首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of survival of spinal motoneurons (MNs) has been shown to depend during development and after injury on a variety of neurotrophic molecules produced by skeletal muscle target tissue. Increasing evidence also suggests that other sources of trophic support prevent MNs from undergoing naturally occurring or injury-induced death. We have examined the role of endogenous and exogenous androgens on the survival of developing avian lumbar spinal MNs during their period of programmed cell death (PCD) between embryonic day (E)6 and E11 or after axotomy on E12. We found that although treatment with testosterone, dihydrotestosterone (DHT), or the androgen receptor antagonist flutamide (FL) failed to affect the number of these MNs during PCD, administration of DHT from E12 to E15 following axotomy on E12 significantly attenuated injury-induced MN death. This effect was inhibited by cotreatment with FL, whereas treatment with FL alone did not affect MN survival. Finally, we examined the spinal cord at various times during development and following axotomy on E12 for the expression of androgen receptor using the polyclonal PG-21 antibody. Our results suggest that exogenously applied androgens are capable of rescuing MNs from injury-induced cell death and that they act directly on these cells via an androgen receptor-mediated mechanism. By contrast, endogenous androgens do not appear to be involved in the regulation of normal PCD of developing avian MNs.  相似文献   

2.
The regulation of survival of spinal motoneurons (MNs) has been shown to depend during development and after injury on a variety of neurotrophic molecules produced by skeletal muscle target tissue. Increasing evidence also suggests that other sources of trophic support prevent MNs from undergoing naturally occurring or injury‐induced death. We have examined the role of endogenous and exogenous androgens on the survival of developing avian lumbar spinal MNs during their period of programmed cell death (PCD) between embryonic day (E)6 and E11 or after axotomy on E12. We found that although treatment with testosterone, dihydrotestosterone (DHT), or the androgen receptor antagonist flutamide (FL) failed to affect the number of these MNs during PCD, administration of DHT from E12 to E15 following axotomy on E12 significantly attenuated injury‐induced MN death. This effect was inhibited by cotreatment with FL, whereas treatment with FL alone did not affect MN survival. Finally, we examined the spinal cord at various times during development and following axotomy on E12 for the expression of androgen receptor using the polyclonal PG‐21 antibody. Our results suggest that exogenously applied androgens are capable of rescuing MNs from injury‐induced cell death and that they act directly on these cells via an androgen receptor‐mediated mechanism. By contrast, endogenous androgens do not appear to be involved in the regulation of normal PCD of developing avian MNs. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 585–595, 1999  相似文献   

3.
Activation of astrocytes occurs during many forms of CNS injury, but its importance for neuronal survival is poorly understood. When hippocampal cultures of neurons and astrocytes were treated from day 2–4 in vitro (DIV 2–4) with 1 μM cytosine arabinofuranoside (AraC), we observed a stellation of astrocytes, an increase in glial fibrillary acidic protein (GFAP) level as well as a higher susceptibility of the neurons to glutamate compared with cultures treated from DIV 2–4 with vehicle. To find out whether factors released into the culture medium were responsible for the observed differences in glutamate neurotoxicity, conditioned medium of AraC-treated cultures (MCMAraC) was added to vehicle-treated cultures and conditioned medium of vehicle-treated cultures (MCMvh) was added to AraC-treated cultures 2 h before and up to 18 h after the exposure to 1 mM glutamate for 1 h. MCMAraC increased glutamate neurotoxicity in vehicle-treated cultures and MCMvh reduced glutamate neurotoxicity in AraC-treated cultures. Heat-inactivation of MCMvh increased, whereas heat-inactivation of MCMAraC did not affect glutamate toxicity suggesting that heat-inactivation changed the proportion of factors in MCMvh inhibiting and exacerbating the excitotoxic injury. Similar findings were obtained using conditioned medium of pure astrocyte cultures of DIV 12 treated from DIV 2–4 with vehicle or 1 μM AraC suggesting that heat-sensitive factors in MCMvh were mainly derived from astrocytes. Treatment of hippocampal cultures with 1 mM dibutyryl-cAMP for 3 days induced an activation of the astrocytes similar to AraC and increased neuronal susceptibility to glutamate. Our findings provide evidence that activation of astrocytes impairs their ability to protect neurons after excitotoxic injury due to changes in the release of soluble and heat-sensitive factors.  相似文献   

