首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An activity that can promote homologous pairing and strand transfer between suitable DNA substrates has been partially purified from human skin fibroblasts and from Hela cells. The strand transfer reaction was investigated with DNA substrates consisting of single-stranded circular and duplex linear phage DNA. It requires ATP, and under optimal conditions yields heteroduplex molecules containing one strand from each parental DNA substrate. The reactions appears to be of the same general nature as those mediated by RecA proteins of Escherichia coli and the Rec1 protein of Ustilago maydis.  相似文献   

2.
A protein, which facilitates assembly of a nucleosome-like structure in vitro, was previously partially purified from mouse FM3A cells [Ishimi, Y. et al. (1983) J. Biochem. (Tokyo) 94, 735-744]. The protein has been purified to approximately 80% from FM3A cells by using histone-Sepharose column chromatography. It sedimented at 4.6 S and had a molecular mass of 53kDa. A preincubation of core histones with the 53-kDa peptide before DNA addition was necessary for the nucleosome assembly. The 53-kDa peptide bound to core histones and formed a 12-S complex. This complex contained stoichiometrical amounts of the 53-kDa peptide and core histones, and the core histones in this complex were composed of equal amounts of H2A, H2B, H3 and H4 histones. The nucleosomes were assembled by adding pBR322 DNA to the 12-S complex. When mononucleosome DNA and core histones were mixed in the presence of the 53-kDa peptide, formation of a 10.5-S complex was observed. The complex contained DNA and core histones in equal amounts, while no 53-kDa peptide was detected in the complex. From above results it is suggested that the 53-kDa peptide facilitates nucleosome assembly by mediating formation of histone octamer and transferring it to DNA. Rat antibody against the 53-kDa peptide did not bind to nucleoplasmin from Xenopus eggs. The relationship between the 53-kDa peptide and nucleoplasmin is discussed.  相似文献   

3.
Networks of DNA and RecA protein are intermediates in homologous pairing   总被引:16,自引:0,他引:16  
S S Tsang  S A Chow  C M Radding 《Biochemistry》1985,24(13):3226-3232
Partial coating of single-stranded DNA by recA protein causes its aggregation, but conditions that promote complete coating inhibit independent aggregation of single strands and, instead, cause the mutually dependent conjunction of single- and double-stranded DNA in complexes that sediment at more than 10 000 S. This coaggregation is independent of homology but otherwise shares key properties of homologous pairing of single strands with duplex DNA: both processes require ATP, MgCl2, and stoichiometric amounts of recA protein; both are very sensitive to inhibition by salt and ADP. Coaggregates are closed domains that are intermediates in homologous pairing: they form faster than joint molecules, they include virtually all of the DNA in the reaction mixture, and they yield joint molecules nearly an order of magnitude faster than they exchange DNA molecules with the surrounding solution. The independent aggregation of single-stranded DNA differs in all respects except the requirement for Mg2+, and its properties correlate instead with those associated with the renaturation of complementary single strands by recA protein.  相似文献   

4.
DNA polymerase-alpha was purified from the cytosol of blast cells of a patient with acute lymphoblastic leukemia by ammonium sulfate fractionation and successive column chromatographies. The purified enzyme had a specific activity of 2943 units/mg protein with activated calf thymus DNA as a template. The enzyme sediments under high-salt conditions as a homogeneous band at 7.2 S and free from other DNA polymerases (beta, gamma) and terminal deoxynucleotidyl transferase activity. The native molecular weight of the enzyme from gel filtration and glycerol gradient centrifugation was found to be 175 000. The values of Stokes radius (53 A), diffusion coefficient (4.05 x 10(-7) cm2/s) and frictional ratio (1.42) determined by gel filtration suggest that the native enzyme is compact and globular. Antibodies to DNA polymerase-alpha were raised in rabbits. These antibodies, partially purified by 50% ammonium sulfate saturation and Sephadex G-200 chromatography, gave one precipitin band on immunodiffusion and inactivate DNA polymerase-alpha-. This antibody preparation also inhibited, in vitro, the activity of DNA polymerase-alpha from calf thymus, phytohemagglutinin-stimulated normal human lymphocytes, as well as that from other leukemic cells. Thus, DNA polymerase-alpha from calf thymus and human leukemic cells resemble each other in antibody specificity.  相似文献   

