首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that the equilibrium between F- and G-actin in endothelial cells modulates the integrity of the actin cytoskeleton and is important for the maintenance of endothelial barrier functions in vivo and in vitro. We used the actin-depolymerizing agent cytochalasin D and jasplakinolide, an actin filament (F-actin) stabilizing and promoting substance, to modulate the actin cytoskeleton. Low doses of jasplakinolide (0.1 microM), which we have previously shown to reduce the permeability-increasing effect of cytochalasin D, had no influence on resting permeability of single-perfused mesenteric microvessels in vivo as well as on monolayer integrity. The F-actin content of cultured endothelial cells remained unchanged. In contrast, higher doses (10 microM) of jasplakinolide increased permeability (hydraulic conductivity) to the same extent as cytochalasin D and induced formation of intercellular gaps in cultured myocardial endothelial (MyEnd) cell monolayers. This was accompanied by a 34% increase of F-actin and pronounced disorganization of the actin cytoskeleton in MyEnd cells. Furthermore, we tested whether an increase of cAMP by forskolin and rolipram would prevent the cytochalasin D-induced barrier breakdown. Conditions that increase intracellular cAMP failed to block the cytochalasin D-induced permeability increase in vivo and the reduction of vascular endothelial cadherin-mediated adhesion in vitro. Taken together, these data support the hypothesis that the state of polymerization of the actin cytoskeleton is critical for maintenance of endothelial barrier functions and that both depolymerization by cytochalasin D and hyperpolymerization of actin by jasplakinolide resulted in an increase of microvessel permeability in vivo. However, cAMP, which is known to support endothelial barrier functions, seems to work by mechanisms other than stabilizing F-actin.  相似文献   

2.
Our previous experiments indicated that GTPases, other than RhoA, are important for the maintenance of endothelial barrier integrity in both intact microvessels of rats and mice and cultured mouse myocardial endothelial (MyEnd) cell monolayers. In the present study, we inhibited the endothelial GTPase Rac by Clostridium sordellii lethal toxin (LT) and investigated the relation between the degree of inhibition of Rac by glucosylation and increased endothelial barrier permeability. In rat venular microvessels, LT (200 ng/ml) increased hydraulic conductivity from a control value of 2.5 +/- 0.6 to 100.8 +/- 18.7 x 10-7 cm x s(-1) x cm H2O(-1) after 80 min. In cultured MyEnd cells exposed to LT (200 ng/ml), up to 60% of cellular Rac was glucosylated after 90 min, resulting in depolymerization of F-actin and interruptions of junctional distribution of vascular endothelial cadherin (VE-cadherin) and beta-catenin as well as the formation of intercellular gaps. To understand the mechanism by which inhibition of Rac caused disassembly of adherens junctions, we used laser tweezers to quantify VE-cadherin-mediated adhesion. LT and cytochalasin D, an actin depolymerizing agent, both reduced adhesion of VE-cadherin-coated microbeads to the endothelial cell surface, whereas the inhibitor of Rho kinase Y-27632 did not. Stabilization of actin filaments by jasplakinolide completely blocked the effect of cytochalasin D but not of LT on bead adhesion. We conclude that Rac regulates endothelial barrier properties in vivo and in vitro by 1) modulation of actin filament polymerization and 2) acting directly on the tether between VE-cadherin and the cytoskeleton.  相似文献   

3.
Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+ depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.  相似文献   

