首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A new procedure for the rapid isolation of renal cortical brush-border and basolateral membranes from the same homogenate is described. Brush-border membranes isolated using Mg2+-EGTA precipitation were enriched 18-fold for leucine aminopeptidase and had a recovery of 32.5%. Basolateral membrane fractions were isolated using a discontinuous sucrose gradient and showed an enrichment of 10.7-fold and recovery of 12.8% using (Na+, K+)-ATPase as a marker enzyme. Lipid analysis using two-dimensional TLC separation of phospholipids and gas liquid chromatography for cholesterol showed marked differences in the lipid composition of the brush-border and basolateral membranes. The brush-border membrane had increased sphingomyelin, phosphatidylserine, ethanolamine plasmalogens, and an increased cholesterol-to-phospholipid and sphingomyelin-to-phosphatidylcholine ratio compared to the basolateral membrane. The relative turnover of total membrane and individual phospholipid species using a double isotope ratio method was carried out. Phospholipids were labeled with either phosphorus 32 and 33 or acetate (3H, 1-14C). The relative turnover of phospholipid species and cholesterol differed strikingly. Phosphatidylcholine showed a high turnover, phosphatidylethanolamine and phosphatidylinositol had intermediate values and sphingomyelin, phosphatidylserine and cholesterol had low relative turnover rates. The order of phospholipid class relative turnover was independent of the labeled precursor used. The brush-border membrane had a significantly reduced relative turnover rate for total membrane phospholipids, sphingomyelin and cholesterol compared to the basolateral membrane. These data show marked differences in the lipid composition and relative turnover rates of the phospholipid species of the brush-border and basolateral membranes. They provide a biochemical basis for the recently reported differences in brush-border and basolateral membrane fluidity and suggest independent cellular regulation of brush-border and basolateral membrane lipids.  相似文献   

2.
Summary A method for the isolation of brush-border membranes of large intestinal epithelial cells was developed, which is based on the purification of intact brush-border caps by Percoll® density-gradient centrifugation followed by separation of the vesiculated brush-border membranes on sucrose gradients. The procedure has two major advantages in comparison to known methods: 1) its first step does not depend on the determination of marker enzymes and 2) the method is applicable to rats as well as rabbits without major modifications. Due to the lack of an accepted marker for the colonic brush-border membrane the validity of the isolation procedure was tested by its application to the small intestine. Rat small intestinal brush-border membranes were enriched 21-fold when compared to the homogenate. The method was used to evaluate alkaline phosphatase as a marker enzyme for the colonic brush-border membrane. The results suggest that alkaline phosphatase is not exclusively localized in the brush-border membrane since this enzyme was also associated with membranes having different physical properties.  相似文献   

3.
Horiba N  Masuda S  Ohnishi C  Takeuchi D  Okuda M  Inui K 《FEBS letters》2003,546(2-3):276-280
We found a system of Na(+)-dependent uptake of fructose by rat renal brush-border membrane vesicles. It consisted of two saturable components, and was thought to involve at least two transporters. rNaGLT1, a novel glucose transporter in rat kidney, showed fructose uptake as well as alpha-methyl-D-glucopyranoside uptake by transfected HEK293 cells. The features of the lower affinity type of fructose transporter in the brush-border membranes, such as affinity and substrate recognition, were very comparable with those of rNaGLT1-transfected HEK293 cells. These results indicated that rNaGLT1 is a primary fructose transporter in rat renal brush-border membranes.  相似文献   

4.
Cholesterol present in intact brush-border membrane vesicles made from rabbit small intestine is a poor substrate for cholesterol oxidase (EC 1.1.3.6, from Nocardia sp. and Nocardia erythropolis). It becomes susceptible to oxidation by the enzyme only after the addition of detergent, e.g., Triton X-100, in quantities sufficient to disrupt the membrane. This is also true for cholesterol present in bilayers of small unilamellar phosphatidylcholine or phosphatidylserine vesicles made by ultrasonication. The data presented here on intestinal brush-border membrane are in good agreement with results reported on other biological membranes, e.g., from erythrocytes and vesicular stomatitis virus, but are somewhat different from those on rat intestinal brush-border membrane. Our results on phospholipid bilayers agree well with published work on model membranes. From the work presented we conclude that, with our present understanding, cholesterol oxidase can hardly be used to probe the distribution of cholesterol in biological membranes. A prerequisite for using the enzyme successfully as such a probe would be the understanding of the factors controlling the interaction of the enzyme with its substrate cholesterol. The question under which conditions cholesterol oxidase could be useful for probing the distribution and preferred location of cholesterol in biological membranes is discussed.  相似文献   