4.
A permanent glial cell line has been established from the neonatal mouse primary mixed glial cell cultures by transfection with replication origin-defective simian virus 40 DNA. This cell line, designated OS3, has morphological similarity to type-2 astrocyte and expresses an astrocyte-specific marker, glial fibrillary acidic protein (GFAP), when cultured in the presence of 10% calf serum (CS). OS3 cells do not express the O4 antigen, galactocerebroside (GalC) and A2B5 under this culture condition. When cultured in a medium containing 2% CS or a chemically defined medium, these cells undergo morphological transformation. Some of these cells express O4 antigen and/or GalC, and the percentage of GFAP positive cells decreases under these conditions. Thus depending on the culture conditions, the OS3 cells display either type-2 astrocyte properties or immature oligodendrocyte characteristics. Furthermore, the OS3 cells show similar responses to the various growth factors as do oligodendrocyte/type-2 astrocyte (O-2A) progenitors. Therefore, the OS3 cell line is an unique mouse bipotential permanent O-2A lineage cell line which may be useful to analyze the developmental properties of these glial cells.  相似文献   

5.
In primary astrocyte cultures beta-glucosidase (EC 3.2.1.21) and beta-galactosidase (EC 3.2.1.23) showed pH optima and Km values identical to rat brain enzymes, using methylumbelliferyl glycosides and labeled gluco- and galactocerebrosides as substrates. The activities of both glycosidases increased in culture up to 3-4 weeks. In rat brain only galactosidase increased; glucosidase activity declined between 12-20 days after birth. The specific activities were two- to sixfold higher in astrocyte cultures than in rat brain. These activities were not due to uptake of enzymes from the growth medium. Secretion of beta-galactosidase, but not beta-glucosidase nor acid phosphatase could be demonstrated. These results support the suggestion of a degradative function for astrocytes in the brain.  相似文献   

6.
7.
《The Journal of cell biology》1993,122(5):1053-1065
We examined the expression of the neurotrophins (NTFs) and their receptor mRNAs in the rat trigeminal ganglion and the first branchial arch before and at the time of maxillary nerve growth. The maxillary nerve appears first at embryonic day (E)10 and reaches the epithelium of the first branchial arch at E12, as revealed by anti-L1 immunohistochemistry. In situ hybridization demonstrates, that at E10- E11, neurotrophin-3 (NT-3) mRNA is expressed mainly in the mesenchyme, but neurotrophin-4 (NT-4) mRNA in the epithelium of the first branchial arch. NGF and brain-derived neurotrophic factor (BDNF) mRNAs start to be expressed in the distal part of the first brachial arch shortly before its innervation by the maxillary nerve. Trigeminal ganglia strongly express the mRNA of trkA at E10 and thereafter. The expression of mRNAs for low-affinity neurotrophin receptor (LANR), trkB, and trkC in trigeminal ganglia is weak at E10, but increases by E11-E12. NT-3, NT-4, and more prominently BDNF, induce neurite outgrowth from explant cultures of the E10 trigeminal ganglia but no neurites are induced by NGF, despite the expression of trkA. By E12, the neuritogenic potency of NGF also appears. The expression of NT-3 and NT-4 and their receptors in the trigeminal system prior to target field innervation suggests that these NTFs have also other functions than being the target-derived trophic factors.  相似文献   

