首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppression of Bitterness by Sodium: Variation Among Bitter Taste Stimuli   总被引:7,自引:6,他引:1  
Taste interactions between salts (NaCl, LiCl, KCl, L-arginine:L-asparticacid, Na-acetate and Na-gluconate) and bittertasting compounds(urea, quinine HCI, magnesium sulphate, KCI, amiloride HCI andcaffeine) were investigated. In each study binary combinationsof three or four concentrations of one bitter compound withfour concentrations (0, 0.1, 0.3 and 0.5 M) of one salt wererated for bitterness and saltiness using the method of magnitudeestimation. In most cases, perceived bitterness was suppressedby salts, although the degree of suppression varied. In general,bitterness suppression was not accompanied by an equivalentreciprocal suppression of saltiness. Only MgSO4 and amiloridehad suppressing effects on the saltiness of NaCl at the intermediateconcentrations and no bitter compound affected the saltinessat the high concentrations of NaCl. Since salt suppressed thebitterness of urea effectively, a detailed analysis of suppressionof the bitterness of urea by different salts was conducted.Those studies indicated that the key component in this effectwas the sodium or lithium ion for two reasons: first, all threesodium salts and the lithium salt had a suppressive effect onbitterness, whereas KCl did not; secondly, the effect of a salton suppression of the bitterness of urea was independent ofits perceived saltiness; that is, NaCl, Na-acetate (which isperceived as less salty than NaCl), and Na-gluconate (whichis perceived as less salty than Na-acetate) reduced bitternesscomparably. These results suggest that there is a major peripheralcomponent to the suppression of the bitterness of urea, andperhaps other bitter tasting compounds, by sodium. Chem. Senses20: 609–623, 1995.  相似文献   

2.
The aim of this study was to determine if taste interactions occur when bitter stimuli are mixed. Eight bitter stimuli were employed: denatonium benzoate (DB), quinine-HCl (QHCl), sucrose octaacetate (SOA), urea, L-tryptophan (L-trp), L-phenylalanine (L-phe), ranitidine-HCl, and Tetralone. The first experiment constructed individual psychophysical curves for each subject (n = 19) for each compound to account for individual differences in sensitivities when presenting bitter compounds in experiment 2. Correlation analysis revealed two groupings of bitter compounds at low intensity (1, L-trp, L-phe, and ranitidine; 2, SOA and QHCl), but the correlations within each group decreased as the perceived intensity increased. In experiment 2, intensity ratings and two-alternative forced-choice discrimination tasks showed that bitter compounds generally combine additively in mixture and do not show interactions with a few specific exceptions. The methods employed detected synergy among sweeteners, but could not detect synergy among these eight bitter compounds. In general, the perceived bitterness of these binary bitter-compound mixtures was an additive function of the total bitter-inducing stimuli in the mouth.  相似文献   

3.
TASTE INTENSITIES OF OIL-IN-WATER EMULSIONS WITH VARYING FAT CONTENT   总被引:3,自引:0,他引:3  
The objective of this study was to determine the effect fat has on the intensity of sweet, salty, sour, bitter and umami tastes in oil-in-water emulsions. The first experiment used two levels of fat (9% and 17% in oil-in-water emulsions) and two intensities of each taste (high and low). We compared the taste intensities of these emulsions to the intensities of oil-free samples with equal total volume, and to oil free samples of the same aqueous taste compound concentrations. Because of potential confusion between taste intensity and viscosity, we repeated the experiment, having panelists rate both thickness and taste intensity. Diluting with oil, compared to diluting with water, decreased bitterness, but increased the intensity of salty, sweet, sour and umami tastes. When compared to samples with equal aqueous taste compound concentrations, fat suppressed bitterness, but had no effect on the other tastes.  相似文献   