5.
Highly enriched brush-border and basolateral membranes isolated from rat renal cortex were used to study the distribution of endogenous gangliosides in the two distinct plasma membrane domains of epithelial cells. These two membrane domains differed in their glycolipid composition. The basolateral membranes contained more of both neutral and acidic glycolipids, expressed on a protein basis. In both membranes, the neutral glycolipids corresponding to mono-, di-, tri- and tetraglycosylceramides were present. The basolateral membranes contained more diglycosylceramide than the brush-border membranes. The major gangliosides found were GM4, GM3, and GD3 with minor amounts of GM1 and GD1a. The latter were identified and quantified by sensitive iodinated cholera toxin binding assays. When the distribution of individual gangliosides was calculated as a percent of total gangliosides, the brush-border membranes were enriched with GM3, GM1 and GD1a compared to the basolateral membranes, which were enriched with GD3 and GM4. The observation of a distinct distribution of glycolipids between brush-border and basolateral membranes of the same epithelial cell suggests that there may be a specific sorting and insertion process for epithelial plasma membrane glycolipids. In turn, asymmetric glycolipid biogenesis may reflect differences in glycolipid function between the two domains of the epithelial plasma membrane.  相似文献   

6.
The localization of the Na(+)-D-glucose cotransporter in rat small intestine was investigated with four monoclonal antibodies which were raised against porcine renal brush-border membrane proteins. The antibodies alter high affinity phlorizin binding or Na+ gradient-dependent D-glucose uptake in kidney and intestine. In both organs, the antibodies react with polypeptides with apparent molecular weights of 75,000 and 47,000. In pig kidney, these polypeptides were identified as components of the Na(+)-D-glucose cotransporter (Koepsell, H., K. Korn, A. Raszeja-Specht, S. Bernotat-Danielowski, D. Ollig, J. Biol. Chem. 263, 18419-18429 (1988)). The electron microscopic localization of antibody binding was investigated by immunogold labeling of ultrathin plastic sections. In villi and crypts of duodenum, jejunum and ileum the antibodies bound specifically to brush-border membranes of enterocytes and did not react with the basolateral membranes. The density of antigenic sites in brush-border membranes was highest in jejunum, intermediate in ileum and lowest in duodenum. On the tip, the middle and the basis of the villi the density of antigenic sites was similar. The data demonstrate homologous Na(+)-D-glucose cotransporters in kidney and intestine. They suggest that during maturation of the enterocytes when the total area of brush-border membrane increases, the concentration of the Na(+)-D-glucose cotransporter in the brush-border membrane remains constant. However, we found that different segments of small intestine not only contain different surface areas of the transporter-containing brush-border membrane per intestinal length but also different densities of the transporter within the brush-border membrane.  相似文献   

7.
The Ca2+ transport process by isolated renal brush-border membranes was characterized and the influence of the acidic phospholipid phosphatidic acid (PtdA) on this transport process was assessed. Ca2+ uptake by brush-border membranes exhibited saturation kinetics. It was inhibitable by a variety of multivalent cations, as well as by Ca2+-entry inhibitors, including verapamil, Ruthenium Red and gentamicin. It was selective for Ca2+ compared with Mg2+. This process was also electrophoretic since generation of K+ and anion-diffusion potentials, negative inside the vesicle, increased Ca2+ uptake. Elevations in PtdA content of brush-border membranes by either exogenous addition or endogenous generation of PtdA by incubating brush-border membranes with MgATP2- elevated the rate of Ca2+ uptake. This ATP effect could not be attributed to (Ca2+ + Mg2+)-dependent ATPase or contaminating membrane fragments. PtdA also increased the magnitude and rate of Ca2+ efflux from brush-border membranes preloaded with Ca2+. These modulations in uptake and efflux were not observed with phosphatidylcholine or phosphatidylinositol. In summary, these results are consistent with the presence of an electrophoretic uniport system for Ca2+ in renal brush-border membranes, and demonstrate that PtdA uniquely among phospholipids tested appears to facilitate transmembrane flux of Ca2+ across this membrane preparation.  相似文献   

