首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isolation and expansion of precursor cells in a serum-free culture system allows for the systematic characterization of their properties and the intrinsic and extrinsic signals that regulate their function. The discovery of neural stem cells in the adult mouse brain was made possible by the creation of a novel culture system subsequently termed the neurosphere assay. Therein, the dissociated adult mouse periventricular area was plated in the presence of epidermal growth factor, but in the absence of adhesive substrates, which resulted in the generation of spheres of proliferating cells that detached from the plate bottom and remained suspended in the media. Since its inception, the neurosphere culture system has been widely used in the neural precursor cell field and has been extensively adapted for the isolation and expansion of corneal, cardiac, skin, prostate, mammary and brain tumor stem cells. The original neurosphere culture protocol, which takes approximately 10 d to complete, is described here in detail.  相似文献   

2.
This protocol details a tissue culture technique that allows for quantified regeneration studies on adult retinal ganglion cells (RGCs), that is, CNS neurons. The method may also allow for elucidation of molecular cues, for example of signals relevant in neuronal survival and axon regeneration. The procedure relies on fractioned stripe culture of previously injured retina in defined culture media. Naive dendritic cell contacts of RGCs are preserved, and the system is independent of growth factors. In contrast to other techniques, the protocol is based on tissue grown from adult animals; it dispenses immature co-cultures and evaluates the outgrowth of unmyelinated neurites in a milieu lacking CNS myelin. The technique is suitable for rodent retina from mouse or rat. A growth-conditioning injury of the optic nerve is set 10 days before retinal explantation. Explants are cultured for 5-7 days. Mere preparation of a single retina should be completed within 20 min.  相似文献   

3.
Considerable recent study of the development of transmitter status in sympathetic principal neurons, both in vivo and in culture, has produced several surprising findings. In this paper we review work on cultured immature and adult principal neurons dissociated from the superior cervical ganglia of rats. The main points are; 1) Immature principal neurons that display adrenergic properties during the first postnatal week in culture can be shifted to cholinergic status, including formation of functional cholinergic synapses, by coculture with nonneuronal cells (e.g., dissociated heart cells) or by medium conditioned by such cells. Through the use of microcultures that contain only a single neuron grown on heart cells, it has been possible to demonstrate the transition from adrenergic to cholinergic function directly by serial physiological assays of the same neuron at intervals of days or weeks. 2) During this transition, the cultured neurons display adrenergic/cholinergic dual function. This dual function has also been observed in principal neurons isolated from ganglia of adult rats. 3) Some cultured neurons secrete a third transmitter, probably adenosine or a phosphorylated derivative. This purinergic function is expressed with adrenergic or cholinergic function, or with both (triple function). In some cases, the main effect exerted by a neuron on cocultured cardiac myocytes is purinergic.  相似文献   

4.
The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish.  相似文献   

5.
Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.  相似文献   

6.
During development, axonal growth cones are guided to their appropriate targets by many attractive and repulsive cues. It has become increasingly clear over the last few years that how the growth cone responds to these cues depends both on the molecular nature of the cue and on the internal state of the neuron. The unexpected result is that the same molecule can act as an attractor or as a repellent. A number of guidance cues used by neurons during development are retained in the adult nervous system, where their function is often still unclear. Most of these molecules are implicated in plasticity in the adult nervous system and can play a role (sometimes maladaptive) in neuronal regeneration after injury. A group of axonal guidance cues that has been well studied in development is the semaphorin family of secreted and membrane-anchored proteins, which has been implicated in axon steering, fasciculation, branching and synapse formation. This review focuses on semaphorin-3A (probably the best-characterized semaphorin) and its receptors (in particular neuropilin-1) in the adult nervous system and argues that semaphorin-3A plays a role in the maintenance and regeneration of adult sensory neurons.  相似文献   

7.
Successful culturing of neurons from adult animals has been historically difficult for a relatively long time. In this study, we reported the development of a novel method for the isolation and the culture of major pelvic ganglion (MPG) neurons from adult rat. The cultured cells were identified by neuron morphology and staining with neuronal marker (neurofilament-200, NF-200). The results demonstrate that the new protocol we used was reliable in obtaining a relatively high yield of MPG neurons. Furthermore, it improves the speed and simplicity in neuronal isolation. The viability of neurons can be maintained for about 2 weeks, which should be sufficient for investigating physiological and pathological processes occurring in mature major pelvic ganglia. And this may provide a useful assessment to currently available techniques for the culture of adult neurons.  相似文献   