5.
Kurumizaka H  Aihara H  Ikawa S  Shibata T 《FEBS letters》2000,477(1-2):129-134
The DNA molecules bound to RecA filaments are extended 1.5-fold relative to B-form DNA. This extended DNA structure may be important in the recognition of homology between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). In this study, we show that the K286N mutation specifically impaired the dsDNA unwinding and homologous pairing activities of RecA, without an apparent effect on dsDNA binding itself. In contrast, the R243Q mutation caused defective dsDNA unwinding, due to the defective dsDNA binding of the C-terminal domain of RecA. These results provide new evidence that dsDNA unwinding is essential to homology recognition between ssDNA and dsDNA during homologous pairing.  相似文献   

6.
We report the purification of a phospholipid transfer protein from human platelets. This protein preferentially transfers phosphatidylinositol, with phosphatidylcholine and phosphatidylglycerol being transferred to a lesser extent. Phosphatidylethanolamine is not transferred. Transfer activity is detected by measuring the transfer of radiolabeled phospholipids between two populations of small unilamellar vesicles. The protein was purified approximately 1000-fold over the platelet cytosol by chromatography on Sephadex G-75, sulfooxyethyl cellulose, and hydroxylapatite. The molecular weight of this protein appears to be 28 000 as determined by gel filtration chromatography. When the purified protein is analyzed on sodium dodecyl sulfate-polyacrylamide gels, two major components and several minor ones are observed. The molecular weight of the two major bands are 28 600 and 29 200. Isoelectric focusing of the platelet cytosol yielded phosphatidylinositol and phosphatidylcholine transfer activity at pH 5.6 and 5.9. The platelet phospholipid transfer protein is able to catalyze the transfer of phosphatidylinositol and phosphatidylcholine between vesicles and human platelet plasma membranes. One possible physiological role for this transfer protein is an involvement in the rapid turnover of inositol-containing lipids which occurs upon exposure of platelets to various stimuli.  相似文献   

7.
We have purified the two major isozymes of the L-isoaspartyl/D-aspartyl protein methyltransferase from both human and bovine erythrocytes. These four enzymes all have polypeptide molecular weights of approximately 26,500 and appear to be monomers in solution. Each of these enzymes cross-reacts with antibodies directed against protein carboxyl methyltransferase I from bovine brain. Their structures also appear to be similar when analyzed by dodecyl sulfate gel electrophoresis for the large fragments produced by digestion with Staphylococcus aureus protease V8 or when analyzed by high-performance liquid chromatography (HPLC) for tryptic peptides. The structural relatedness of these enzymes was confirmed by sequence analysis of a total of 433 residues in 32 tryptic fragments of the human erythrocyte isozymes I and II and of the bovine erythrocyte isozyme II. We found sequence identify or probable identity in 111 out of 112 residues when we compared the human isozymes I and II and identities in 127 out of 134 residues when the human and bovine isozymes II were compared. These results suggest that the erythrocyte isozymes from both organisms may have nearly identical structures and confirm the similarities in the function of these methyltransferases that have been previously demonstrated.  相似文献   

8.
A protein with binding specificity for retinol was purified from human liver. [3H]Retinol was added to liver extracts and the [3H]retinol-binding protein isolated by conventional chromatographic techniques including ion-exchange chromatography on DEAE-Sepharose, gel filtration on Sephadex G-75 and G-50 and preparative isoelectric focusing. The yield was 10–15% in different preparations and the degree of purification was about 3000-fold. The purified protein had a molecular weight of about 15 000 as estimated from both gel filtration and polyacrylamide gel electrophoresis in sodium dodecyl sulphate and was homogeneous in several electrophoretic systems. Isoelectric focusing of the purified protein gave a doublet band. Only one fluorescent band at pH 4.70 was seen if the protein solution was incubated with excess retinol prior to isoelectric focusing. The isolated protein did not react with antiserum to the retinol-binding protein of plasma. The amino acid composition and the amino terminal amino acid sequence for the first sixteen amino acids of the purified protein differed significantly from that of the plasma retinol-binding protein.  相似文献   

