首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
African trypanosomes encode three monothiol glutaredoxins (1-C-Grx1 to 3). 1-C-Grx1 has a putative CAYS active site and Cys181 as single additional cysteine. The recombinant protein forms non-covalent homodimers. As observed for other monothiol glutaredoxins, Trypanosoma brucei 1-C-Grx1 was not active in the glutaredoxin assay with hydroxyethyl disulfide and glutathione nor catalyzed the reduction of insulin disulfide. In addition, it lacked peroxidase activity and did not catalyze protein (de)glutathionylation. Upon oxidation, 1-C-Grx1 forms an intramolecular disulfide bridge and, to a minor degree, covalent dimers. Both disulfide forms are reduced by the parasite trypanothione/tryparedoxin system. 1-C-Grx1 shows mitochondrial localization. The total cellular concentration is at least 5 microm. Thus, 1-C-Grx1 is an abundant protein especially in the rudimentary organelle of the mammalian form of the parasite. Expression of 1-C-Grx1 in Grx5-deficient yeast cells with its authentic presequence targeted the protein to the mitochondria and partially restored the growth phenotype and aconitase activity of the mutant, and conferred resistance against hydroperoxides and diamide. The parasite Grx2 and 3 failed to substitute for Grx5. This is surprising because even bacterial and plant 1-Cys-glutaredoxins efficiently revert the defects, and may be due to the lack of two basic residues conserved in all but the trypanosomatid proteins.  相似文献   

2.
Glutathione (GSH) is the major intracellular thiol present in 1-10-mm concentrations in human cells. However, the redox potential of the 2GSH/GSSG (glutathione disulfide) couple in cells varies in association with proliferation, differentiation, or apoptosis from -260 mV to -200 or -170 mV. Hydrogen peroxide is transiently produced as second messenger in receptor-mediated growth factor signaling. To understand oxidation mechanisms by GSSG or nitric oxide-related nitrosylation we studied effects on glutaredoxins (Grx), which catalyze GSH-dependent thiol-disulfide redox reactions, particularly reversible glutathionylation of protein sulfhydryl groups. Human Grx1 and Grx2 contain Cys-Pro-Tyr-Cys and Cys-Ser-Tyr-Cys active sites and have three and two additional structural Cys residues, respectively. We analyzed the redox state and disulfide pairing of Cys residues upon GSSG oxidation and S-nitrosylation. Cytosolic/nuclear Grx1 was partly inactivated by both S-nitrosylation and oxidation. Inhibition by nitrosylation was reversible under anaerobic conditions; aerobically it was stronger and irreversible, indicating inactivation by nitration. Oxidation of Grx1 induced a complex pattern of disulfide-bonded dimers and oligomers formed between Cys-8 and either Cys-79 or Cys-83. In addition, an intramolecular disulfide between Cys-79 and Cys-83 was identified, predicted to have a profound effect on the three-dimensional structure. In contrast, mitochondrial Grx2 retains activity upon oxidation, did not form disulfide-bonded dimers or oligomers, and could not be S-nitrosylated. The dimeric iron sulfur cluster-coordinating inactive form of Grx2 dissociated upon nitrosylation, leading to activation of the protein. The striking differences between Grx1 and Grx2 reflect their diverse regulatory functions in vivo and also adaptation to different subcellular localization.  相似文献   

3.
Glutaredoxins are members of a superfamily of thiol disulfide oxidoreductases involved in maintaining the redox state of target proteins. In Saccharomyces cerevisiae, two glutaredoxins (Grx1 and Grx2) containing a cysteine pair at the active site had been characterized as protecting yeast cells against oxidative damage. In this work, another subfamily of yeast glutaredoxins (Grx3, Grx4, and Grx5) that differs from the first in containing a single cysteine residue at the putative active site is described. This trait is also characteristic for a number of glutaredoxins from bacteria to humans, with which the Grx3/4/5 group has extensive homology over two regions. Mutants lacking Grx5 are partially deficient in growth in rich and minimal media and also highly sensitive to oxidative damage caused by menadione and hydrogen peroxide. A significant increase in total protein carbonyl content is constitutively observed in grx5 cells, and a number of specific proteins, including transketolase, appear to be highly oxidized in this mutant. The synthetic lethality of the grx5 and grx2 mutations on one hand and of grx5 with the grx3 grx4 combination on the other points to a complex functional relationship among yeast glutaredoxins, with Grx5 playing a specially important role in protection against oxidative stress both during ordinary growth conditions and after externally induced damage. Grx5-deficient mutants are also sensitive to osmotic stress, which indicates a relationship between the two types of stress in yeast cells.  相似文献   