8.
Acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) are present in high levels in most areas of the embryonic rodent brain. To begin to understand the role of these growth factors in brain development, the effects of aFGF and bFGF on dissociated cell cultures prepared from embryonic and neonatal rat brain were studied. Addition of aFGF and heparin or bFGF alone to serum-free cultures of the dissociated Embryonic Day (E) 14.5 mesencephalon stimulates cell proliferation, as judged by [3H]thymidine autoradiography, leading to a maximal 75-fold increase in the total number of cells. This effect is dose-dependent with half-maximal increases at concentrations of about 5-6 ng/ml of aFGF or bFGF and is inhibited by the FGF antagonist HBGF-1U. The effect of aFGF on cell proliferation in cultures prepared from E14.5 mesencephalon is similar to that in cultures prepared from E14.5 cortex. However, in cultures prepared from E14.5 rhombencephalon or diencephalon, the proliferative effect of aFGF is much reduced. In all brain areas studied, the proliferative effect of aFGF declines with increasing age. Immunocytochemical analysis of E14.5 mesencephalic cultures demonstrated that the aFGF-induced increase in cell number is due to the proliferation of A2B5-immunoreactive (IR) glial precursor cells, but not of neuronal precursors, fibroblasts, or microglial cells. Moreover, differentiated glial fibrillary acidic protein-IR astrocytes and 2',3'-cyclic nucleotide 3'-phosphohydrolase-IR oligodendrocytes were not observed in cultures continuously treated with aFGF or bFGF, but were observed in high numbers after removal of the growth factors. These results suggest (1) that aFGF and bFGF are potent mitogens for glial precursor cells in all embryonic brain regions, (2) that the magnitude of the effects of aFGF depends on embryonic age and brain region, and (3) that both growth factors inhibit the differentiation of astrocyte or oligodendrocyte precursors. These observations made in vitro strongly support the hypothesis that FGF plays a critical role in gliogenesis and the timing of glial differentiation in the brain.  相似文献   

9.
The signaling transduction processes involved in avulsion-induced motoneuron (MN) death have not been elucidated. Using the brachial plexus root avulsion rat model, we showed that avulsion-activated phosphorylation of phospholipase-Cγ (PLCγ) and protein kinase C (PKC) occurred in injured spinal MNs within 72?h of injury. Moreover, some MNs positive for PLCγ and PKC are also positive for avulsion-induced neuronal nitric oxide synthase (nNOS). Inhibition of PLCγ/PKC signal pathway, either with PLCγ inhibitor, 1-[6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl) amino)hexyl]-1H-pyrrole-2,5-dione, or with PLCγ siRNA augmented avulsion-induced MN death. 1-[6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl) amino)hexyl]-1H-pyrrole-2,5-dione also inhibited PKC phosphorylation and exacerbated avulsion-induced reductions in the nNOS protein level in injured spinal segments. Moreover, activation of PLCγ/PKC signal pathway with PKC activator, phorbol-12-myristate-13-acetate, decreased avulsion-induced MN death. The temporal profile of PLCγ/PKC signaling appears to be crucial for the survival of spinal MNs after root avulsion. Our data suggest that PLCγ mediates, while PKC and nNOS are associated with, the avulsion-induced MN death in brachial plexus root avulsion.  相似文献   

10.
11.
Laminin is produced by early rat astrocytes in primary culture   总被引:22,自引:8,他引:14       下载免费PDF全文
The production of laminin by early rat astrocytes in primary culture was investigated by double immunofluorescence staining for laminin and the glial fibrillary acidic protein (GFAP), a defined astrocyte marker. In early cultures (3 d in vitro; 3 DIV) cytoplasmic laminin was detected in all the GFAP-positive cells which formed the major population (80%) of the nonneuronal cells present in cultures from 20- 21-d embryonic, newborn, or 5-d-old rat brains. Monensin treatment (10 microM, 4 h) resulted in accumulation of laminin in the Golgi region, located using labeled wheat germ agglutinin. Laminin started gradually to disappear from the cells with the time in culture, was absent in star-shaped, apparently mature astrocytes, but remained as pericellular matrix deposits. The disappearance of cellular laminin was dependent on the age of the animal and the time in culture so that it started earlier in cultures from 5-d-old rat brains (5 DIV) and approximately following the in vivo age difference in cultures from newborn (12 DIV) and embryonic (14 DIV) rat brains. Our results indicate that laminin is a protein of early astrocytes and also deposited by them in primary culture, thus suggesting a role for this glycoprotein in the development of the central nervous system.  相似文献   