9.
A DNA synthesis inhibitor protein was purified from the conditioned medium of cycloheximide treated mouse embryo fibroblasts. This protein has a molecular weight of 45,000 as determined by gel filtration and Polyacrylamide gel electrophoresis. The levels of the [35S] methionine la belled 45 kDa protein in the medium and matrix were monitored across two cell cycles in synchronized cultures. The 45 kDa protein was present in higher levels in the medium of non-S-phase cells depicting a peak between the two S-phases. The DNA synthesis inhibitor protein was immunologically related to a chicken DNA-binding protein which showed similar cell cycle specific variations at the intracellular level. The purified 45 kDa protein inhibited DNA synthesis in murine and human cells. In mouse embryo fibroblasts, the DNA synthesis was inhibited to an extent of 86% by 0.25 μg/ml of the inhibitor, while higher amounts of the inhibitor were required to arrest DNA synthesis in human skin fibroblasts: in these cells, 4 μg/ml of the inhibitor inhibited DNA synthesis to an extent of 50%. The high levels of the 45 kDa protein in the medium of non-S phase cells and its DNA synthesis inhibitory potential suggest that this protein may be involved in the regulation of DNA synthesis during the cell cycle.  相似文献   

10.
Inhibition of protein-mediated homologous pairing by a DNA helicase.   总被引:6,自引:0,他引:6  
Protein-mediated exchange of homologous DNA strands is a central reaction in general genetic recombination and the mechanism by which proteins mediate this process in vivo is a topic of keen interest. The dda protein of the bacteriophage T4 is a DNA helicase that has been shown to accelerate branch migration catalyzed by the phage uvsX and gene 32 proteins in vitro (Kodadek, T., and Alberts, B.M. (1987) Nature 326, 312-314). This study did not address the potential role of the helicase in protein-mediated homologous pairing, the first phase of the overall strand-exchange reaction. It is shown here that the dda protein inhibits uvsX protein-mediated pairing between homologous single and double-stranded DNAs. Experiments using deproteinized heteroduplex joints demonstrate that the dda helicase is capable of unwinding these structures to some extent and suggests that this activity may be responsible for the observed inhibition of pairing. It is found that the helicase also reduces the level of uvsX protein-mediated, single-stranded DNA-dependent ATP hydrolysis in the strand-exchange reactions, suggesting that the helicase may also act to destabilize the uvsX protein-DNA filaments that are important intermediates in the pairing reaction. Three other helicases are found to have no effect on the uvsX protein-mediated pairing reaction. A model rationalizing the ability of the dda protein to both inhibit homologous pairing and stimulate branch migration is presented and possible in vivo roles for this interesting activity are discussed.  相似文献   

11.
Meiotic homologous pairing is crucial to proper homologous recombination, which secures subsequent reductional chromosome segregation. We have identified a novel meiosis-specific protein of fission yeast Schizosaccharomyces pombe, Meu13p, to be a molecule that is required for proper homologous pairing and recombination. Rec12p (homologue of Saccharomyces cerevisiae Spo11p), which is essential for the initiation of meiotic recombination, is also shown for the first time to participate in the pairing process of S.pombe. Meu13p, however, contributes to pairing through a recombination-independent mechanism, as disruption of the meu13(+) gene reduces pairing whether the rec12(+) gene is deleted or not. We also demonstrate a dynamic nature of homologous pairing in living meiotic cells, which is markedly affected by meu13 deletion. Meu13p is not required for telomere clustering and the nuclear movement process, which are well known requirements for efficient pairing in S.pombe. Based on these results, together with the localization of Meu13p on meiotic chromatin, we propose that Meu13p directly promotes proper homologous pairing and recombination.  相似文献   