8.
It is well known that mature neurons in the central nervous system (CNS) cannot regenerate their axons after injuries due to diminished intrinsic ability to support axon growth and a hostile environment in the mature CNS1,2. In contrast, mature neurons in the peripheral nervous system (PNS) regenerate readily after injuries3. Adult dorsal root ganglion (DRG) neurons are well known to regenerate robustly after peripheral nerve injuries. Each DRG neuron grows one axon from the cell soma, which branches into two axonal branches: a peripheral branch innervating peripheral targets and a central branch extending into the spinal cord. Injury of the DRG peripheral axons results in substantial axon regeneration, whereas central axons in the spinal cord regenerate poorly after the injury. However, if the peripheral axonal injury occurs prior to the spinal cord injury (a process called the conditioning lesion), regeneration of central axons is greatly improved4. Moreover, the central axons of DRG neurons share the same hostile environment as descending corticospinal axons in the spinal cord. Together, it is hypothesized that the molecular mechanisms controlling axon regeneration of adult DRG neurons can be harnessed to enhance CNS axon regeneration. As a result, adult DRG neurons are now widely used as a model system to study regenerative axon growth5-7.Here we describe a method of adult DRG neuron culture that can be used for genetic study of axon regeneration in vitro. In this model adult DRG neurons are genetically manipulated via electroporation-mediated gene transfection6,8. By transfecting neurons with DNA plasmid or si/shRNA, this approach enables both gain- and loss-of-function experiments to investigate the role of any gene-of-interest in axon growth from adult DRG neurons. When neurons are transfected with si/shRNA, the targeted endogenous protein is usually depleted after 3-4 days in culture, during which time robust axon growth has already occurred, making the loss-of-function studies less effective. To solve this problem, the method described here includes a re-suspension and re-plating step after transfection, which allows axons to re-grow from neurons in the absence of the targeted protein. Finally, we provide an example of using this in vitro model to study the role of an axon regeneration-associated gene, c-Jun, in mediating axon growth from adult DRG neurons9.  相似文献   

9.
The hydra nervous system shares many features with nervous systems of more complex organisms but serves as a unique model system due to its simplicity and constant regeneration. Development of neuron populations during and after hydra embryogenesis is not well understood. In this study, neurons were identified at prehatching and posthatching stages with RFamide or JD1 antisera. These populations were further subdivided into ganglion, sensory, or unclassifiable neurons, and all identified populations were statistically analyzed over developmental time. RFamide-positive neurons appeared 20 days after the cuticle formed around the embryo. The JD1-positive neuron population appeared just after hatching, but by adulthood it had surpassed the size of the RFamide-positive population. All neuron populations progressively increased through their adult levels. Density of most of the populations, however, did not. For instance, during the 5-fold increase in size that the hydra experienced between 5 days posthatching and adulthood, the number of RFamide-positive neurons rose approximately 2-fold and the number of JD1-positive neurons 4-fold. However, the density of neurons in each of these populations fell. These data do not support the hypothesis that large-scale culling of neurons during development, frequently found in other animals, occurs in hydra.  相似文献   

10.
Following permanent transection of the adult rat sciatic nerve, sensory neuron apoptosis in the contributing L4 and L5 dorsal root ganglia can be observed for at least 6 months afterwards. To establish the profile of any sensory neuron apoptosis and loss over time when axonal regeneration is allowed, serial sections of L4 and L5 ganglia were examined and the neurons counted using a stereological technique 1, 2 and 3 months after crushing the right sciatic nerve at mid-thigh level. Our results show that an identical degree of sensory neuron loss and apoptosis occurs 1 month after crush as at 1 month after permanent transection. However, at 3 months no neurons undergoing apoptosis could be observed and no significant loss could be detected in the ipsilateral ganglia when compared to unoperated controls. One explanation was a neuronal replacement mechanism, which was investigated by administering bromodeoxyuridine to rats for 1 month after sciatic nerve transection or crush, prior to detection using immunohistochemistry on sections of their ganglia after 2 months. The presence of bromodeoxyuridine in the nuclei of occasional cells that would be counted as neurons on the basis of size and morphology indicates that a process of apparent neurogenesis may underlie the profile of sensory neuron loss after axotomy.  相似文献   