12.
13.
d-Arabinose isomerase (EC 5.3.1.3) has been isolated from l-fucose-induced cultures of Escherichia coli K-12 and d-arabinose-induced cultures of E. coli B/r. Both enzymes were homogeneous in an ultracentrifuge and migrated as single bands upon disc electrophoresis in acrylamide gels. The s(20,w) was 14.5 x 10(-13) sec for the E. coli K-12 enzyme and 14.3 x 10(-13) sec for the E. coli B/r enzyme. The molecular weight, determined by high-speed sedimentation equilibrium, was 3.55 +/- 0.06 x 10(5) for the E. coli K-12 enzyme and 3.42 +/- 0.04 x 10(5) for the enzyme isolated from E. coli B/r. Both enzyme preparations were active wth l-fucose or d-arabinose as substrates and showed no activity on any of the other aldopentoses or aldohexoses tested. With the E. coli K-12 enzyme, the K(m) was 2.8 x 10(-1)m for d-arabinose and 4.5 x 10(-2)m for l-fucose; with the E. coli B/r enzyme, the K(m) was 1.7 x 10(-1)m for d-arabinose and 4.2 x 10(-2)m for l-fucose. Both enzymes were inhibited by several of the polyalcohols tested, ribitol, l-arabitol, and dulcitol being the strongest. Both enzymes exhibited a broad plateau of optimal catalytic activity in the alkaline range. Both enzymes were stimulated by the presence of Mn(2+) or Co(2+) ions, but were strongly inhibited by the presence of Cd(2+) ions. Both enzymes were precipitated by antisera prepared against either enzyme preparation. The amino acid composition for both proteins has been determined; a striking similarity has been detected. Both enzymes could be dissociated, by protonation at pH 2 or by dialysis against buffer containing 8 m urea, into subunits that were homogeneous in an ultracentrifuge and migrated as single bands on disc electrophoresis in acrylamide gels containing urea. The molecular weight of the subunit, determined by high-speed sedimentation equilibrium, was 9.09 +/- 0.2 x 10(4) for the enzyme from E. coli K-12 and 8.46 +/- 0.1 x 10(4) for the enzyme from E. coli B/r. On the basis of biophysical studies, both isomerases appear to be oligomeric proteins consisting of four identical subunits.  相似文献   

14.
Short-term (0.5-4 h) treatment of rat pituitary cells in culture with estradiol (E2) results in a significant decrease of Gonadotropin-Releasing Hormone (GnRH) induced LH-release. We studied whether changes in the concentrations of GnRH-receptors (GnRH-R) might account for this phenomenon: pituitary cells from adult female rats were incubated for 4 or 24 h in the presence or absence of 10(-9) M E2. Then saturation curves of D-Ala6-des-Gly10-GnRH ethylamide binding were obtained. In addition, binding studies were carried out in cultures incubated for 0.5, 1, 2 or 4 h with or without 10(-9) M E2 using a near saturating concentration of GnRH-analog. No changes of GnRH-R affinity occurred (4 h experiments: Ka in vehicle treated cells: 0.94 +/- 0.2 x 10(9) M-1, Ka in E2 treated cells: 1.06 +/- 0.3 x 10(9) M-1; 24 h experiments: Ka vehicle: 0.95 +/- 0.2 x 10(9) M-1, Ka E2: 0.82 +/- 0.3 x 10(9) M-1). The GnRH-R concentrations, however, were significantly reduced (44 +/- 3%; P less than 0.001) by 4 h E2 treatment and increased (by 68 +/- 8%; P less than 0.01) by 24 h of E2 treatment. The GnRH induced LH-release in aliquots of the same cell preparations was significantly reduced after 4 h and markedly increased after 24 h of E2 treatment. The experiments on the time-course of the reduction of D-Ala6-GnRH-binding by E2 treatment showed that the number of GnRH-R was significantly decreased (24 +/- 1%; P less than 0.05) already after 0.5 h of exposure to the estrogen. This is also the time period after which the negative E2-effect on GnRH-induced LH-release becomes significant. These data provide first evidence that the short-term negative E2-effect on GnRH induced LH-release by rat pituitary cells in culture could be mediated via a reduction of available GnRH-R.  相似文献   

15.