8.
The highly differentiated plasma membrane of rabbit enterocytes constitutes an interesting model for membrane studies. Flow cytometry allows combined measurements of the size of membrane vesicles by light-scatter and fluorescence polarization at a single-particle level. The degree of fluorescence polarization of 1,6-diphenylhexa-1,3,5-triene was determined at 4, 18 and 37 degrees C in the brush-border and basolateral plasma membranes. The fluorescence polarization was considerably higher in brush-border than in basolateral membranes. After incubation with dimethyl sulphoxide, the membrane fluidity decreased in both types of membranes. Moreover, a time-effect study of dimethyl sulphoxide showed changes in fluorescence polarization. Only in brush-border membrane a temporary fluid phase was observed. The different properties of the two membrane domains in relation to the lipid-protein dynamics of enterocytes are discussed.  相似文献   

9.
A test to determine quantitatively the lectin binding sites in brush-border membranes has been developed. Highly purified bovine small intestinal brush-border membranes were prepared, and subsequently coated directly to the bottom of a microtiter plate. Soybean agglutinin conjugated with peroxidase was coupled to its binding sites in the brush-border membranes and the peroxidase activity was determined in a spectrophotometer. The number of soybean agglutinin binding sites in the brush-border membranes has been established by means of iterized computer fit analysis of the data, indicating values for maximal binding of 7.10(-7) M soybean agglutinin per mg of brush-border membrane protein and a dissociation constant of 1.5.10(-5) M.  相似文献   

10.
We investigated the contribution of the Na(+)/L-carnitine cotransporter in the transport of tetraethylammonium (TEA) by rat renal brush-border membrane vesicles. The transient uphill transport of L-carnitine was observed in the presence of a Na(+) gradient. The uptake of L-carnitine was of high affinity (K(m)=21 microM) and pH dependent. Various compounds such as TEA, cephaloridine, and p-chloromercuribenzene sulfonate (PCMBS) had potent inhibitory effects for L-carnitine uptake. Therefore, we confirmed the Na(+)/L-carnitine cotransport activity in rat renal brush-border membranes. Levofloxacin and PCMBS showed different inhibitory effects for TEA and L-carnitine uptake. The presence of an outward H(+) gradient induced a marked stimulation of TEA uptake, whereas it induced no stimulation of L-carnitine uptake. Furthermore, unlabeled TEA preloaded in the vesicles markedly enhanced [14C]TEA uptake, but unlabeled L-carnitine did not stimulate [14C]TEA uptake. These results suggest that transport of TEA across brush-border membranes is independent of the Na(+)/L-carnitine cotransport activity, and organic cation secretion across brush-border membranes is predominantly mediated by the H(+)/organic cation antiporter.  相似文献   

11.
An Na+, Pi-binding protein has been extracted from kidney and intestinal brush-border membranes with an organic solvent and has been purified by Kieselghur and Sephadex LH-60 chromatography. The molecular mass of this protein has been estimated to be about 155 kDa as determined by gel-filtration chromatography on Sepharose 2B. Under denaturing conditions, polyacrylamide-gel electrophoresis revealed a monomer of molecular mass about 70 kDa. The protein has high specificity and high affinity for Pi [K0.5 (concentration at which half-maximal binding is observed) near 10 microM]. Na2+ binding also exhibits saturation behaviour, with a K0.5 near 7.5 mM. Pi binding is inhibited by known inhibitors of Pi transport in brush-border membrane vesicles. It appears that this protein could be involved in Na+/Pi co-transport across the renal and intestinal brush-border membranes.  相似文献   