4.
N-(1-Carboxyethyl)-6-hydroxymethyl-pyridinium-3-ol inner salt (alapyridaine), recently identified in heated sugar/amino acid mixtures as well as in beef bouillon, has been shown to exhibit general taste-enhancing activities, although tasteless on its own. Differing from other taste enhancers reported so far, racemic (R/S)-alapyridaine and, to an even greater extent (+)-(S)-alapyridaine, the physiologically active enantiomer, are able to enhance more than one basic taste quality. The threshold concentrations for the sweet taste of glucose and sucrose, for the umami taste of monosodium L-glutamate (MSG) and guanosine-5'-monophosphate (GMP), as well as the salty taste of NaCl, were significantly decreased when alapyridaine was present. In contrast, perception of the bitter tastes of caffeine and L-phenylalanine, as well as of sour-tasting citric acid, was unaffected. Furthermore, alapyridaine was shown to intensify known taste synergies such as, for example, the enhancing effect of L-arginine on the salty taste of NaCl, as well as that of GMP on the umami taste of MSG. The activity of (+)-(S)-alapyridaine could be observed not only in solutions of single taste compounds, but also in more complex tastant mixtures; for example, the umami, sweet and salty taste of a solution containing MSG, sucrose, NaCl and caffeine was significantly modulated, thus indicating that alapyridaine is a general taste enhancer.  相似文献   

5.
A previous study investigating individuals' bitterness sensitivities found a close association among three compounds: L-tryptophan (L-trp), L-phenylalanine (L-phe) and urea (Delwiche et al., 2001, Percept. Psychophys. 63, 761-776). In the present experiment, psychophysical cross-adaptation and bitterness inhibition experiments were performed on these three compounds to determine whether the bitterness could be differentially affected by either technique. If the two experimental approaches failed to differentiate L-trp, L-phe and urea's bitterness, then we may infer they share peripheral physiological mechanisms involved in bitter taste. All compounds were intensity matched in each of 13 subjects, so the judgments of adaptation or bitterness inhibition would be based on equal initial magnitudes and, therefore, directly comparable. In the first experiment, cross-adaptation of bitterness between the amino acids was high (>80%) and reciprocal. Urea and quinine-HCl (control) did not cross-adapt with the amino acids symmetrically. In a second experiment, the sodium salts, NaCl and Na gluconate, did not differentially inhibit the bitterness of L-trp, L-phe and urea, but the control compound, MgSO(4), was differentially affected. The bitter inhibition experiment supports the hypothesis that L-trp, L-phe and urea share peripheral bitter taste mechanisms, while the adaptation experiment revealed subtle differences between urea and the amino acids indicating that urea and the amino acids activate only partially overlapping bitter taste mechanisms.  相似文献   

6.
冯平  罗瑞健 《遗传》2018,40(2):126-134
在鲜味、甜味、苦味、咸味和酸味5种味觉形式中,苦味能避免动物摄入有毒有害物质,在动物的生存中发挥着特别重要的作用。苦味味觉的产生依赖于苦味物质与苦味受体的相互作用。苦味受体由苦味受体基因Tas2rs编码,此类基因在不同物种中数量变化较大以适应不同的需求。目前的研究在灵长类中鉴别出了若干苦味受体的配体,并发现有的苦味受体基因所经受的选择压在类群之间、基因之间甚至同一基因不同功能区之间都存在着变化。本文从苦味受体作用的多样性特点,受体与配体的对应关系、受体基因进化模式与食性之间的关系、苦味受体基因的适应性进化方面对灵长类苦味受体基因进行了综述,以期为苦味受体基因在灵长类中的深入研究提供参考。  相似文献   

7.
Taste enables organisms to determine the properties of ingested substances by conveying information regarding the five basic taste modalities: sweet, salty, sour, bitter, and umami. The sweet, salty, and umami taste modalities convey the carbohydrate, electrolyte, and glutamate content of food, indicating its desirability and stimulating appetitive responses. The sour and bitter modalities convey the acidity of food and the presence of potential toxins, respectively, stimulating aversive responses to such tastes. In recent years, the receptors mediating sweet, bitter, and umami tastes have been identified as members of the T1R and T2R G-protein-coupled receptor families; however, the molecular mechanisms underlying sour taste detection have yet to be clearly elucidated. This review covers the molecular mechanisms proposed to mediate the detection and transmission of sour stimuli, focusing on polycystic kidney disease 1-like 3 (Pkd1l3), Pkd2l1, and carbonic anhydrase 4 (Car4).  相似文献   

8.
Umami is one of the basic tastes along with sweet, bitter, sour and salty. It is often elicited by amino acids and can provide a palatable flavor for food. With taste epithelium as the sensing element, microelectrodes can be used to evaluate umami taste by biological responses of the tissue. The electrophysiological activities to umami stimuli are measured with a 60-channel microelectrode array (MEA). Local field potential (LFP) recorded by a MEA system showed different temporal characteristics respectively with l-glutamic acid (l-Glu), l-aspartic acid (l-Asp), l-monosodium glutamate (l-MSG) and l-monosodium aspartate (l-MSA), while remarkable differences were observed between amino acids and their sodium salts. Wealso found that a dose-dependent behavior in the increasing concentrations of umami stimulations and a synergistic enhancement between amino acids and purine nucleotides can be detected. The investigation of this evaluation for umami represents a promising approach for distinguishing and evaluating umami tastants.  相似文献   

