首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low protein diet has been shown to affect the levels and activities of several enzymes from pancreatic islets. To further extend the knowledge on how malnutrition affects insulin secretion pathway, we investigated in this work the insulin release induced by glucose or leucine, an insulin secretagogue, and the expression of insulin receptor (IR), insulin receptor substrate 1 (IRS1), phosphatidylinositol 3-kinase (PI3K), and p70S6K1 (S6K-1) proteins from pancreatic islets of rats fed a normal (17%; NP) or a low (6%; LP) protein diet for 8 weeks. Isolated islets were incubated for 1 h in Krebs-bicarbonate solution containing 16.7 mmol/L of glucose, or 2.8 mmol/L of glucose in the presence or absence of 20 mmol/L of leucine. Glucose- and leucine-induced insulin secretions were higher in NP than in LP islets. Western blotting analysis showed an increase in the expression of IR and PI3K protein levels whereas IRS1 and S6K-1 protein expression were lower in LP compared to NP islets. In addition, S6K-1 mRNA expression was also reduced in islets from LP rats. Our data indicate that a low protein diet modulates the levels of several proteins involved in the insulin secretion pathway. Particularly, the decrease in S6K-1 expression might be an important factor affecting either glucose- or leucine-induced insulin secretion.  相似文献   

2.
Protein restriction at early stages of life reduces β-cell volume, number of insulin-containing granules, insulin content and release by pancreatic islets in response to glucose and other secretagogues, abnormalities similar to those seen in type 2 diabetes. Amino acids are capable to directly modulate insulin secretion and/or contribute to the maintenance of β-cell function, resulting in an improvement of insulin release. Animal models of protein malnutrition have provided important insights into the adaptive mechanisms involved in insulin secretion in malnutrition. In this review, we discuss studies focusing on the modulation of insulin secretion by amino acids, specially leucine and taurine, in rodent models of protein malnutrition. Leucine supplementation increases insulin secretion by pancreatic islets in malnourished mice. This effect is at least in part due to increase in the expression of proteins involved in the secretion process, and the activation of the PI3K/PKB/mTOR pathway seems also to contribute. Mice supplemented with taurine have increased insulin content and secretion as well as increased expression of genes essential for β-cell functionality. The knowledge of the mechanisms through which amino acids act on pancreatic β-cells to stimulate insulin secretion is of interest for clinical medicine. It can reveal new targets for the development of drugs toward the treatment of endocrine diseases, in special type 2 diabetes.  相似文献   

3.
Changes in nutritional state may alter circadian rhythms through alterations in expression of clock genes. Protein deficiency has a profound effect on body metabolism, but the effect of this nutrient restriction after weaning on biological clock has not been explored. Thus, this study aims to investigate whether the protein restriction affects the daily oscillation in the behavior and metabolic rhythms, as well as expression of clock genes in peripheral tissues. Male C57BL/6 J mice, after weaning, were fed a normal-protein (NP) diet or a low-protein (LP) diet for 8 weeks. Mice fed an LP diet did not show difference in locomotor activity and energy expenditure, but the food intake was increased, with parallel increased expression of the orexigenic neuropeptide Npy and disruption of the anorexigenic Pomc oscillatory pattern in the hypothalamus. LP mice showed disruption in the daily rhythmic patterns of plasma glucose, triglycerides and insulin. Also, the rhythmic expression of clock genes in peripheral tissues and pancreatic islets was altered in LP mice. In pancreatic islets, the disruption of clock genes was followed by impairment of daily glucose-stimulated insulin secretion and the expression of genes involved in exocytosis. Pharmacological activation of REV-ERBα could not restore the insulin secretion in LP mice. The present study demonstrates that protein restriction, leading to development of malnutrition, alters the peripheral clock and metabolic outputs, suggesting that this nutrient provides important entraining cues to regulate the daily fluctuation of biological clock.  相似文献   