12.
Acetylcholinesterase is found in the brush-border and basolateral membranes purified from rabbit enterocytes. The sedimentation coefficients of the enzymes solubilized from two types of membrane are identical (5.5 +/- 0.2 S) and the apparent molecular weights are not significantly different (154 000 +/- 8000 for the brush-border and 145 000 +/- 8000 for the basolateral membrane enzyme). These results suggest a unique G2 molecular form for acetylcholinesterase from brush-border as well as from basolateral membranes.  相似文献   

13.
Summary A fast and easy procedure is proposed for preparing concomitantly from the same sample of intestinal mucosa of A+ rabbits, four fractions high enriched in the brush-border and basolateral plasma membrane domains, rough endoplasmic reticulum, and smooth endoplasmic reticulum plus Golgi apparatus membranes, respectively. This is the first time the technique of flow fluorometry has been applied to characterize the brush-border and basolateral membrane fractions using polyclonal or monoclonal antibodies against antigens common to or specific for these two plasma membrane domains. This technique definitely proves the presence of aminopeptidase in at least 60% of the basolateral membrane vesicles, where its level is about 4.5% of that in the brush-border membrane vesicles. The endoglycosidase H-sensitive intermediate of glycosylation of aminopeptidase N in the steady state is accumulated in both the rough and smooth endoplasmic reticulum membranes. Although the rough membrane is more extensive it contains only about 40% of this transient form.  相似文献   

14.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

15.
Functional interactions of lipids and proteins were examined in brush-border membranes isolated from the kidney cortex by studying the temperature dependence of the hydrolytic enzyme activities. A close relationship was observed for the membrane proteins and the thermotropic lipid phase transitions. Three lines of evidences were provided for such dependence: a) Arrhenius relationship of the membrane-bound enzyme activities, and the effect of temperature in native and partially delipidated membranes, b) differential scanning calorimetric study of the membrane lipid phase transitions in the native and delipidated membranes, multilamellar vesicles prepared from the membrane extracted lipids, and in vesicles from dimyristoyl phosphatidylcholine, and c) the excimer (dimer)-formation studies of the membrane extrinsic fluorescent probe, pyrene, and the resultant membrane microviscosity. The brush-border membranes were partially delipidated with BuOH and 2,2,2-trifluoroethanol. The functional interactions of the delipidated membranes, which were greatly lost on lipid removal, were largely restored by the addition of exogenous lipids in the reconstitution process, which indicate the critical dependence of the membrane integral proteins on the neighboring lipid molecules in the bulk lipid phase.  相似文献   

16.
The two parts of the bovine kidney cortex plasma membrane, the basal-lateral and the brush-border membrane, were simultaneously prepared from the same organ. Both types of membrane bound parathyrin, but only from the basal-lateral fraction was the hormone displaceable by its bioactive N-terminal fragment. In parallel, parathyrin-stimulated adenylate cyclase was predominantly found in basal-lateral membranes. The hormone was fragmented by both membrane types. Basal-lateral membranes generated fragments with a rather uniform size distribution (somewhat smaller than the intact peptide) and apparently preferred the hormone itself as a substrate. In contrast, the fragments produced by brush-border membranes were numberous small peptides.  相似文献   

17.
A novel phospholipase activity was recognized in intact, rat jejunal brush-border membranes and its effect on membrane lipid composition was evaluated following various incubation protocols. Brush-border membranes were isolated from mucosal scrapings by a combination of existing techniques. A brush-border plus nuclei fraction was first prepared by homogenization and low-speed centrifugation in isotonic mannitol, in the presence of 5 mM EDTA. Brush-border membrane vesicles were isolated from this fraction by homogenization, followed by precipitation of the remaining undesired membranes with 10 mM CaCl2. Membranes were judged to be highly purified by marker enzyme content, protein profile, and electron microscopy. In total lipid extracts, prepared immediately following membrane isolation, the ethanolamine phosphatides were found to be the major phospholipid class, accounting for nearly 45% of the total lipid phosphorus. Storage of the intact membranes, at either room temperature or at -20 degrees C, but not at -70 degrees C, resulted in a gradual and progressive hydrolysis of phosphatidylethanolamine to lysophosphatidylethanolamine. Over 60% of the total ethanolamine phospholipid was converted to the lyso form during a 2 week storage period. Incubation of the intact membranes at 37 degrees C produced a similar effect in one hour. Only small amounts of other glycerophospholipids were degraded under these conditions. Hydrolysis was specific for the sn-2 position as more than 80% of the fatty acids in the lysophosphatidylethanolamine were found to be saturated. Substitution of MgCl2 for CaCl2 in the precipitation step did not block the hydrolysis. It was concluded that rat brush-border membranes contain a Ca2+-independent phospholipase A2 with a high substrate preference for phosphatidylethanolamine. The physiological significance of this enzyme is not known.  相似文献   