11.
This protocol describes an optimized method for direct in vitro monitoring of homo- and heterotypic axon-axon interactions involved in the developmental assembly of neural circuits. The assay exploits a classical example of heterotypic axonal interactions by modeling the sequential extension of spinal motor and somatosensory neuron axons, but the procedure should be readily adaptable to other neuron types. The protocol is based on the rapid isolation and primary culture of genetically identified motor neurons combined with straightforward vital dye labeling and culture of dorsal root ganglion sensory neurons. Subsequently, axonal interactions are directly monitored via live fluorescence microscopy, whereas axon type identities can be unambiguously delineated throughout the experiments. Through chemical compound application or by using neurons derived from genetically engineered mice, the protocol facilitates the dissection of molecular pathways driving the axonal interactions that are crucial for neural pathway and circuit assembly. The whole procedure can be completed in 3 d.  相似文献   

12.
Neuronal hearing loss has become a prevalent health problem. This study focused on the function of arctigenin (ARC) in promoting survival and neuronal differentiation of mouse cochlear neural stem cells (NSCs), and its protection against gentamicin (GMC) induced neuronal hearing loss. Mouse cochlea was used to isolate NSCs, which were subsequently cultured in vitro. The effects of ARC on NSC survival, neurosphere formation, differentiation of NSCs, neurite outgrowth, and neural excitability in neuronal network in vitro were examined. Mechanotransduction ability demonstrated by intact cochlea, auditory brainstem response (ABR), and distortion product optoacoustic emissions (DPOAE) amplitude in mice were measured to evaluate effects of ARC on GMC‐induced neuronal hearing loss. ARC increased survival, neurosphere formation, neuron differentiation of NSCs in mouse cochlear in vitro. ARC also promoted the outgrowth of neurites, as well as neural excitability of the NSC‐differentiated neuron culture. Additionally, ARC rescued mechanotransduction capacity, restored the threshold shifts of ABR and DPOAE in our GMC ototoxicity murine model. This study supports the potential therapeutic role of ARC in promoting both NSCs proliferation and differentiation in vitro to functional neurons, thus supporting its protective function in the therapeutic treatment of neuropathic hearing loss in vivo.  相似文献   

13.
The nervous system of the marine mollusk Aplysia californica is relatively simple, consisting of approximately 20,000 neurons. The neurons are large (up to 1 mm in diameter) and identifiable, with distinct sizes, shapes, positions and pigmentations, and the cell bodies are externally exposed in five paired ganglia distributed throughout the body of the animal. These properties have allowed investigators to delineate the circuitry underlying specific behaviors in the animal1. The monosynaptic connection between sensory and motor neurons is a central component of the gill-withdrawal reflex in the animal, a simple defensive reflex in which the animal withdraws its gill in response to tactile stimulation of the siphon. This reflex undergoes forms of non-associative and associative learning, including sensitization, habituation and classical conditioning. Of particular benefit to the study of synaptic plasticity, the sensory-motor synapse can be reconstituted in culture, where well-characterized stimuli elicit forms of plasticity that have direct correlates in the behavior of the animal2,3. Specifically, application of serotonin produces a synaptic strengthening that, depending on the application protocol, lasts for minutes (short-term facilitation), hours (intermediate-term facilitation) or days (long-term facilitation). In contrast, application of the peptide transmitter FMRFamide produces a synaptic weakening or depression that, depending on the application protocol, can last from minutes to days (long-term depression). The large size of the neurons allows for repeated sharp electrode recording of synaptic strength over periods of days together with microinjection of expression vectors, siRNAs and other compounds to target specific signaling cascades and molecules and thereby identify the molecular and cell biological steps that underlie the changes in synaptic efficacy.An additional advantage of the Aplysia culture system comes from the fact that the neurons demonstrate synapse-specificity in culture4,5. Thus, sensory neurons do not form synapses with themselves (autapses) or with other sensory neurons, nor do they form synapses with non-target identified motor neurons in culture. The varicosities, sites of synaptic contact between sensory and motor neurons, are large enough (2-7 microns in diameter) to allow synapse formation (as well as changes in synaptic morphology) with target motor neurons to be studied at the light microscopic level.In this video, we demonstrate each step of preparing sensory-motor neuron cultures, including anesthetizing adult and juvenile Aplysia, dissecting their ganglia, protease digestion of the ganglia, removal of the connective tissue by microdissection, identification of both sensory and motor neurons and removal of each cell type by microdissection, plating of the motor neuron, addition of the sensory neuron and manipulation of the sensory neurite to form contact with the cultured motor neuron.Open in a separate windowClick here to view.(105M, flv)  相似文献   