9.
Keast RS  Roper J 《Chemical senses》2007,32(3):245-253
Detection thresholds and psychophysical curves were established for caffeine, quinine-HCl (QHCl), and propylthiouracil (PROP) in a sample of 33 subjects (28 female mean age 24 +/- 4). The mean detection threshold (+/-standard error) for caffeine, QHCl, and PROP was 1.2 +/- 0.12, 0.0083 +/- 0.001, and 0.088 +/- 0.07 mM, respectively. Pearson product-moment analysis revealed no significant correlations between detection thresholds of the compounds. Psychophysical curves were constructed for each bitter compound over 6 concentrations. There were significant correlations between incremental points of the individual psychophysical curves for QHCl and PROP. Regarding caffeine, there was a specific concentration (6 mM) below and above which the incremental steps in bitterness were correlated. Between compounds, analysis of psychophysical curves revealed no correlations with PROP, but there were significant correlations between the bitterness of caffeine and QHCl at higher concentrations on the psychophysical curve (P<0.05). Correlation analysis of detection threshold and suprathreshold intensity within a compound revealed a significant correlation between PROP threshold and suprathreshold intensity (r=0.46-0.4, P<0.05), a significant negative correlation for QHCl (r=-0.33 to -0.4, P<0.05), and no correlation for caffeine. The results suggest a complex relationship between chemical concentration, detection threshold, and suprathreshold intensity.  相似文献   

10.
The perception of astringency and basic taste in mixtures and their interaction effects were investigated by two procedures. In Experiment 1, focused and nonfocused testing procedures were compared using mixtures of low and high concentrations of alum and basic taste solutions. Both procedures yielded taste and astringency intensities that were modality‐dependent. Nonfocused testing was used in Experiment 2 to investigate the interactions of astringent phenolic (tannic acid) and nonphenolic (alum) compounds with each basic taste. Sweetness of sucrose increased with increased concentration with or without alum or tannin present. Changes in salty, bitter, and sour taste intensities were modality‐dependent. Astringency either remained unchanged or decreased with the addition of sucrose, sodium chloride, citric acid, or caffeine depending upon the taste concentration. Bitterness of tannin and alum at high concentrations was suppressed by the addition of sucrose, sodium chloride, or citric acid; sourness also decreased in the presence of sucrose or sodium chloride as well as a high level of caffeine.  相似文献   

11.
Chronic rinsing with chlorhexidine, an oral-antiseptic, has been shown to decrease the saltiness of NaCl and the bitterness of quinine. The effect of acute chlorhexidine on taste has not been investigated. The purpose of the present study was to examine the effect of acute chlorhexidine rinses on taste intensity and quality of 11 stimuli representing sweet, salt, sour, bitter and savory. All stimuli were first matched for overall intensity so the effects of chlorhexidine would be directly comparable across compounds. As a control treatment, the bitter taste of chlorhexidine digluconate (0.12%) was matched in intensity to quinine HCl, which was found to cross-adapt the bitterness of chlorhexidine. Subjects participated in four experimental conditions: a pre-test, a quinine treatment, a chlorhexidine treatment, and a post-test condition, while rating total taste intensity and taste qualities in separate test sessions. Relative to the quinine treatment, chlorhexidine was found to decrease the salty taste of NaCl, KCl and NH4Cl, and not to significantly affect the tastes of sucrose, monosodium glutamate (MSG), citric acid, HCl and the taste of water. The bitter taste of urea, sucrose octa-acetate and quinine were suppressed after chlorhexidine rinses relative to water rinses, but were only marginally suppressed relative to quinine rinses. Potential mechanisms are discussed.  相似文献   