18.
The topological distribution of the two major phospholipids of brush-border membrane, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), has been investigated using brush-border membrane vesicles from rabbit small intestine. Bee venom phospholipase A2 and phosphatidylcholine exchange protein from bovine liver were used as membrane probes. It is shown that the brush-border membrane retains its integrity under conditions of phospholipase hydrolysis and intermembrane phospholipid exchange. Kinetic analysis of the data of phospholipase hydrolysis and phospholipid exchange at temperatures under 10 degrees C shows that both PC and PE occur in two pools: a minor (about 25%) more readily accessible pool and a major one (about 75%) less readily available. The rate of PC exchange between these two pools is relatively fast. The half-time derived under conditions of phospholipase hydrolysis is of the order of 20 min. Under conditions of phospholipid exchange the exchange rates may be even faster. The difference in exchange kinetics observed with the two methods of probing is probably due to changes in membrane properties such as the bilayer fluidity induced by the probing process itself. It is proposed that the two pools represent the transverse distribution of the phospholipids. The two major phospholipids of brush-border membranes, PC and PE, would be distributed mainly on the inner (cytoplasmic) side of the brush-border membrane. The phospholipid exchange between the brush-border vesicles and unilamellar phosphatidylcholine vesicles in the presence of phosphatidylcholine exchange protein reveals that significant quantities of phospholipid are taken up by brush-border membrane independently, i.e., in a separate process independent of the exchange protein-catalyzed phosphatidylcholine exchange.  相似文献   

19.
Renal brush-border membrane vesicles prepared from streptozotocin-induced 4-day-diabetic rats possessed a Na+-dependent D-glucose transport system that exhibited apparent Kt and Vmax values about 2-fold greater than normal. Apparently, hyperglycemia and probably other stimuli cause the induction and membrane incorporation of a low-affinity transporter in these membranes; this increased sugar-transport capacity is retained for at least 4 weeks so long as the animals maintained or increased their body weight. Membranes prepared from 28-day-diabetic, severely ill ketoacidotic animals lose this enhanced transport ability and the decrease in Vmax was found to correlate directly with the weight loss. Furthermore, the transporter in brush-border membranes prepared from these cachectic animals had an even lower affinity for glucose than those from the acute hyperglycemic animals. That these changes in the diabetic animals represent major alterations in renal brush-border membrane construction is further supported by our observation that the specific activity of the marker enzymes, alkaline phosphatase and neutral alpha-glucosidase, are profoundly increased and decreased, respectively, in this condition.  相似文献   

20.
Photoaffinity labeling of small intestinal brush-border membrane vesicles with photolabile bile salt derivatives was performed to identify bile salt-binding polypeptides in these membranes. The derivatives used in this study were the sodium salts of 7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid, 3 beta-azido-7 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid, their respective taurine conjugates, and (11 xi-azido-12-oxo-3 alpha, 7 alpha-dihydroxy-5 beta-cholan-24-oyl)-2-aminoethanesulfonic acid. With ileal brush-border membrane vesicles, photoaffinity labeling resulted in the identification of 5 polypeptides with apparent molecular weights of 125,000, 99,000, 83,000, 67,000, and 43,000. The extent of labeling depended on the photolabile derivative employed. In jejunal brush-border membrane vesicles, polypeptides with apparent molecular weights of 125,000, 94,000, 83,000, 67,000, and 43,000 were labeled. The results indicate that the binding polypeptides involved in bile salt transport in ileal brush-border membrane vesicles are 1) similar with one exception to those concerned with bile salt transport in jejunal brush-border membranes, and 2) markedly different from those previously shown to be concerned with bile salt transport in plasma membranes of hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号