4.
We demonstrated previously that inhibition of the small GTPase Rac-1 by Clostridium sordellii lethal toxin (LT) increased the hydraulic conductivity (L(p)) of rat venular microvessels and induced gap formation in cultured myocardial endothelial cells (MyEnd). In MyEnd cells, we also demonstrated that both LT and cytochalasin D reduced cellular adhesion of vascular endothelial (VE)-cadherin-coated beads. Here we further evaluate the contribution of actin depolymerization, myosin-based contraction, and VE-cadherin linkage to the actin cytoskeleton to LT-induced permeability. The actin-depolymerizing agent cytochalasin D increased L(p) in single rat mesenteric microvessels to the same extent as LT over 80 min. However, whereas the actin-stabilizing agent jasplakinolide blunted the L(p) increase due to cytochalasin D by 78%, it had no effect on the LT response. This conforms to the hypothesis that the predominant mechanism whereby Rac-1 stabilizes the endothelial barrier in intact microvessels is separate from actin polymerization and likely at the level of the VE-cadherin linkage to the actin cytoskeleton. In intact vessels, neither inhibition of contraction (butanedione monoxime, an inhibitor of myosin ATPase) nor inhibition of Rho kinase (Y-27632) modified the response to LT, even though both inhibitors lowered resting L(p). In contrast butanedione monoxime and inhibition of myosin light chain kinase completely inhibited LT-induced intercellular gap formation and largely reduced the LT-induced permeability increase in MyEnd monolayers. These results support the hypothesis that the contractile mechanisms that contribute to the formation of large gaps between cultured endothelial cells exposed to inflammatory conditions do not significantly contribute to increased permeability in intact microvessels.  相似文献   

5.
A system was developed, using early passage porcine aortic endothelial cells cultured on a microporous substratum mounted in a two-compartment chamber. It allows the application of a transendothelial pressure gradient and quantitative measurement of the resulting flow rate of fluid. Initial application of a hydrostatic pressure gradient of 20 mmHg resulted in a continuous decrease in the flow rate which reached a steady state after a period of 1-3 h. Further variations in the pressure resulted in pressure-dependent increase or decrease in the flow rate. The physiological relevance of this response is supported by the fact that decrease in permeability occurred only in the presence of Ca2+ ions. Removal of Ca2+ from a monolayer by EGTA led to an immediate increase in the flow rate, whereas readdition of Ca2+ in concentrations between 0.5 and 20 mM was observed to cause a concentration-dependent decrease in flow rate. Initial application of pressure with Ca2+-free medium failed to produce permeability changes of the cultured endothelium. These findings indicate that the permeability of a cultured endothelium to water and solutes is pressure- and Ca2+-dependent.  相似文献   

6.
Ca2+ dependence of tight junction structure has been well documented in cultured epithelial tissues, and regulatory mechanisms have been identified. To analyse the possible control exerted on inter-Sertoli junctions, we exposed guinea-pig seminiferous tubules to the presence of a Ca2+ chelator (EGTA) and to a calmodulin blocker (Trifluoperazine, TFP) in vitro, for times ranging from 30 to 120 min. We observed the morphology of junctional complexes and the basal cytoplasmic regions in sections and replicas. Sertoli cell response to Ca2+ depletion involved several events: retraction of cells toward the base of the tubule and a consequent stretching of the points of fusion, augmented density of the cytoplasm, and destabilization of the array of intramembrane particles. Exposure of tubules to TFP resulted in disruption of the interactions between actin filaments and membrane junctional specialization, as well as a disorganization of other cytoskeletal elements. Thus, in vitro, junction integrity appears to be related to Ca2+ level, and Ca2+ depletion apparently interferes with Ca2+ distribution inside the cell and on microfilaments involved in junction regulation. Our results do not provide direct evidence for any particular mechanism of action of TFP, but a multiple effect is evident. TFP, which affects Ca2+ regulation and membrane fluidity, probably acts indirectly on junction-associated filaments. Both the experimental conditions tested suggest a Ca2+-mediated regulatory role of microfilaments of this complex junction.  相似文献   