12.
Hayes JE  Duffy VB 《Chemical senses》2007,32(3):225-236
Genetic variation in oral sensation presumably influences ingestive behaviors through sensations arising from foods and beverages. Here, we investigated the influence of taste phenotype [6-n-propylthiouracil (PROP) bitterness, fungiform papillae (FP) density] on sweet and creamy sensations from sugar/fat mixtures. Seventy-nine subjects (43 males) reported the sweetness and creaminess of water or milk (skim, whole, heavy cream) varying in sucrose (0-20% w/v) on the general Labeled Magnitude Scale. Sweetness grew with sucrose concentration and when shifting from water to milk mixtures--the growth was greatest for those tasting PROP as most bitter. At higher sucrose levels, increasing fat blunted the PROP-sweet relationship, whereas at lower levels, the relationship was effectively eliminated. Perceived sweetness of the mixture exceeded that predicted from the sum of components at low sucrose concentrations (especially for those tasting PROP most bitter) but fell below predicted at high concentrations, irrespective of fat level. Creaminess increased greatly with fat level and somewhat with sucrose. Those tasting PROP most bitter perceived greater creaminess in the heavy cream across all sucrose levels. Perceived creaminess was somewhat lower than predicted, irrespective of PROP bitterness. The FP density generally showed similar effects as PROP on sweetness and creaminess, (but to a lesser degree) and revealed potential taste-somatosensory interactions in weakly sweet stimuli. These data support that taste phenotype affects the nature of enhancement or suppression of sweetness and creaminess in liquid fat/sugar mixtures. Taste phenotype effects on sweetness and creaminess likely involve differential taste, retronasal olfactory, and somatosensory contributions to these perceptual experiences.  相似文献   

13.
Although the five basic taste qualities—sweet, sour, bitter, salty and umami—can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5’-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.  相似文献   

14.
Some Basic Psychophysics of Calcium Salt Solutions   总被引:2,自引:1,他引:1  
Detection thresholds and the taste qualities of suprathresholdconcentrations of calcium salt solutions were assessed. Averagetaste detection thresholds for calcium chloride (CaCl2), lactate(CaLa), hydroxide, phosphate and gluconate ranged between 8and 50 mM, with no reliable differences among the various salts.Between-subject variability ranged over four orders of magnitudeand reliability coefficients for repeated detection thresholdtests of CaCl2 averaged r = 0.52. In an odor detection test,subjects could reliably discriminate 100 but not 1 mM CaCl2and CaLa from water. The taste of suprathreshold concentrations(1–100 mM) of CaCl2 and CaLa was considered unpleasant.At 1 mM, CaCl2 solution was rated as 35% bitter, 32% sour, 29%sweet and 4% salty. At higher concentrations the sweet componentdiminished and the salty component increased, so that 100 mMCaCl2 was rated as 44% bitter, 20% sour, 1% sweet and 35% salty.CaLa solutions were considered to be significantly less bitterand marginally more sour than equimolar CaCl2 solutions. Thus,the taste of calcium varied with both the form and concentrationof salt tested, but included both sour and bitter components.Saltiness was identified only in high (  相似文献   

15.
棉铃虫幼虫对人类呈味物质的取食反应   总被引:2,自引:0,他引:2  
利用叶碟法在室内测定了棉铃虫对人类酸、甜、苦、咸4种基本呈味物质和麻、辣味2种植物提取物的取食反应。正交试验结果表明,棉铃虫幼虫对用甜味、苦味和辣味物质(蔗糖、奎宁和辣椒提取物)处理过的烟叶取食选择率较高,对这3种呈味物质表现出有较好的适应性;而幼虫对咸味、酸味和麻味物质(氯化钠、柠檬酸和花椒提取物)处理过的烟叶取食量较少,这3种呈味物质表现出较强的拒食活性。在选择性条件下,幼虫的取食量与花椒提取物剂量显著相关;而在非选择性条件下,幼虫的取食量与氯化钠剂量显著相关。  相似文献   