12.
A particulate form of protein-phosphotyrosine phosphatase was solubilized and purified over 2,000-fold from the particulate fraction of rat spleen. Phosphorylated poly(Glu, Tyr), a random copolymer of glutamic acid and tyrosine, was used as substrate for measuring protein-phosphotyrosine phosphatase activity. Nonionic detergents like Triton X-100 increased the protein-phosphotyrosine phosphatase activity of the particulate fraction (but not of the soluble fraction) by 4-8-fold. Chromatography of the Triton extract of the particulate fraction on DEAE-Sephacel gave three peaks of protein-phosphotyrosine phosphatase activity. The major peak of activity was further purified on Bio-Gel HTP, Sephadex G-75, and phosphocellulose columns. On polyacrylamide gel electrophoresis in the presence of Na-dodecyl-SO4 the purified enzyme showed a major protein band of Mr 36,000 which comigrated with enzyme activity on the phosphocellulose column. The apparent Vmax and Km for phosphorylated poly(Glu,Tyr) were 6,150 nmol min-1 mg-1 and 1.6 microM, respectively. This enzyme was strongly inhibited by microM concentrations of orthovanadate and zinc acetate. Fluoride (50 mM) inhibited this enzyme only by 30-40%. Divalent metal ions Ca2+, Mg2+, and Mn2+ were inhibitory at 1-10 mM concentration. EDTA had no effect on the activity of the purified enzyme. This phosphatase could dephosphorylate and inactivate the phosphorylated form of a tyrosine-specific protein kinase (TK-I) previously purified from rat spleen. Dephosphorylation and inactivation of TK-I by purified phosphatase were inhibited by orthovanadate. After dephosphorylation and inactivation by phosphatase, TK-I could be rephosphorylated and reactivated on incubation with ATP. These results suggest that this protein-phosphotyrosine phosphatase may be involved in the regulation of the kinase activity of TK-I.  相似文献   

13.
The recA protein promotes the formation and processing of joint molecules of homologous double- and single-stranded DNAs in vitro. Under a set of specified conditions, we found that the substitution of a single amino acid in the recA protein (recA430 mutation) depresses its activity for the homologous pairing to about 1/100 of that by the wild type protein when compared by the rate for the first 2-3 min of the reaction, but that the mutation only slightly, if at all, affects its ability to bind progressively to double-stranded DNA to unwind the double helix ("processive unwinding"). This is in striking contrast to an anti-recA protein monoclonal IgG, ARM193, which severely inhibits the processive unwinding but not the homologous pairing, providing further support for our conclusion that the homologous pairing and processive unwinding are functionally independent of each other. Antibody ARM193 caused the breakdown of spontaneously formed filaments of the recA protein, but the recA430 mutation did not affect the self-polymerization of the protein. The recA430 protein was apparently proficient in the functional binding to a single-stranded DNA and in the hydrolysis of ATP. However, we found that under the above conditions the mutant protein was defective as to homology-independent conjunction of DNA molecules to form a "ternary complex" (of macromolecules). These results suggest that (i) only one DNA-binding site is sufficient for the recA protein to promote the processive unwinding (the ability of the protein to form spontaneous filaments is closely related to this process) and that (ii) two DNA-binding sites on each of the recA polypeptides or those composed of a dimer (or oligomer) of the polypeptide are required for the recA protein to promote both the conjunction of parental DNA molecules and the homologous pairing (the ability to form the spontaneous filaments is not essential to this process). (iii) The simultaneous inactivation of the activity to promote the homologous pairing and that to form the ternary complex by the single substitution of the amino acid provides a physical support for the conclusion that the ternary complex is an indispensable intermediate in the homologous pairing.  相似文献   

14.
From the cells of an Escherichia coli K-12 strain, a 22,000-dalton protein which has an affinity for the superhelical DNA molecule was purified to apparent homogeneity by monitoring the DNA-binding activity using the filter binding assay. In the sedimentation analysis of the DNA-protein complex, the protein has an affinity for the superhelical or single-stranded DNA molecule but neither for the open-circular nor for the linear DNA molecule. The amino acid composition of the protein resembled those of the other prokaryotic histone-like proteins and also to eukaryotic histones H2A and H2B. The protein precipitated upon heating, which is in contrast to the heat-stable feature of the other histone-like proteins. Furthermore, DNA and RNA syntheses in vitro were not affected by the presence of the protein. In view of these characteristics, this protein may play a role in maintaining the bacterial nucleoid structure.  相似文献   

15.
We have identified two types of homologous DNA pairing activity in mouse cell extracts by a strand-transfer assay. Both activities are separated from each other by anion-exchange chromatography; neither of them needs ATP. One requires magnesium ion and is stimulated by Escherichia coli single-stranded DNA binding protein, whereas the other does not require the ion and shows a higher affinity for a left-handed Z-DNA.  相似文献   