7.
Subconfluent bovine pulmonary artery endothelial cells on rigid substrates were exposed to 1.5–15 cm H2O sustained hydrostatic pressure for up to 7 days and exhibited elongation, cytoskeletal rearrangement, increased cell proliferation, and bilayering. The role of basic fibroblast growth factor (bFGF) in the mechanism(s) of these endothelial cell responses to sustained hydrostatic pressure was investigated. Evidence that bFGF was released from endothelial cells exposed to sustained hydrostatic pressure or compression was provided by the following experimental results: (1) Cells exposed to control (3 mm H2O) pressure displayed intense nuclear and cytoplasmic bFGF staining by immunocytochemical techniques; this staining was absent in cells exposed to 10 cm H2O for 7 days. (2) Conditioned medium from endothelial cells exposed to 10 cm H2O for 7 days contained at ansferable, growth-promoting activity exhibiting heparin-Sepharose affinity, lability to both heat and freeze/thawing, and neutralization by anti-bovine bFGF. (3) Suramin (0.1 mM), a growth-factor receptor inhibitor, abrogated the proliferative and morphological responses of endothelial cells exposed to sustained hydrostatic pressure. Endothelial cells exposed to elevated hydrostatic pressure demonstrated no detectable decrement in cell viability as assessed by Trypan blue exclusion. The results of the present study indicate that hydrostatic pressure or compression can induce bFGF release from endothelial cells independent of cell injury or death; bFGF is subsequently responsible for the morphological, proliferative, and bilayering responses of endothelial cells to hydrostatic pressure. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Released into the vasculature from disrupted cells or transported to the surface of adjacent effectors, phosphatidate and related lipids may potentiate endothelial cell activation. However, the effect of these lipids on endothelial monolayer barrier integrity has not been reported. The present study documents the induction of endothelial monolayer permeability by phosphatidate. Both long (di-C18:1) and medium (di-C10; di-C8) chain length phosphatidates increased permeability of bovine pulmonary artery endothelial cell monolayers assessed using a well characterized assay system in vitro. Barrier disruption effected by dioctanoyl (di-C8) phosphatidate was markedly potentiated by the addition of propranolol, an inhibitor of endothelial cell "ecto"-phosphatidate phosphohydrolase (PAP), a lipid phosphate phosphohydrolase (LPP) that efficiently hydrolyzes extracellular substrate. Disruption of barrier function by phosphatidate did not result from its non-specific detergent characteristics, since a non-hydrolyzable but biologically inactive phosphonate analog of dioctanoyl phosphatidate, which retains the detergent characteristics of phosphatidate, did not induce permeability changes. Furthermore, neither diacylglycerol nor lyso-PA effected significant increases in monolayer permeability, indicating the observed response was due to phosphatidate rather than one of its metabolites. Phosphatidate-induced permeability was attenuated by preincubation of endothelial cells with the tyrosine kinase inhibitor, herbimycin A (10 microg/ml), and enhanced by the tyrosine phosphatase inhibitor, vanadate (100 microM), implicating a role for activation of intracellular tyrosine kinases in the response. In addition, phosphatidate increased the levels of intracellular free Ca(2+) in endothelial cells and ligated specific binding sites on endothelial cell plasma membranes, consistent with the presence of a phosphatidate receptor. Since phosphatidate generated within the plasma membrane of adherent effectors potentially interacts with endothelial membranes, we evaluated the influence of phosphatidate-enriched neutrophil plasma membranes on endothelial monolayer integrity. The effects of ectopic phosphatidate on endothelial monolayer permeability were mimicked by phosphatidate confined to neutrophil plasma membranes. We conclude that phosphatidate may be a physiologic modulator of endothelial monolayer permeability that exerts its effects by activating a receptor-linked, tyrosine kinase-dependent process which results in mobilization of intracellular stored Ca(2+)and consequent metabolic activation.  相似文献   

9.
Xu B  Chen S  Luo Y  Chen Z  Liu L  Zhou H  Chen W  Shen T  Han X  Chen L  Huang S 《PloS one》2011,6(4):e19052
Cadmium (Cd), a toxic environmental contaminant, induces oxidative stress, leading to neurodegenerative disorders. Recently we have demonstrated that Cd induces neuronal apoptosis in part by activation of the mitogen-activated protein kineses (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains elusive. Here we show that Cd elevated intracellular calcium ion ([Ca2+](i)) level in PC12, SH-SY5Y cells and primary murine neurons. BAPTA/AM, an intracellular Ca2+ chelator, abolished Cd-induced [Ca2+](i) elevation, and blocked Cd activation of MAKPs including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38, and mTOR-mediated signaling pathways, as well as cell death. Pretreatment with the extracellular Ca2+ chelator EGTA also prevented Cd-induced [Ca2+](i) elevation, MAPK/mTOR activation, as well as cell death, suggesting that Cd-induced extracellular Ca2+ influx plays a critical role in contributing to neuronal apoptosis. In addition, calmodulin (CaM) antagonist trifluoperazine (TFP) or silencing CaM attenuated the effects of Cd on MAPK/mTOR activation and cell death. Furthermore, Cd-induced [Ca2+](i) elevation or CaM activation resulted in induction of reactive oxygen species (ROS). Pretreatment with BAPTA/AM, EGTA or TFP attenuated Cd-induced ROS and cleavage of caspase-3 in the neuronal cells. Our findings indicate that Cd elevates [Ca2+](i), which induces ROS and activates MAPK and mTOR pathways, leading to neuronal apoptosis. The results suggest that regulation of Cd-disrupted [Ca2+](i) homeostasis may be a new strategy for prevention of Cd-induced neurodegenerative diseases.  相似文献   