4.
Changes in (45)Ca uptake and insulin secretion in response to glucose, leucine, and arginine were measured in isolated islets derived from 4-week-old rats born of mothers maintained with normal protein (NP, 17%) or low protein (LP, 6%) diet during pregnancy and lactation. Glucose provoked a dose-dependent stimulation of insulin secretion in both groups of islets, with basal (2.8 mmol/L glucose) and maximal release (27.7 mmol/L glucose) significantly reduced in LP compared with NP islets. In the LP group the concentration-response curve to glucose was shifted to the right compared with the NP group, with the half-maximal response occurring at 16.9 and 13.3 mmol/L glucose, respectively. In LP islets, glucose-induced first and second phases of insulin secretions were drastically reduced. In addition, insulin response to individual amino acids, or in association with glucose, was also significantly reduced in the LP group compared with NP islets. Finally, in LP islets the (45)Ca uptake after 5 minutes or 90 minutes of incubation (which reflect mainly the entry and retention, respectively, of Ca(2+)), was lower than in NP islets. These data indicate that in malnourished rats both initial and sustained phases of insulin secretion in response to glucose were reduced. This poor secretory response to nutrients seems to be the consequence of an altered Ca(2+) handling by malnourished islet cells.  相似文献   

5.
High protein content in the diet during childhood and adolescence has been associated to the onset insulin-dependent diabetes mellitus. We investigated the effect of interleukin-1beta (IL-1beta) on insulin secretion, glucose metabolism, and nitrite formation by islets isolated from rats fed with normal protein (NP, 17%) or low protein (LP, 6%) after weaning. Pretreatment of islets with IL-1beta for 1 h or 24 h inhibited the insulin secretion induced by glucose in both groups, but it was less marked in LP than in NP group. Islets from LP rats exhibited a decreased IL-1beta-induced nitric oxide (NO) production, lower inhibition of D-[U(14)C]-glucose oxidation to (14)CO(2) and less pronounced effect of IL-1beta on alpha-ketoisocaproic acid-induced insulin secretion than NP islets. However, when the islets were stimulated by high concentrations of K(+) the inhibitory effect of IL-1beta on insulin secretion was not different between groups. In conclusion, protein restriction protects beta-cells of the deleterious effect of IL-1beta, apparently, by decreasing NO production. The lower NO generation in islets from protein deprived rats may be due to increased free fatty acids oxidation and consequent alteration in Ca(2+) homeostasis.  相似文献   

6.
Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.  相似文献   

7.
We previously demonstrated that fetuses from undernourished pregnant rats exhibited increased beta-cell mass and hyperinsulinemia, whereas keeping food restriction until adult age caused reduced beta-cell mass, hypoinsulinemia, and decreased insulin secretion. Because these alterations can be related to insulin availability, we have now investigated early and long-term effects of protein calorie food restriction on insulin mRNA levels as well as the possible mechanisms that could modulate the endogenous insulin mRNA content. We used fetuses at 21.5 days of gestation proceeding from food-restricted rats during the last week of pregnancy and 70-day-old rats undernourished from day 14 of gestation until adult age and with respective controls. Insulin mRNA levels, glucose transporters, and total glycolysis and mitochondrial oxidative fluxes were evaluated. We additionally analyzed undernutrition effects on signals implicated in glucose-mediated insulin gene expression, especially pancreatic duodenal homeobox-1 (PDX-1), stress-activated protein kinase-2 (p38/SAPK2), and phosphatidylinositol 3-kinase. Undernourished fetuses showed increased insulin mRNA, oxidative glucose metabolism, and p38/SAPK2 levels, whereas undernutrition until adult age provoked a decrease in insulin gene expression, oxidative glucose metabolism, and PDX-1 levels. The results indicate that food restriction caused changes in insulin gene expression and content leading to alterations in glucose-stimulated insulin secretion. The molecular events, increased p38/SAPK2 levels in fetuses and decreased PDX-1 levels in adults, seem to be the responsible for the altered insulin mRNA expression. Moreover, because PDX-1 activation appears to be regulated by glucose-derived metabolite(s), the altered glucose oxidation caused by undernutrition could in some manner affect insulin mRNA expression.  相似文献   

8.
In the present study, we investigated the relationship between early life protein malnutrition‐induced redox imbalance, and reduced glucose‐stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal‐protein‐diet (17%‐protein, NP) or to a low‐protein‐diet (6%‐protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H2O2), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn‐superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre‐incubated with H2O2 and/or N‐acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H2O2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre‐incubated with H2O2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N‐acetylcysteine.  相似文献   

9.