Background

The delivery of therapeutic genes to the central nervous system (CNS) using viral vectors represents an appealing strategy for the treatment of nerve injury and disorders of the CNS. Important factors determining CNS targeting include tropism of the viral vectors and retrograde transport of the vector particles. Retrograde transport of equine anemia virus (EIAV)-based lentiviral vectors pseudotyped with the glycoprotein derived from the Rabies virus RabERA strain from peripheral muscle to spinal motor neurons (MNs) was previously reported. Despite therapeutic effects achieved in mouse models of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), the efficiency of this approach needs to be improved for clinical translation. To date there has not been a quantitative assessment of pseudotyped HIV-1-based lentiviral vectors to transduce MNs. Here, we describe quantitative tests to analyze the retrograde transport capacity of HIV-1 vectors pseudotyped with the G glycoprotein derived from Rabies and Rabies-related viruses (Lyssaviruses).

Methods

With a view toward optimizing the retrograde transport properties of HIV-1-based lentiviral vectors, we compared the glycoproteins from different enveloped viruses belonging to the Rhabdoviridae family, genus Lyssavirus, and evaluated their ability to transduce specific cell populations and promote retrograde axonal transport. We first tested the transduction performance of these pseudotypes in vitro in SH-SY5Y neuroblastoma cells, NSC-34 neuroblastoma-spinal cord hybrid cells, and primary mixed spinal cord and pure astrocyte cultures. We then analyzed the uptake and retrograde transport of these pseudotyped vectors in vitro, using Campenot chambers. Finally, intraneural injections were performed to evaluate the in vivo retrograde axonal transport of these pseudotypes.

Results

Both the in vitro and in vivo studies demonstrated that lentiviral vectors pseudotyped with the glycoprotein derived from the Rabies virus PV strain possessed the best performance and neuronal tropism among the vectors tested.

Conclusion

Our results indicate that HIV-1-based lentiviral vectors pseudotyped with the Rabies PV glycoprotein might provide important vehicles for CNS targeting by peripheral injection in the treatment of motor neuron diseases (MND), pain, and neuropathy.  相似文献   

16.
This protocol describes the preparation of primary cell cultures from Lepidopteran midgut. These cultures have been used to identify factors that control midgut growth and differentiation, cell responses to these factors, effects of toxins on midgut growth, and the regulation of cell physiology. The protocol is divided into (1) procedures for cell collection, (2) composition of the culture, and (3) assay methods used for cell health, proliferation, and differentiation. Collection and setup require 4–6 h. Once established, a culture can survive several months at 25°C, be kept a year or longer at 4°C, or be frozen for indefinite storage.  相似文献   

17.
Minisatellites (MNs) are arrays of 5-100 nucleotide repeats that are dispersed throughout the genome of vertebrates. They demonstrate alteration in tumors and in cells exposed to various carcinogens, but the molecular mechanisms underlying the induction of mutations at MNs are largely unknown. Hypervariable MN Pc-1 isolated from the mouse genome consists of tandem repeats of d(GGCAG) flanked with locus-specific sequences at both ends. We have found that MN mutations are induced in NIH3T3 cells by treatment with okadaic acid using a Pc-1 MN fragment as a probe. In order to shed light on the molecular mechanisms, we isolated six MN Pc-1 binding proteins, pA, pB, pD, pE, pF and pG, from nuclear extracts of NIH3T3 cells treated with okadaic acid. While pA and pB bound to the G-rich strand of Pc-1, pD, pE, pF and pG bound to the complementary C-rich strand. Sequence specificities for DNA binding were revealed and one base substitution and insertion into the Pc-1 repeat unit dramatically changed the affinity of each protein, suggesting that they bind to Pc-1 and Pc-1-like MNs in vivo.  相似文献   