14.
The regeneration of neuromuscular connections to the superficial flexor muscle system in the crayfish has been studied under a variety of experimental manipulations. These have provided insight into the factors that can influence the regeneration program of neurons. In this work the regeneration of the largest excitor motoneuron was studied under two different conditions: (1) when the original neuron and a transplanted neuron were growing simultaneously into a denervated target, and (2) when a transplanted neuron was growing into a target that had its original nerve supply intact. In condition 1 both the transplanted and the original neuron formed normal patterns of connectivity and synaptic strength in comparable periods of time. In condition 2 the rate of growth of the transplanted neuron is significantly reduced and does not extend into the lateral fibers of the muscle. It is concluded that the regeneration program of this neuron is not affected by the presence of other neurons growing at the same time into a denervated muscle. Since regeneration is seriously affected if growth occurs into a fully innervated target area, it is suggested that lack of growth stimuli from the target or competitive interactions between established and growing synaptic terminals could influence the regeneration program of this neuron.  相似文献   

15.
The aim was to define a primary culture system enriched in neurons using a defined culture medium, and characterize the model system as to cellular morphology and neuronal phenotypes. We found that these primary neuron enriched cultures from either newborn rat cerebral cortex or hippocampus contain small GABAergic and large glutamatergic neurons as well as astrocytes and microglia. Astrocytes in these cultures are morphologically differentiated with long, slender processes and interact with soluble factors responsible for induction and expression of the glutamate transporter GLT-1. The cultures achieve the highest expression of the vesicular glutamate transporter 1 (VGLUT1) and GLT-1 after 20 days in vitro. Conditioned media from these neuron enriched cultures also induced GLT-1 expression in primary astrocytic cultures, which were free from neurons. The amount of glutamatergic neurons guides the morphological maturation of astrocytes and GLT-1 expression both in the neuron enriched cultures and in the conditioned media supplemented astrocytic cultures. Interestingly, these cultures were not influenced or activated by the inflammatory stimulus lipopolysaccharide. This suggests that soluble factors from neurons protect microglia and astrocytes to become inflammatory reactive. In conclusion we have developed a well characterized culture model system enriched in neurons, taken from newborn rats and cultured in defined media. The neurons express different neuronal phenotypes. Such a model system is valuable when studying interactions between neurons and glial cells.  相似文献   

16.
Stem cells in the nervous system have some capacity to restore damaged tissue. Proliferation of stem cells endows them with self-renewal ability and accounts for in vitro formation of neurospheres, clonally derived colonies of floating cells. However, damage to the nervous system is not readily repaired, suggesting that the stem cells do not provide an easily recruited source of cells for regeneration. The vestibular and auditory organs, despite their limited ability to replace damaged cells, appear to contain cells with stem cell properties. These inner ear stem cells, identified by neurosphere formation and by their expression of markers of inner ear progenitors, can differentiate to hair cells and neurons. Differentiated cells obtained from inner ear stem cells expressed sensory neuron markers and, after co-culture with the organ of Corti, grew processes that extended to hair cells. The neurons expressed synaptic vesicle markers at points of contact with hair cells. Exogenous stem cells have also been used for hair cell and neuron replacement. Embryonic stem cells are one potential source of both hair cells and sensory neurons. Neural progenitors made from embryonic stem cells, transplanted into the inner ear of gerbils that had been de-afferented by treatment with a toxin, differentiated into cells that expressed neuronal markers and grew processes both peripherally into the organ of Corti and centrally. The regrowth of these neurons suggests that it may be possible to replace auditory neurons that have degenerated with neurons that restore auditory function by regenerating connections to hair cells.  相似文献   