Background

Islets from adult rat possess weak antioxidant defense leading to unbalance between superoxide dismutase (SOD) and hydrogen peroxide-inactivating enzymatic activities, catalase (CAT) and glutathione peroxidase (GPX) rending them susceptible to oxidative stress. We have shown that this vulnerability is influenced by maternal diet during gestation and lactation.

Methodology/Principal Findings

The present study investigated if low antioxidant activity in islets is already observed at birth and if maternal protein restriction influences the development of islet antioxidant defenses. Rats were fed a control diet (C group) or a low protein diet during gestation (LP) or until weaning (LPT), after which offspring received the control diet. We found that antioxidant enzymatic activities varied with age. At birth and after weaning, normal islets possessed an efficient GPX activity. However, the antioxidant capacity decreased thereafter increasing the potential vulnerability to oxidative stress. Maternal protein malnutrition changed the antioxidant enzymatic activities in islets of the progeny. At 3 months, SOD activity was increased in LP and LPT islets with no concomitant activation of CAT and GPX. This unbalance could lead to higher hydrogen peroxide production, which may concur to oxidative stress causing defective insulin gene expression due to modification of critical factors that modulate the insulin promoter. We found indeed that insulin mRNA level was reduced in both groups of malnourished offspring compared to controls. Analyzing the expression of such critical factors, we found that c-Myc expression was strongly increased in islets from both protein-restricted groups compared to controls.

Conclusion and Significance

Modification in antioxidant activity by maternal low protein diet could predispose to pancreatic islet dysfunction later in life and provide new insights to define a molecular mechanism responsible for intrauterine programming of endocrine pancreas.  相似文献   

10.
GPR40 (FFAR1) and GPR120 (FFAR4) are G-protein-coupled receptors (GPCRs) that are activated by long chain fatty acids (LCFAs). GPR40 is expressed at high levels in islets and mediates the ability of LCFAs to potentiate glucose-stimulated insulin secretion (GSIS). GPR120 is expressed at high levels in colon, adipose, and pituitary, and at more modest levels in pancreatic islets. The role of GPR120 in islets has not been explored extensively. Here, we confirm that saturated (e.g. palmitic acid) and unsaturated (e.g. docosahexaenoic acid (DHA)) LCFAs engage GPR120 and demonstrate that palmitate- and DHA-potentiated glucagon secretion are greatly reduced in isolated GPR120 KO islets. Remarkably, LCFA potentiated glucagon secretion is similarly reduced in GPR40 KO islets. Compensatory changes in mRNA expression of GPR120 in GPR40 KO islets, and vice versa, do not explain that LCFA potentiated glucagon secretion seemingly involves both receptors. LCFA-potentiated GSIS remains intact in GPR120 KO islets. Consistent with previous reports, GPR120 KO mice are hyperglycemic and glucose intolerant; however, our KO mice display evidence of a hyperactive counter-regulatory response rather than insulin resistance during insulin tolerance tests. An arginine stimulation test and a glucagon challenge confirmed both increases in glucagon secretion and liver glucagon sensitivity in GPR120 KO mice relative to WT mice. Our findings demonstrate that GPR120 is a nutrient sensor that is activated endogenously by both saturated and unsaturated long chain fatty acids and that an altered glucagon axis likely contributes to the impaired glucose homeostasis observed in GPR120 KO mice.  相似文献   