4.
Glutaredoxin 2 (Grx2) from Escherichia coli is distinguished from other glutaredoxins by its larger size, low overall sequence identity and lack of electron donor activity with ribonucleotide reductase. However, catalysis of glutathione (GSH)-dependent general disulfide reduction by Grx2 is extremely efficient. The high-resolution solution structure of E. coli Grx2 shows a two-domain protein, with residues 1 to 72 forming a classical "thioredoxin-fold" glutaredoxin domain, connected by an 11 residue linker to the highly helical C-terminal domain, residues 84 to 215. The active site, Cys9-Pro10-Tyr11-Cys12, is buried in the interface between the two domains, but Cys9 is solvent-accessible, consistent with its role in catalysis. The structures reveal the hither to unknown fact that Grx2 is structurally similar to glutathione-S-transferases (GST), although there is no obvious sequence homology. The similarity of these structures gives important insights into the functional significance of a new class of mammalian GST-like proteins, the single-cysteine omega class, which have glutaredoxin oxidoreductase activity rather than GSH-S-transferase conjugating activity. E. coli Grx 2 is structurally and functionally a member of this new expanding family of large glutaredoxins. The primary function of Grx2 as a GST-like glutaredoxin is to catalyze reversible glutathionylation of proteins with GSH in cellular redox regulation including stress responses.  相似文献   

5.
6.
Glutaredoxin-like proteins form a new subgroup of glutaredoxins with a serine replacing the second cysteine in the CxxC-motif of the active site. Yeast Grx5 is the only glutaredoxin-like protein studied biochemically so far. We identified and cloned three genes encoding glutaredoxin-like proteins from the malaria parasite Plasmodium falciparum (Pf Glp1, Pf Glp2, and Pf Glp3) containing a conserved cysteine in the CGFS-, CKFS-, and CKYS-motif, respectively. Here, we describe biochemical properties of Pf Glp1 and Pf Glp2. Cys 99, the only cysteine residue in Pf Glp1, has a pK(a) value as low as 5.5 and is able to mediate covalent homodimerization. Monomeric and dimeric Pf Glp1 react with GSSG and GSH, respectively. Pf Glp2 is monomeric and both of its cysteine residues can be glutathionylated. Molecular models reveal a thioredoxin fold for the putative C-terminal domain of Pf Glp1, Pf Glp2, and Pf Glp3, as well as conserved residues presumably required for glutathione binding. However, Pf Glp1 and Pf Glp2 neither possess activity in a classical glutaredoxin assay nor display activity as glutathione peroxidase or glutathione S-transferase. Mutation of Ser 102 in the CGFS-motif of Pf Glp1 to cysteine did not generate glutaredoxin activity either. We conclude that, despite their ability to react with glutathione, glutaredoxin-like proteins are a mechanistically and functionally heterogeneous group with only little similarities to canonical glutaredoxins.  相似文献   

7.
Glutaredoxins are ubiquitous proteins that catalyze the reduction of disulfides via reduced glutathione (GSH). Escherichia coli has three glutaredoxins (Grx1, Grx2, and Grx3), all containing the classic dithiol active site CPYC. We report the cloning, expression, and characterization of a novel monothiol E. coli glutaredoxin, which we name glutaredoxin 4 (Grx4). The protein consists of 115 amino acids (12.7 kDa), has a monothiol (CGFS) potential active site and shows high sequence homology to the other monothiol glutaredoxins and especially to yeast Grx5. Experiments with gene knock-out techniques showed that the reading frame encoding Grx4 was essential. Grx4 was inactive as a GSH-disulfide oxidoreductase in a standard glutaredoxin assay with GSH and hydroxyethyl disulfide in a complete system with NADPH and glutathione reductase. An engineered CGFC active site mutant did not gain activity either. Grx4 in reduced form contained three thiols, and treatment with oxidized GSH resulted in glutathionylation and formation of a disulfide. Remarkably, this disulfide of Grx4 was a direct substrate for NADPH and E. coli thioredoxin reductase, whereas the mixed disulfide was reduced by Grx1. Reduced Grx4 showed the potential to transfer electrons to oxidized E. coli Grx1 and Grx3. Grx4 is highly abundant (750-2000 ng/mg of total soluble protein), as determined by a specific enzyme-link immunosorbent assay, and most likely regulated by guanosine 3',5'-tetraphosphate upon entry to stationary phase. Grx4 was highly elevated upon iron depletion, suggesting an iron-related function for the protein.  相似文献   