10.
Biorheological views of endothelial cell responses to mechanical stimuli   总被引:2,自引:0,他引:2  
Sato M  Ohashi T 《Biorheology》2005,42(6):421-441
Vascular endothelial cells are located at the innermost layer of the blood vessel wall and are always exposed to three different mechanical forces: shear stress due to blood flow, hydrostatic pressure due to blood pressure and cyclic stretch due to vessel deformation. It is well known that endothelial cells respond to these mechanical forces and change their shapes, cytoskeletal structures and functions. In this review, we would like to mainly focus on the effects of shear stress and hydrostatic pressure on endothelial cell morphology. After applying fluid shear stress, cultured endothelial cells show marked elongation and orientation in the flow direction. In addition, thick stress fibers of actin filaments appear and align along the cell long axis. Thus, endothelial cell morphology is closely related to the cytoskeletal structure. Further, the dynamic course of the morphological changes is shown and the related events such as changes in mechanical stiffness and functions are also summarized. When endothelial cells were exposed to hydrostatic pressure, they exhibited a marked elongation and orientation in a random direction, together with development of centrally located, thick stress fibers. Pressured endothelial cells also exhibited a multilayered structure with less expression of VE-cadherin unlike under control conditions. Simultaneous loading of hydrostatic pressure and shear stress inhibited endothelial cell multilayering and induced elongation and orientation of endothelial cells with well-developed VE-cadherin in a monolayer, which suggests that for a better understanding of vascular endothelial cell responses one has to take into consideration the combination of the different mechanical forces such as exist under in vivo mechanical conditions.  相似文献   

11.
Cooling and freezing damage platelet membrane integrity.   总被引:6,自引:0,他引:6  
Cytoskeletal rearrangements and a membrane lipid phase transition (liquid crystalline to gel) occur in platelets on cooling from 23 to 4 degrees C. A consequence of these structural alterations is irreversible cellular damage. We investigated whether platelet membrane integrity could be preserved by (a) previously studied combinations of a calcium chelator (EGTA) and microfilament stabilizer (cytochalasin B) with apparent benefit in protecting platelets from cooling injury or (b) agents of known benefit in protecting membranes and proteins from freezing injury. Platelet function and activation before and after freezing or cooling were measured by agglutination with ristocetin, aggregation with thrombin or ADP, platelet-induced clot retraction (PICR), and expression of P-selectin. Platelets were loaded with 10 nM fluorescein diacetate. After freezing or cooling, the preparations were centrifuged and the supernatant was measured for fluorescein. For cooling experiments, fresh platelets were chilled at 4 degrees C for 1 to 21 days with or without the combination of 80 microM EGTA/AM and 2 microM cytochalasin B (EGTA/AM-CytoB) and then warmed rapidly at 37 degrees C. For freezing experiments, 5% dimethyl sulfoxide (Me2SO) or 5 mM glycerol were added to fresh platelets. The preparations were then frozen at -1 degrees C/min to -70 degrees C and then thawed rapidly at 37 degrees C. Platelet membrane integrity, as measured by supernatant levels of fluorescein, correlated inversely with platelet function. Chilling platelets at 4 degrees C with EGTA/AM-CytoB showed a gradual loss of membrane integrity, with maximum loss reached on day 7. The loss of membrane integrity preceded complete loss of function as demonstrated by PICR. In contrast, platelets chilled without these agents had complete loss of membrane integrity and function after 1 day of storage. Freezing platelets in Me2SO resulted in far less release of fluorescein than did freezing with or without other cryoprotectants (P < 0.001). This result correlated with enhanced function as demonstrated by PICR and supports earlier observations that Me2SO protects platelet membranes from freezing injury. Release of fluorescein into the surrounding medium reflected loss of membrane integrity and function in both cooled and frozen platelets. Membrane cytoskeletal rearrangements are linked to membrane changes during storage. These results may be generally applicable to the study of platelet storage.  相似文献   