11.
12.
In pancreatic beta-cells, metabolic coupling factors generated during glucose metabolism and pyruvate cycling through anaplerosis/cataplerosis processes contribute to the regulation of insulin secretion. Pyruvate/citrate cycling across the mitochondrial membrane leads to the production of malonyl-CoA and NADPH, two candidate coupling factors. To examine the implication of pyruvate/citrate cycling in glucose-induced insulin secretion (GIIS), different steps of the cycle were inhibited in INS 832/13 cells by pharmacological inhibitors and/or RNA interference (RNAi) technology: mitochondrial citrate export, ATP-citrate lyase (ACL), and cytosolic malic enzyme (ME1). The inhibitors of the di- and tri-carboxylate carriers, n-butylmalonate and 1,2,3-benzenetricarboxylate, respectively, reduced GIIS, indicating the importance of transmitochondrial transport of tri- and dicarboxylates in the action of glucose. To directly test the role of ACL and ME1 in GIIS, small hairpin RNA (shRNA) were used to selectively decrease ACL or ME1 expression in transfected INS 832/13 cells. shRNA-ACL reduced ACL protein levels by 67%, and this was accompanied by a reduction in GIIS. The amplification/K(ATP)-independent pathway of GIIS was affected by RNAi knockdown of ACL. The ACL inhibitor radicicol also curtailed GIIS. shRNA-ME1 reduced ME1 activity by 62% and decreased GIIS. RNAi suppression of either ACL or ME1 did not affect glucose oxidation. However, because ACL is required for malonyl-CoA formation, inhibition of ACL expression by shRNA-ACL decreased glucose incorporation into palmitate and increased fatty acid oxidation in INS 832/13 cells. Taken together, the results underscore the importance of pyruvate/citrate cycling in pancreatic beta-cell metabolic signaling and the regulation of GIIS.  相似文献   

13.
Obesity is frequently associated with the consumption of high carbohydrate/fat diets leading to hyperinsulinemia. We have demonstrated that soy protein (SP) reduces hyperinsulinemia, but it is unclear by which mechanism. Thus, the purpose of the present work was to establish whether SP stimulates insulin secretion to a lower extent and/or reduces insulin resistance, and to understand its molecular mechanism of action in pancreatic islets of rats with diet-induced obesity. Long-term consumption of SP in a high fat (HF) diet significantly decreased serum glucose, free fatty acids, leptin, and the insulin:glucagon ratio compared with animals fed a casein HF diet. Hyperglycemic clamps indicated that SP stimulated insulin secretion to a lower extent despite HF consumption. Furthermore, there was lower pancreatic islet area and insulin, SREBP-1, PPARgamma, and GLUT-2 mRNA abundance in comparison with rats fed the casein HF diet. Euglycemic-hyperinsulinemic clamps showed that the SP diet prevented insulin resistance despite consumption of a HF diet. Incubation of pancreatic islets with isoflavones reduced insulin secretion and expression of PPARgamma. Addition of amino acids resembling the plasma concentration of rats fed casein stimulated insulin secretion; a response that was reduced by the presence of isoflavones, whereas the amino acid pattern resembling the plasma concentration of rats fed SP barely stimulated insulin release. Infusion of isoflavones during the hyperglycemic clamps did not stimulate insulin secretion. Therefore, isoflavones as well as the amino acid pattern seen after SP consumption stimulated insulin secretion to a lower extent, decreasing PPARgamma, GLUT-2, and SREBP-1 expression, and ameliorating hyperinsulinemia observed during obesity.  相似文献   