16.
Using fluorescence in situ hybridization with human band-specific DNA probes we examined the effect of ionizing radiation on the intra-nuclear localization of the heterochromatic region 9q12-->q13 and the euchromatic region 8p11.2 of similar sized chromosomes 9 and 8 respectively in confluent (G1) primary human fibroblasts. Microscopic analysis of the interphase nuclei revealed colocalization of the homologous heterochromatic regions from chromosome 9 in a proportion of cells directly after exposure to 4 Gy X-rays. The percentage of cells with paired chromosomes 9 gradually decreased to control levels during a period of one hour. No significant changes in localization were observed for chromosome 8. Using 2-D image analysis, radial and inter-homologue distances were measured for both chromosome bands. In unexposed cells, a random distribution of the chromosomes over the interphase nucleus was found. Directly after irradiation, the average inter-homologue distance decreased for chromosome 9 without alterations in radial distribution. The percentage of cells with inter-homologue distance <3 micro m increased from 11% in control cells to 25% in irradiated cells. In contrast, irradiation did not result in significant changes in the inter-homologue distance for chromosome 8. Colocalization of the heterochromatic regions of homologous chromosomes 9 was not observed in cells irradiated on ice. This observation, together with the time dependency of the colocalization, suggests an underlying active cellular process. The biological relevance of the observed homologous pairing remains unclear. It might be related to a homology dependent repair process of ionizing radiation induced DNA damage that is specific for heterochromatin. However, also other more general cellular responses to radiation-induced stress or change in chromatin organization might be responsible for the observed pairing of heterochromatic regions.  相似文献   

17.
18.
Human interferons induce a protein of 15,000 daltons in human and bovine cells. This protein is located in the cytoplasm in a soluble form and is induced by concentrations of interferon which induce the antiviral state. Messenger RNA prepared from interferon-treated human and bovine cells contains a mRNA which yields on translation in vitro a protein similar in size to the 15-kDa protein induced by interferon in vivo. The human protein has been purified to homogeneity from interferon-treated human cells by ion-exchange chromatography and reverse-phase high-performance liquid chromatography. A comparison of the peptides generated by V8 protease from the human and bovine 15-kDa proteins reveals that the two proteins are similar but not identical.  相似文献   

19.
The Escherichia coli single-stranded DNA binding (SSB) protein is a non-sequence-specific DNA binding protein that functions as an accessory factor for the RecA protein-promoted three-strand exchange reaction. An open reading frame encoding a protein similar in size and sequence to the E. coli SSB protein has been identified in the Streptococcus pneumoniae genome. The open reading frame has been cloned, an overexpression system has been developed, and the protein has been purified to greater than 99% homogeneity. The purified protein binds to ssDNA in a manner similar to that of the E. coli SSB protein. The protein also stimulates the S. pneumoniae RecA protein and E. coli RecA protein-promoted strand exchange reactions to an extent similar to that observed with the E. coli SSB protein. These results indicate that the protein is the S. pneumoniae analog of the E. coli SSB protein. The availability of highly-purified S. pneumoniae SSB protein will facilitate the study of the molecular mechanisms of RecA protein-mediated transformational recombination in S. pneumoniae.  相似文献   

20.
A peptide from human parotid secretion which inhibited hemagglutination of Bacteroides gingivalis 381 was purified by ultrafiltration followed by DEAE-Sephadex A-25 column chromatography and by gel filtration on Sephadex G-25, and then by reversed-phase HPLC. The complete amino acid sequence of the peptide, determined by automated Edman degradation was as follows; Lys-Phe-His-Glu-Lys-His-His-Ser-His-Arg-Gly-Tyr. The peptide contained 12 residues and the charged amino acids predominated with 4 histidine, 2 lysine, 1 arginine and 1 glutamic acid residues, thus being a histidine-rich peptide. The peptide was an active inhibitor of the hemagglutinating activity of B. gingivalis. Specific binding of tritium-labeled peptide to B. gingivalis cells was demonstrated. These results suggest that the histidine-rich peptide may function as a binding domain for the hemagglutinins of B. gingivalis during agglutination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号