17.
In contrast to mammals, salamanders and teleost fishes can efficiently repair the adult brain. It has been hypothesised that constitutively active neurogenic niches are a prerequisite for extensive neuronal regeneration capacity. Here, we show that the highly regenerative salamander, the red spotted newt, displays an unexpectedly similar distribution of active germinal niches with mammals under normal physiological conditions. Proliferation zones in the adult newt brain are restricted to the forebrain, whereas all other regions are essentially quiescent. However, ablation of midbrain dopamine neurons in newts induced ependymoglia cells in the normally quiescent midbrain to proliferate and to undertake full dopamine neuron regeneration. Using oligonucleotide microarrays, we have catalogued a set of differentially expressed genes in these activated ependymoglia cells. This strategy identified hedgehog signalling as a key component of adult dopamine neuron regeneration. These data show that brain regeneration can occur by activation of neurogenesis in quiescent brain regions.  相似文献   

18.
Trachea is intensely innervated with vagal afferent nerve fibers, and may play an important role in vagus nerve regeneration after axonal injury caused by trauma and surgical operation. We investigated the effects of tracheal tissue on neuronal cell survival and neurite regeneration in adult rat nodose ganglia (NG) in vitro. Co-culture with trachea significantly increased the average number of neurites regenerated from transected nerve terminals of NG explants, from 73.7 to 154.2 after 3 days, from 68 to 186.7 after 5 days, and from 31 to 101.5 after 7 days in culture. Dissociated NG neurons could continue to survive and extend neurites only in the co-existence with satellite cells in collagen gel. Co-cultured trachea improved the ratios of survival and neurite-bearing cells of NG neurons, from 56.7% and 11.1% to 72.3% and 37.6% after 4 days, and from 41.1% and 20.3% to 56.4% and 47.2% after 7 days in culture, respectively. These results imply that tracheal tissue secretes a factor, which could enhance neuronal cell survival and neurite regeneration in NG in the presence of satellite cells in vitro.  相似文献   

19.
Wnt信号在中枢神经系统发育过程中起重要的作用,控制着细胞的生长及分化.Wnt3a是Wnt家族的成员之一,对神经干细胞的增殖及分化有一定的调控作用.将重组Wnt3a腺病毒转入神经干细胞中,研究Wnt3a在定向诱导神经干细胞向多巴胺能神经元分化过程中的作用.将神经干细胞分为4组,对照组(不加任何诱导因子组)、抗坏血酸诱导组(AA组)、Wnt3a重组腺病毒诱导组(Wnt3a组)以及Wnt3a重组腺病毒加抗坏血酸诱导组(Wnt3a AA组).结果显示,Wnt3a组细胞中的多巴胺能神经元前体细胞特异性标志Nurr1表达量显著增多,Wnt3a AA组多巴胺能神经元明显多于AA组,酪氨酸羟化酶(TH)在mRNA水平上的表达是AA组的1.86倍.蛋白质印迹及免疫细胞化学染色显示,各诱导组均有TH的表达,Wnt3a组和AA组多巴胺能神经元阳性细胞数比例分别为(5.76±3.34)%和(37.42±2.54)%,与Wnt3a AA组(73.96±2.61)%比较,差异有统计学意义(P<0.05).利用高效液相色谱法检测到诱导后的细胞可分泌多巴胺.结果表明,Wnt3a可促进神经干细胞向多巴胺能神经元前体细胞分化,再通过抗坏血酸的诱导作用,在体外可获得大量的多巴胺能神经元,这些神经元有分泌多巴胺的功能.  相似文献   

20.
The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This methodology enables visualization and analysis of the cellular position of target proteins and cells throughout the entire 3D culture topography and will facilitate a more detailed analysis of the spatial relationships between cells over the course of neurogenesis and gliogenesis in vitro.Both Imbeault and Valenzuela contributed equally and should be considered joint first authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号