8.
The Saccharomyces cerevisiae genome encodes three proteins that display similarities with human GSTOs (Omega class glutathione S-transferases) hGSTO1-1 and hGSTO2-2. The three yeast proteins have been named Gto1, Gto2 and Gto3, and their purified recombinant forms are active as thiol transferases (glutaredoxins) against HED (beta-hydroxyethyl disulphide), as dehydroascorbate reductases and as dimethylarsinic acid reductases, while they are not active against the standard GST substrate CDNB (1-chloro-2,4-dinitrobenzene). Their glutaredoxin activity is also detectable in yeast cell extracts. The enzyme activity characteristics of the Gto proteins contrast with those of another yeast GST, Gtt1. The latter is active against CDNB and also displays glutathione peroxidase activity against organic hydroperoxides such as cumene hydroperoxide, but is not active as a thiol transferase. Analysis of point mutants derived from wild-type Gto2 indicates that, among the three cysteine residues of the molecule, only the residue at position 46 is required for the glutaredoxin activity. This indicates that the thiol transferase acts through a monothiol mechanism. Replacing the active site of the yeast monothiol glutaredoxin Grx5 with the proposed Gto2 active site containing Cys46 allows Grx5 to retain some activity against HED. Therefore the residues adjacent to the respective active cysteine residues in Gto2 and Grx5 are important determinants for the thiol transferase activity against small disulphide-containing molecules.  相似文献   

9.
WhiB family of protein is emerging as one of the most fascinating group and is implicated in stress response as well as pathogenesis via their involvement in diverse cellular processes. Surprisingly, available in vivo data indicate an organism specific physiological role for each of these proteins. The WhiB proteins have four conserved cysteine residues where two of them are present in a C-X-X-C motif. In thioredoxins and similar proteins, this motif works as an active site and confers thiol-disulfide oxidoreductase activity to the protein. The recombinant WhiB1/Rv3219 was purified in a single step from Escherichia coli using Ni(2+)-NTA affinity chromatography and was found to exist as a homodimer. Mass spectrometry of WhiB1 shows that the four cysteine residues form two intramolecular disulfide bonds. Using intrinsic tryptophan fluorescence as a measure of redox state, the redox potential of WhiB1 was calculated as -236+/-2mV, which corresponds to the redox potential of many cytoplasmic thioredoxin-like proteins. WhiB1 catalyzed the reduction of insulin disulfide thus clearly demonstrating that it functions as a protein disulfide reductase. Present study for the first time suggests that WhiB1 may be a part of the redox network of Mycobacterium tuberculosis through its involvement in thiol-disulfide exchange with other cellular proteins.  相似文献   

10.
DsbC, a member of the Dsb family in the periplasm of Gram-negative bacteria, is not only a disulfide isomerase but also a chaperone. Five DsbC mutants with Cys in the active site sequence of Cys(98)-Gly-Tyr-Cys(101) and the nonactive site disulfide Cys(141)-Cys(163) replaced by Ser have been studied. The results show that the active site Cys residues are necessary for enzyme activities but not required for chaperone activity, while the lack of the nonactive site disulfide results in a decreased chaperone activity in assisting the reactivation of denatured d-glyceraldehyde-3-phosphate dehydrogenase but has no effect on enzyme activities. Wild-type DsbC was overexpressed and correctly processed as a soluble periplasmic protein. Mutation in one of these Cys residues results in aggregation or extracellular/membrane locations, but does not affect the proper processing. DsbC mutated in either Cys residue of nonactive site disulfide shows higher sensitivity to unfolding by guanidine hydrochloride and slower refolding compared with wild-type DsbC and the active site Cys mutants. The above results provide experimental evidence for structural role of the nonactive site disulfide in folding and biological activities of DsbC.  相似文献   