18.
Androgenic and estrogenic steroids enhance muscle growth in a number of species; however, the mechanism by which anabolic steroids enhance muscle growth is not known. Castrated male cattle (steers) provide a particularly good model system in which to study the effects of anabolic steroids on muscle growth because they respond dramatically to treatment with both estrogens and androgens. The goal of this study was to determine if treatment of bovine satellite cell (BSC) cultures with 17beta-estradiol (E(2)) or trenbolone (a synthetic androgen) directly affects proliferation rate or level of mRNA for estrogen receptor (ER)-alpha, androgen receptor, and growth factors that have been shown to affect muscle growth (insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3, and myostatin). BSC cultures were established from the semimembranosus muscles of steers and then treated for 48 h with various concentrations of E(2) or trenbolone ranging from 0.001 to 10 nM. IGF-I mRNA levels in proliferating BSC cultures were significantly increased at 0.01 (1.9-times control values, P < 0.02) and at 0.1, 1, and 10 nM E(2) (2.9-, 3.5-, and 3.5-times control values, respectively, P < 0.0001). Additionally both 1 and 10 nM trenbolone increased IGF-I mRNA levels to 1.7-times control values (P < 0.02). ER-alpha mRNA was detectable in BSC cultures, and levels were increased (2.3-times control levels, P < 0.001) in cultures treated with 0.001 nM E(2) but not in cultures treated with higher concentrations of E(2). Androgen receptor mRNA levels also were increased (1.5-times control levels, P < 0.02) in cultures treated with 0.001 nM trenbolone but not by treatment with higher concentrations of trenbolone. Levels of IGFBP-3 were increased (1.4-times control values, P < 0.02) by treatment with 0.001 nM E(2) but not by treatment with high concentrations of E(2). Myostatin mRNA levels were not affected by any concentration of either of the steroids. Although, levels of IGF-I mRNA were 10-times greater (P < 0.02) in fused BSC cultures than in proliferating cultures, treatment of fused cultures for 48 h with 10 nM E(2) increased IGF-I mRNA levels (2.5-times control levels, P < 0.02). Both E(2) and trenbolone increased (3)H-thymidine incorporation rate (1.5-times control levels, P < 0.001) in BSC cultures in media containing serum from which IGFBP-3 had been removed by anti-IGFBP-3 affinity chromatography. In summary, treatment of BSC cultures with either E(2) or trenbolone increased IGF-I mRNA level and proliferation rate, thus, establishing that these steroids have direct anabolic effects on cells present in the BSC culture.  相似文献   

19.
Kaech S  Banker G 《Nature protocols》2006,1(5):2406-2415
We provide protocols for preparing low-density dissociated-cell cultures of hippocampal neurons from embryonic rats or mice. The neurons are cultured on polylysine-treated coverslips, which are suspended above an astrocyte feeder layer and maintained in serum-free medium. When cultured according to this protocol, hippocampal neurons become appropriately polarized, develop extensive axonal and dendritic arbors and form numerous, functional synaptic connections with one another. Hippocampal cultures have been used widely for visualizing the subcellular localization of endogenous or expressed proteins, for imaging protein trafficking and for defining the molecular mechanisms underlying the development of neuronal polarity, dendritic growth and synapse formation. Preparation of glial feeder cultures must begin 2 weeks in advance, and it takes 5 d to prepare coverslips as a substrate for neuronal growth. Dissecting the hippocampus and plating hippocampal neurons takes 2-3 h.  相似文献   

20.
The growth of axons in three-dimensional astrocyte cultures   总被引:3,自引:0,他引:3  
The environment of the adult central nervous system (CNS) does not support axon regeneration. We have been unable to replicate this behaviour using monolayer cultures of glia, so we have developed a technique for three dimensional culture of glial cells. We have examined the growth of axons from embryonic and postnatal retina and dorsal root ganglia (DRG's) through purified three-dimensional astrocyte cultures. Neither postnatal DRG's nor adult retina were able to grow axons through astrocytes from cultures 3 weeks or more old, although some DRG axons grew in astrocyte cultures which were 10 days or less old. However axons from embryonic DRG's and retina grew axons profusely into even elderly astrocyte cultures. All the tissues grew axons into three-dimensional Schwann cell cultures. The behaviour of axons in three-dimensional glial cultures therefore reproduces the behaviour of axons in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号