16.
Lim J  Green BG 《Chemical senses》2007,32(1):31-39
Although it has long been studied as a pure sensory irritant, the ability of capsaicin to evoke, mask, and desensitize bitter taste suggests that burning sensations and bitter taste might be closely related perceptually. The current study investigated the psychophysical relationship between bitterness and burning using 2 different approaches. In Experiment 1, spatial discrimination of 4 taste stimuli was measured in the presence or absence of capsaicin. The subjects' task was to report which of 3 swabs, spaced 1 cm apart and presented to the tongue tip, contained a taste stimulus when 1) water was presented on the other 2 swabs or 2) when 10 muM capsaicin was presented on all 3 swabs. The presence of capsaicin did not change performance on the 3 alternative forced-choice (3-AFC) task for sweet, sour, and salty stimuli, while the localization error for 1.8 mM quinine sulfate (QSO(4)) increased significantly. In Experiment 2, the perceptual similarity/dissimilarity of taste stimuli and capsaicin was measured directly using pairs of stimuli applied to opposite sides of the tongue tip on swabs separated by 2 cm. Multidimensional scaling analyses showed that capsaicin fell nearer to QSO(4) than to any other taste stimulus. Cluster analysis corroborated this finding: capsaicin was closely linked with QSO(4) and the capsaicin-QSO(4) group was separated from the other taste stimuli. The latter result indicated that bitterness was more similar to burning than to the other tastes. These findings imply that despite being mediated by different sensory modalities, bitterness and burn are qualitatively similar. We speculate that this similarity reflects a common function of these 2 sensations as sensory signals of potentially harmful stimuli.  相似文献   

17.
The taste of peptides is seldom one of the most relevant issues when one considers the many important biological functions of this class of molecules. However, peptides generally do have a taste, covering essentially the entire range of established taste modalities: sweet, bitter, umami, sour and salty. The last two modalities cannot be attributed to peptides as such because they are due to the presence of charged terminals and/or charged side chains, thus reflecting only the zwitterionic nature of these compounds and/or the nature of some side chains but not the electronic and/or conformational features of a specific peptide. The other three tastes, that is, sweet, umami and bitter, are represented by different families of peptides. This review describes the main peptides with a sweet, umami or bitter taste and their relationship with food acceptance or rejection. Particular emphasis will be given to the sweet taste modality, owing to the practical and scientific relevance of aspartame, the well‐known sweetener, and to the theoretical importance of sweet proteins, the most potent peptide sweet molecules. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Antihypertensive peptides derived from dietary proteins have long been recognised as an important source of developing functional foods with blood pressure-lowering effect. However, most of such peptides exhibit diverse tastes, such as sweet, bitter, sour and salty, which is a non-negligible aspect considered in the food development process. In the present study, several predictive quantitative structure–activity relationship (QSAR) models that correlate peptide's structural features with their multi-bioactivities and bitter taste are established at both sequence and structure levels, and the models are then used to conduct extrapolation on thousands of randomly generated, structurally diverse peptides with chain lengths ranging from two to six amino acid residues. Based on the statistical results gained from QSAR modelling, the relationship between the antihypertensive activity and bitter taste of peptides at different sequence lengths is investigated in detail. Moreover, the structural basis, energetic property and biological implication underlying peptide interactions with angiotensin-converting enzyme (ACE), a key target of antihypertensive therapy, are analysed at a complex three-dimensional structure level by using a high-level hybrid quantum mechanics/molecular mechanics scheme. It is found that (a) bitter taste is highly dependent on peptide length, whereas ACE inhibitory potency has only a modest correlation with the length, (b) dipeptides and tripeptides perform a moderate relationship between their ACE inhibition and bitterness, but the relationship could not be observed for those peptides of more than three amino acid residues and (c) the increase in sequence length does not cause peptides to exhibit substantial enhancement of antihypertensive activity; this is particularly significant for longer peptides such as pentapeptides and hexapeptides.  相似文献   

19.
Psychophysical judgments often depend on stimulus context. For example, sugar solutions are judged sweeter when a tasteless fruity aroma has been added. Response context also matters; adding a fruity aroma to sugar increases the rated sweetness when only sweetness is considered but not when fruitiness is judged as well. The interaction between stimulus context and response context has been explored more extensively in taste-odor mixtures than in taste-taste mixtures. To address this issue, subjects in the current study rated the sourness of citric acid mixed with quinine (bitter), sodium chloride (salty), and cyclamate (sweet) (stimulus context). In one condition, subjects rated sourness alone. In another, subjects rated both sourness and the other salient quality (bitterness, saltiness, or sweetness) (response context). Sourness ratings were most sensitive to response context for sour-salty mixtures (i.e., ratings of sourness alone exceeded ratings of sourness made simultaneously with saltiness) and least sensitive to context for the sour-sweet mixtures (sourness ratings made under the 2 conditions were essentially identical). Response-context effects for the sour-bitter mixture were nominally intermediate. The magnitudes of these context effects were related to judgments of qualitative similarity between citric acid and the other stimuli, consistent with prior findings. These types of context effects are relevant to the study of taste-taste mixture interactions and should provide insight into the perceptual similarities among the taste qualities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号