11.
Glutaredoxin (Grx) is a glutathione-dependent hydrogen donor for ribonucleotide reductase. Today glutaredoxins are known as a multifunctional family of GSH-disulfide-oxidoreductases belonging to the thioredoxin fold superfamily. In contrast to Escherichia coli and yeast, a single human glutaredoxin is known. We have identified and cloned a novel 18-kDa human dithiol glutaredoxin, named glutaredoxin-2 (Grx2), which is 34% identical to the previously known cytosolic 12-kDa human Grx1. The human Grx2 sequence contains three characteristic regions of the glutaredoxin family: the dithiol/disulfide active site, CSYC, the GSH binding site, and a hydrophobic surface area. The human Grx2 gene, located at chromosome 1q31.2--31.3, consisted of five exons that were transcribed to a 0.9-kilobase human Grx2 mRNA ubiquitously expressed in several tissues. Two alternatively spliced Grx2 mRNA isoforms that differed in their 5' region were identified. These corresponded to alternative proteins with a common 125-residue C-terminal Grx domain but with different N-terminal extensions of 39 and 40 residues, respectively. The 125-residue Grx domain and the two full-length variants were expressed in E. coli and exhibited GSH-dependent hydroxyethyl disulfide and dehydroascorbate reducing activities. Western blot analysis of subcellular fractions from Jurkat cells with a specific anti-Grx2 antibody showed that human Grx2 was predominantly located in the nucleus but also present in the mitochondria. We further showed that one of the mRNA isoforms corresponding to Grx2a encoded a functional N-terminal mitochondrial translocation signal.  相似文献   

12.
The ubiquitous glutaredoxin protein family is present in both prokaryotes and eukaryotes, and is closely related to the thioredoxins, which reduce their substrates using a dithiol mechanism as part of the cellular defense against oxidative stress. Recently identified monothiol glutaredoxins, which must use a different functional mechanism, appear to be essential in both Escherichia coli and yeast and are well conserved in higher order genomes. We have employed high resolution NMR to determine the three-dimensional solution structure of a monothiol glutaredoxin, the reduced E. coli Grx4. The Grx4 structure comprises a glutaredoxin-like alpha-beta fold, founded on a limited set of strictly conserved and structurally critical residues. A tight hydrophobic core, together with a stringent set of secondary structure elements, is thus likely to be present in all monothiol glutaredoxins. A set of exposed and conserved residues form a surface region, implied in glutathione binding from a known structure of E. coli Grx3. The absence of glutaredoxin activity in E. coli Grx4 can be understood based on small but significant differences in the glutathione binding region, and through the lack of a conserved second GSH binding site. MALDI experiments suggest that disulfide formation on glutathionylation is accompanied by significant structural changes, in contrast with dithiol thioredoxins and glutaredoxins, where differences between oxidized and reduced forms are subtle and local. Structural and functional implications are discussed with particular emphasis on identifying common monothiol glutaredoxin properties in substrate specificity and ligand binding events, linking the thioredoxin and glutaredoxin systems.  相似文献   

13.
Glutaredoxin (Grx) and protein-disulfide isomerase (PDI) are members of the thioredoxin superfamily of thiol/disulfide exchange catalysts. Thermodynamically, rat PDI is a 600-fold better oxidizing agent than Grx1 from Escherichia coli. Despite that, Grx1 is a surprisingly good protein oxidase. It catalyzes protein disulfide formation in a redox buffer with an initial velocity that is 30-fold faster than PDI. Catalysis of protein and peptide oxidation by the individual catalytic domains of PDI and by a Grx1-PDI chimera show that differences in active site chemistry are fundamental to their oxidase activity. Mutations in the active site cysteines reveal that Grx1 needs only one cysteine to catalyze rapid substrate oxidation, whereas PDI requires both cysteines. Grx1 is a good oxidase because of the high reactivity of a Grx1-glutathione mixed disulfide, and PDI is a good oxidase because of the high reactivity of the disulfide between the two active site cysteines. As a protein disulfide reductase, Grx1 is also superior to PDI. It catalyzes the reduction of nonnative disulfides in scrambled ribonuclease and protein-glutathione mixed disulfides 30-180 times faster than PDI. A multidomain structure is necessary for PDI to catalyze effective protein reduction; however, placing Grx1 into the PDI multidomain structure does not enhance its already high reductase activity. Grx1 and PDI have both found mechanisms to enhance active site reactivity toward proteins, particularly in the kinetically difficult direction: Grx1 by providing a reactive glutathione mixed disulfide to supplement its oxidase activity and PDI by utilizing its multidomain structure to supplement its reductase activity.  相似文献   