12.
We have demonstrated previously that the Rho family GTPase Rac-1 is required for maintenance of endothelial barrier functions in mouse microvascular myocardial endothelial (MyEnd) cells in vitro as well as in rat mesenteric microvessels in vivo. In this study, we tested the hypothesis that specific activation of Rac-1 would stabilize microvascular endothelial barrier functions. For this purpose we used Escherichia coli Cytotoxic necrotizing factor (CNF-1) under conditions (300 ng/ml, 120 min) where it strongly activated Rac-1 and Cdc42 but not Rho A in MyEnd cells. Under these conditions, CNF-1 induced translocation of the actin-binding proteins cortactin and vasodilator-stimulated phosphoprotein (VASP) to cell junctions, increased the junction-associated actin filament belt, and reduced monolayer permeability. We also tested the effect of CNF-1 on endothelial barrier properties in vivo using single-perfused mesenteric microvessels. In contrast to cultured microvascular monolayers, CNF-1 did not reduce baseline barrier functions assayed as hydraulic conductivity (Lp). However, following 120 min pretreatment, CNF-1 significantly attenuated the peak Lp increase in response to platelet-activating factor (PAF, 10 nM) to 12.6±4×10−7 cm/(s cmH2O) compared to 46.2±10×10−7 cm/(s cmH2O) in experiments using PAF alone. These experiments indicate that activation of Rac-1 and Cdc42 stabilizes microvascular endothelial barrier functions in vitro and in vivo, likely by increasing the junction-associated actin cytoskeleton.  相似文献   

13.
以10 mmol/L CaCl2溶液处理滨梅幼苗叶片后,置于培养箱于(40±2)℃高温、光照强度(1 200±50)μmol·m-2·s-1下培养,定期测定有关生理生化指标,以探讨外源Ca2+对高温强光胁迫下滨梅幼苗的保护效应.结果显示:(1)与蒸馏水处理组相比,Ca2+处理使高温强光胁迫下滨梅幼苗叶片的脯氨酸含量显著升高,可溶性糖含量变化不明显,根系活力小幅降低;Ca2+处理有效抑制了高温强光下膜透性的加大,提高和保护了Ca2+-ATPase的活性.(2)采用Ca2+螯合剂EGTA或钙调素拮抗剂TFP对滨梅幼苗叶片同法处理并同条件胁迫时,与Ca2+处理相比,滨梅幼苗的脯氨酸、可溶性糖含量、Ca2+-ATPase活性和根系活力均明显下降,膜透性加大.研究表明,Ca2+处理能提高滨梅幼苗对高温强光的耐受性;Ca2+信号系统参与了胁迫过程中的渗透物质和Ca2+-ATPase活性等的调节.  相似文献   

14.
CD146 (S-Endo 1 Ag or MUC18) is a transmembrane glycoprotein expressed on endothelial cells on the whole vascular tree. CD146 is located at the intercellular junction where it plays a role in the cohesion of the endothelial monolayer. CD146 engagement initiates an outside-in signaling pathway involving the protein tyrosine kinases FYN and FAK as well as paxillin. Here we report that CD146 engagement by its specific monoclonal antibody in human umbilical vein endothelial cells induces a Ca(2+) influx that is sensitive to thapsigargin and EGTA treatment, indicating that CD146 engagement initiates a store-operated calcium mobilization. In addition, biochemical and pharmacological analysis revealed that CD146 engagement initiates the tyrosine phosphorylation of phospholipase C-gamma, Pyk2, and p130(Cas). Pharmacological inhibition of Ca(2+) flux with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acetoxymethyl ester and EGTA indicated that an increase in Ca(2+) is required for Pyk2 and p130(Cas) tyrosine phosphorylation. Moreover, a complex association was observed between Pyk2, p130(Cas), and paxillin. These results indicate that CD146 is coupled to a FYN-dependent pathway that triggers Ca(2+) flux via phospholipase C-gamma activation leading subsequently to the tyrosine phosphorylation of downstream targets such as Pyk2, p130(Cas), FAK, and paxillin. In addition to its role in cell-cell adhesion, CD146 is a signaling molecule involved in the dynamics of actin cytoskeleton rearrangement.  相似文献   

