (30 grains/m3) grass pollen levels, with high levels frequent in North Island localities in November, December and January and in southern localities during December and January. The successive onset of pollen seasons for the principal tree species during the spring-to-early summer warming interval may also be a useful bio-indicator of climate change. As well as assisting forecasts of the onset of the pollinosis season, these biogeographical patterns, reflecting climatic variation with latitude, suggest that routine aeropalynological monitoring might provide early signals of vegetation response to climate change. These conclusions are supported by recent investigations of long-term aeropalynological datasets in Europe that indicate earlier onset of pollen seasons in response to recent global warming.  相似文献   

19.
Focusing on the southern green stink bug, Nezara viridula (Pentatomidae), in central Japan the effects of climate change on true bugs (Insecta: Heteroptera) are reviewed. In the early 1960s, the northern edge of the species's distribution was in Wakayama Prefecture (34.1°N) and distribution was limited by the +5°C coldest month (January) mean temperature isothermal line. By 2000, N. viridula was recorded 70 km further north (in Osaka, 34.7°N). Historical climate data were used to reveal possible causes of the northward range expansion. The increase of mean and lowest winter month temperatures by 1–2°C in Osaka from the 1950s to the 1990s improved potential overwintering conditions for N. viridula. This promoted northward range expansion of the species. In Osaka, adult diapause in N. viridula is induced after mid‐September, much later than in other local seed‐feeding heteropterans. This late diapause induction results in late‐season ineffective reproduction: some females start oviposition in autumn when the progeny have no chance of attaining adulthood and surviving winter. Both reproductive adults and the progeny die. A period from mid‐September to early November represents a phenological mismatch: diapause is not yet induced in all adults, but it is already too late to start reproduction. Females that do not start reproduction but enter diapause in September have reduced postdiapause reproductive performance: they live for a shorter period, have a shorter period of oviposition and produce fewer eggs in smaller egg masses compared with females that emerge and enter diapause later in autumn. To some extent, N. viridula remains maladapted to Osaka environmental conditions. Ecological perspectives on establishment in recently colonized areas are discussed. A review of available data suggests that terrestrial and aquatic Heteroptera species respond to climate change by shifting their distribution ranges, changing abundance, phenology, voltinism, physiology, behaviour, and community structure. Expected responses of Heteroptera to further climate warming are discussed under scenarios of slight (<2°C) and substantial (>2°C) temperature increase.  相似文献   

20.
The Quaternary fossil record has abundant evidence for ecologically nonanalogue communities made up of combinations of modern taxa not seen in sympatry today. A brief review of the literature detailing these nonanalogue communities is given with a discussion of their various proposed causes. The individualistic, Gleasonian, response of species to climate and environmental change is favoured by many. The degree to which communities are nonanalogue appears to increase with greater time depth, and this progressive process is a necessary outcome of the individualistic response of species to climate change through time. In addition, it is noted that populations within species, as well as the species as a whole, respond individualistically. This paper proposes that many elements of nonanalogue communities are extinct populations, which may explain their environmentally anomalous combinations. These extinct populations are, by definition, lineages without descendents. It is further proposed that the differential extinction of populations, as a result of continuous ecological reassembly, could amount to a significant evolutionary phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号