14.
Redox-sensitive yellow fluorescent protein (rxYFP) contains a dithiol disulfide pair that is thermodynamically suitable for monitoring intracellular glutathione redox potential. Glutaredoxin 1 (Grx1p) from yeast is known to catalyze the redox equilibrium between rxYFP and glutathione, and here, we have generated a fusion of the two proteins, rxYFP-Grx1p. In comparison to isolated subunits, intramolecular transfer of reducing equivalents made the fusion protein kinetically superior in reactions with glutathione. The rate of GSSG oxidation was thus improved by a factor of 3300. The reaction with GSSG most likely takes place entirely through a glutathionylated intermediate and not through transfer of an intramolecular disulfide bond. However, during oxidation by H(2)O(2), hydroxyethyl disulfide, or cystine, the glutaredoxin domain reacted first, followed by a rate-limiting (0.13 min(-)(1)) transfer of a disulfide bond to the other domain. Thus, reactivity toward other oxidants remains low, giving almost absolute glutathione specificity. We have further studied CPYC --> CPYS variants in the active site of Grx1p and found that the single Cys variant had elevated oxidoreductase activity separately and in the fusion. This could not be ascribed to the lack of an unproductive side reaction to glutaredoxin disulfide. Instead, slower alkylation kinetics with iodoacetamide indicates a better leaving-group capability of the remaining cysteine residue, which can explain the increased activity.  相似文献   

15.
Glutaredoxin (Grx)-catalyzed deglutathionylation of protein-glutathione mixed disulfides (protein-SSG) serves important roles in redox homeostasis and signal transduction, regulating diverse physiological and pathophysiological events. Mammalian cells have two Grx isoforms: Grx1, localized to the cytosol and mitochondrial intermembrane space, and Grx2, localized primarily to the mitochondrial matrix [Pai, H. V., et al. (2007) Antioxid. Redox Signaling 9, 2027-2033]. The catalytic behavior of Grx1 has been characterized extensively, whereas Grx2 catalysis is less well understood. We observed that human Grx1 and Grx2 exhibit key catalytic similarities, including selectivity for protein-SSG substrates and a nucleophilic, double-displacement, monothiol mechanism exhibiting a strong commitment to catalysis. A key distinction between Grx1- and Grx2-mediated deglutathionylation is decreased catalytic efficiency ( k cat/ K M) of Grx2 for protein deglutathionylation (due primarily to a decreased k cat), reflecting a higher p K a of its catalytic cysteine, as well as a decreased enhancement of nucleophilicity of the second substrate, GSH. As documented previously for hGrx1 [Starke, D. W., et al. (2003) J. Biol. Chem. 278, 14607-14613], hGrx2 catalyzes glutathione-thiyl radical (GS (*)) scavenging, and it also mediates GS transfer (protein S-glutathionylation) reactions, where GS (*) serves as a superior glutathionyl donor substrate for formation of GAPDH-SSG, compared to GSNO and GSSG. In contrast to its lower k cat for deglutathionylation reactions, Grx2 promotes GS-transfer to the model protein substrate GAPDH at rates equivalent to those of Grx1. Estimation of Grx1 and Grx2 concentrations within mitochondria predicts comparable deglutathionylation activities within the mitochondrial subcompartments, suggesting localized regulatory functions for both isozymes.  相似文献   

16.
We have characterized the properties and putative role of a mammalian thioredoxin-like protein, ERp16 (previously designated ERp18, ERp19, or hTLP19). The predicted amino acid sequence of the 172-residue human protein contains an NH(2)-terminal signal peptide, a thioredoxin-like domain with an active site motif (CGAC), and a COOH-terminal endoplasmic reticulum (ER) retention sequence (EDEL). Analyses indicated that the mature protein (comprising 146 residues) is generated by cleavage of the 26-residue signal peptide and is localized in the lumen of the ER. Biochemical experiments with the recombinant mature protein revealed it to be a thioldisulfide oxidoreductase. Its redox potential was about -165 mV; its active site cysteine residue Cys(66) was nucleophilic with a pK(a) value of approximately 6.6; it catalyzed the formation, reduction, and isomerization of disulfide bonds, with the unusual CGAC active site motif being responsible for these activities; and it existed as a dimer and underwent a redox-dependent conformational change. The observations that the redox potential of ERp16 (-165 mV) was within the range of that of the ER (-135 to -185 mV) and that ERp16 catalyzed disulfide isomerization of scrambled ribonuclease A suggest a role for ERp16 in protein disulfide isomerization in the ER. Expression of ERp16 in HeLa cells inhibited the induction of apoptosis by agents that elicit ER stress, including brefeldin A, tunicamycin, and dithiothreitol. In contrast, expression of a catalytically inactive mutant of ERp16 potentiated such apoptosis, as did depletion of ERp16 by RNA interference. Our results suggest that ERp16 mediates disulfide bond formation in the ER and plays an important role in cellular defense against prolonged ER stress.  相似文献   