15.
J Singh  S Chatterjee 《Cytobios》1988,55(221):95-103
The level of calmodulin (CaM), a ubiquitous calcium-binding protein of eukaryotic cells was determined at different phases of the cell cycle in a synchronized Tetrahymena population. It was found that the concentration of CaM at G1 was approximately half of the concentration of S and this 2 x G1 level of CaM was maintained through the G2 and M stages of the cell cycle. To ascertain the role of CaM in the initiation of DNA synthesis, the cells were treated with trifluoperazine (TFP), a CaM antagonist, and EGTA (Ca2+-chelator) at the G1/S boundary. It was found that DNA synthesis was inhibited in these drug-treated cells. The uptake of the nucleotide precursor was not affected in TFP and EGTA treated cells, thus excluding the possibility of alteration in the membrane transport properties. Treatment with TFP failed to inhibit the synchronous mitotic division in Tetrahymena. The existence of a variable content of CaM through the cell cycle of Tetrahymena was demonstrated, suggesting the possible involvement of this Ca2+-binding protein in the nuclear DNA replication process.  相似文献   

16.
From studies using macrovascular endothelium, it was concluded that Rho A activation generally leads to endothelial barrier breakdown. Here, we characterized the role of Rho GTPases in endothelial barrier regulation in four different cell lines, both microvascular and macrovascular. Rho A activation by cytotoxic necrotizing factor y (CNFy) induced stress fiber formation in all cell lines. This was paralleled by gap formation and barrier breakdown in microvascular mesenteric endothelial cells (MesEnd), human dermal microvascular endothelial cells (HDMEC) as well as in macrovascular pulmonary artery endothelial cells (PAEC) but not in microvascular myocardial endothelial cells (MyEnd). In MyEnd cells, activation of Rac 1 and Cdc42 by CNF-1 strengthened barrier properties whereas in MesEnd, HDMEC and PAEC all three GTPases were activated which increased permeability in PAEC but not in MesEnd and HDMEC. In PAEC, CNF-1-induced decrease of barrier properties was blocked by the Rho kinase inhibitor Y27632 indicating that co-activation of Rho A dominated the barrier response. Inactivation of Rac 1 by toxin B or by lethal toxin (LT) compromised barrier properties in all cell lines. Taken together, Rac 1 requirement for endothelial barrier maintenance but not the destabilizing role of Rho A seems to be ubiquitous. Y. Baumer and S. Burger contributed equally.  相似文献   

17.
SPARC (secreted protein, acidic and rich in cysteine) is an extracellular, Ca(2+)-binding protein that inhibits the spreading of newly plated cells and elicits a rounded morphology in spread cells. In this study, I investigated whether the rounding effect of SPARC depends on the ability of the protein to chelate Ca2+ at the cell surface. Bovine aortic endothelial cells were plated in the presence of different concentrations of SPARC and Ca2+; control experiments were performed with 1 mM EGTA and with Mg2+. Quantitative estimates of cell rounding were calculated according to a rounding index. SPARC, at concentrations between 0.15 and 0.58 microM, elicited rounding (or prevented spreading) of cells cultured for 16-38 h in 0.5-2.0 mM Ca2+. Addition of 0.5-2.0 mM Mg2+ to cells previously rounded in the presence of SPARC did not abrogate the effect of SPARC. When the levels of extracellular Ca2+ were adjusted with 1 mM EGTA to maximum values ranging from 7.1 to 320 microM, cells displayed a rounded morphology in the presence of exogenous SPARC. Although the rounding induced by 1 mM EGTA was essentially reversed by the inclusion of 2 mM Ca2+, cultures containing these reagents together with SPARC maintained the rounded phenotype. These results do not support a mechanism that involves the abstraction of Ca2+ from proteins at the cell surface or the provision of Ca2+ from native extracellular SPARC to cells. Therefore, SPARC does not appear to act as a local chelator of extracellular Ca2+ and Mg2+ and presumably exerts its function as a modulator of cell shape via a different pathway.  相似文献   

18.
Stress-induced development of enhanced tolerance against various kinds of stresses has been observed in vascular endothelial cells as well as in several other cell types. Stress proteins are thought to play a key role in the development of stress tolerance. In this study we show that endothelial cells of various sources contain the major stress protein of the eye lens, alphaB-crystallin. In the mouse myocardial microvascular cell line, MyEnd, alphaB-crystallin as well as the heat shock proteins HSP 70i and HSP 25 display a low constitutive expression but can be significantly upregulated by sodium arsenite stress. Osmotic stress also resulted in strong upregulation of alphaB-crystallin and HSP 70i but not of HSP 25. Both osmotic and arsenite stress resulted in significant stress tolerance of MyEnd cells against glucose deprivation as assayed by lactate dehydrogenase release and overall cellular morphology. Development of stress tolerance without induction of HSP 25 indicates that HSP 25 is not essential for the protective effect. MyEnd cells from alphaB-crystallin-/- mice displayed a similar degree of stress tolerance showing that alphaB-crystallin is dispensable for protection of cells against energy depletion. The functional role of alphaB-crystallin in endothelial cells needs to be further elucidated. In our experiments HSP 70i turned out to be the only potential candidate of the stress proteins assayed to be involved in the development of tolerance against energy depletion.  相似文献   

19.
Pinocytosis in Dictyostelium discoideum axenic strain (Ax-2) cells in the growth phase is progressively inhibited at higher Ca2+ concentrations, the activity being maximal at submicromolar Ca2+ concentrations. The cytoskeletal actin content is also markedly reduced in the presence of 10 mM EGTA. This was confirmed by electronmicroscopy using intact cells and Triton X-100-insoluble cell cortices. Interestingly, the pinocytotic activity seemed to be somewhat increased in response to cytochalasin B (CB). Aggregation-competent Ax-2 cells which are usually devoid of pinocytotic activity can resume their activity considerably following treatment with 10 mM EGTA. Under these conditions, cytoskeletal actin declines markedly, as also was the case for growing Ax-2 cells. Our findings indicate a correlation between the pinocytotic activity and presence of cytoskeletal actin: reduced amounts of actin in the cell cortex seem to favour pinocytosis. Conceivably, membrane-associated actin filaments may function as a powerful anchor, restricting the flexibility of the cell membrane and thereby inhibiting the pinosome formation. Other properties of pinocytosis like a developmental change as well as the effects of pH and temperature are also described and were compared with the properties of wild-type strain, NC-4.  相似文献   

20.
Control of cell shape and locomotion by external calcium   总被引:4,自引:0,他引:4  
Dependence of locomotion of Xenopus laevis epidermal cells on calcium influx from the external medium was investigated. Inhibition of Ca2+ influx by 2 mM La3+ or 4 mM Tb3+ in the culture medium causes an immediate stop to locomotion and a loss of motion at the outer margin of the lamella; microcolliculi disappear and the entire lamella becomes flat and very thin. The cell body region enlarges by spreading into the lamella to an extent approximately coincident with the distribution of myosin. The increase in thickness of this area is the result. The cytoskeletal elements actin, alpha-actinin and myosin become homogeneously distributed throughout the cell and a great number of straight microtubules extend to the margin after 20 min in La3+-containing media. Prekeratin distribution does not change. Reduction of calcium concentration in the external medium by EGTA leads to cessation of cell locomotion. Sr2+ (1-4 mM) is also able to replace calcium for triggering locomotion. These findings point to a control of Ca2+-activated contractions of actomyosin by influx of external Ca2+. According to our model of cell locomotion [14] the contractions generate a hydrostatic pressure extending the lamella by flow of hyaloplasm towards the margin. Small swellings (microcolliculi) appearing thereby will be dislocated by a calcium-dependent sol-gel transformation in this area, which contains actin but not myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号