17.
Grx5 is a yeast mitochondrial protein involved in iron-sulfur biogenesis that belongs to a recently described family of monothiolic glutaredoxin-like proteins. No member of this family has been biochemically characterized previously. Grx5 contains a conserved cysteine residue (Cys-60) and a non-conserved one (Cys-117). In this work, we have purified wild type and mutant C60S and C117S proteins and characterized their biochemical properties. A redox potential of -175 mV was calculated for wild type Grx5. The pKa values obtained by titration of mutant proteins with iodoacetamide at different pHs were 5.0 for Cys-60 and 8.2 for Cys-117. When Grx5 was incubated with glutathione disulfide, a transient mixed disulfide was formed between glutathione and the cystein 60 of the protein because of its low pKa. Binding of glutathione to Cys-60 promoted a decrease in the Cys-117 pKa value that triggered the formation of a disulfide bond between both cysteine residues of the protein, indicating that Cys-117 plays an essential role in the catalytic mechanism of Grx5. The disulfide bond in Grx5 could be reduced by GSH but at a rate at least 20 times slower than that observed for the reduction of glutaredoxin 1 from E. coli, a dithiolic glutaredoxin. This slow reduction rate could suggest that GSH may not be the physiologic reducing agent of Grx5. The fact that wild type Grx5 efficiently reduced a glutathiolated protein used as a substrate indicated that Grx5 may act as a thiol reductase inside the mitochondria.  相似文献   

18.
The 5'-adenylyl sulfate (APS) reductase from the marine macrophytic green alga Enteromorpha intestinalis uses reduced glutathione as the electron donor for the reduction of APS to 5'-AMP and sulfite. The E. intestinalis enzyme (EiAPR) is composed of a reductase domain and a glutaredoxin-like C-terminal domain. The enzyme contains a single [4Fe-4S] cluster as its sole prosthetic group. Three of the enzyme's eight cysteine residues (Cys166, Cys257, and Cys260) serve as ligands to the iron-sulfur cluster. Site-directed mutagenesis experiments and resonance Raman spectroscopy are consistent with the presence of a cluster in which only three of the four ligands to the cluster irons contributed by the protein are cysteine residues. Site-directed mutagenesis experiments suggest that the thiol group of Cys250, a residue found only in algal APS reductases, is not an absolute requirement for activity. The other four cysteines that do not serve as cluster ligands, all of which are required for activity, are involved in the formation of two redox-active disulfide/dithiol couples. The couple involving Cys342 and Cys345 has an E(m) value at pH 7.0 of -140 mV, and the one involving Cys165 and Cys285 has an E(m) value at pH 7.0 of -290 mV. The C-terminal portion of EiAPR, expressed separately, exhibits the cystine reductase activity characteristic of glutaredoxins. It is proposed that the Cys342-Cys345 disulfide provides the site for entry of electrons from reduced glutathione and that the Cys166-Cys285 disulfide may serve as a structural element that is essential for keeping the enzyme in the catalytically active conformation.  相似文献   

19.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

20.
Mercuric reductase, with FAD and a reducible disulfide at the active site, catalyzes the two-electron reduction of Hg(II) by NADPH. Addition of reducing equivalents rapidly produces a spectrally distinct EH2 form of the enzyme containing oxidized FAD and reduced active site thiols. Formation of EH2 has previously been reported to require only 2 electrons for reduction of the active site disulfide. We present results of anaerobic titrations of mercuric reductase with NADPH and dithionite showing that the equilibrium conversion of oxidized enzyme to EH2 actually requires 2 equiv of reducing agent or 4 electrons. Kinetic studies conducted both at 4 degrees C and at 25 degrees C indicate that reduction of the active site occurs rapidly, as previously reported [Sahlman, L., & Lindskog, S. (1983) Biochem. Biophys. Res. Commun. 117, 231-237]; this is followed by a slower reduction of another redox group via reaction with the active site. Thiol titrations of denatured Eox and EH2 enzyme forms show that an additional disulfide is the group in communication with the active site. [14C]Iodoacetamide labeling experiments demonstrate that the C-terminal residues, Cys558 and Cys559, are involved in this disulfide. The fluorescence, but not the absorbance, of the enzyme-bound FAD was found to be highly dependent on the redox state of the C-terminal thiols. Thus, Eox with Cys558 and Cys559 as thiols exhibits less than 50% of the fluorescence of Eox where these residues are present as a disulfide, indicating that the thiols remain intimately associated with the active site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号