14.
Regulation of PDK mRNA by high fatty acid and glucose in pancreatic islets   总被引:1,自引:0,他引:1  
Pyruvate dehydrogenase (PDH) converts pyruvate to acetyl-CoA, links glycolysis to the Krebs cycle, and plays an important role in glucose metabolism and insulin secretion in pancreatic beta cells. In beta cells from obese and Type 2 diabetic animals, PDH activity is significantly reduced. PDH is negatively regulated by multiple pyruvate dehydrogenase kinase (PDK) isotypes (PDK subtypes 1-4). However, we do not know whether fatty acids or high glucose modulate PDKs in islets. To test this we determined PDH and PDK activities and PDK gene and protein expression in C57BL/6 mouse islets. Both high palmitate and high glucose reduced active PDH activity and increased PDK activity. The gene and protein for PDK3 were not expressed in islets. Palmitate up-regulated mRNA expression of PDK1 (2.9-fold), PDK2 (1.9-fold), and PDK4 (3.1-fold). High glucose increased PDK1 (1.8-fold) and PDK2 (2.7-fold) mRNA expression but reduced PDK4 mRNA expression by 40 percent in cultured islets. Changed PDK expression was confirmed by Western blotting. These results demonstrate that in islet cells both fat and glucose regulate PDK gene and protein expression and indicate that hyperglycemia and hyperlipidemia contribute to the decline in diabetic islet PDH activity by increasing mRNA and protein expression of PDK.  相似文献   

15.

Background

Gap junctions between β-cells participate in the precise regulation of insulin secretion. Adherens junctions and their associated proteins are required for the formation, function and structural maintenance of gap junctions. Increases in the number of the gap junctions between β-cells and enhanced glucose-stimulated insulin secretion are observed during pregnancy. In contrast, protein restriction produces structural and functional alterations that result in poor insulin secretion in response to glucose. We investigated whether protein restriction during pregnancy affects the expression of mRNA and proteins involved in gap and adherens junctions in pancreatic islets. An isoenergetic low-protein diet (6% protein) was fed to non-pregnant or pregnant rats from day 1–15 of pregnancy, and rats fed an isocaloric normal-protein diet (17% protein) were used as controls.

Results

The low-protein diet reduced the levels of connexin 36 and β-catenin protein in pancreatic islets. In rats fed the control diet, pregnancy increased the levels of phospho-[Ser279/282]-connexin 43, and it decreased the levels of connexin 36, β-catenin and beta-actin mRNA as well as the levels of connexin 36 and β-catenin protein in islets. The low-protein diet during pregnancy did not alter these mRNA and protein levels, but avoided the increase of levels of phospho-[Ser279/282]-connexin 43 in islets. Insulin secretion in response to 8.3 mmol/L glucose was higher in pregnant rats than in non-pregnant rats, independently of the nutritional status.

Conclusion

Short-term protein restriction during pregnancy prevented the Cx43 phosphorylation, but this event did not interfer in the insulin secretion.  相似文献   

16.
We have investigated the effect of alloxan on insulin secretion and glucose homeostasis in rats maintained on a 17% protein (normal protein, NP) or 6% protein (low protein, LP) diet from weaning (21 days old) to adulthood (90 days old). The incidence of alloxan diabetes was higher in the NP (3.5 times) than in the LP group. During an oral glucose tolerance test, the area under serum glucose curve was lower in LP (57%) than in NP rats while there were no differences between the two groups in the area under serum insulin curve. The serum glucose disappearance rate (Kitt) after exogenous insulin administration was higher in LP (50%) than in NP rats. In pancreatic islets isolated from rats not injected with alloxan, acute exposure to alloxan (0.05 mmol/L) reduced the glucose- or arginine-stimulated insulin secretion of NP islets by 78% and 56%, respectively, whereas for islets from LP rats, the reduction was 47% and 17% in the presence of glucose and arginine, respectively. Alloxan treatment reduced the glucose oxidation in islets from LP rats to a lesser extent than in NP islets (23% vs. 56%). In conclusion, alloxan was less effective in producing hyperglycemia in rats fed a low protein diet than in normal diet rats. This effect is attributable to an increased peripheral sensivity to insulin in addition to a better preservation of glucose oxidation and insulin secretion in islets from rats fed a low protein diet.  相似文献   

17.
18.
The effects of fatty acids on pancreatic beta cell are still controversial. Here, in order to determine whether free fatty acids acutely affect beta cell functions, we studied the effect of palmitic acid (PA) on proinsulin biosynthesis and insulin secretion using rat islets in vitro. Exposure of islets to PA for 1 h reduced glucose-stimulated proinsulin biosynthesis in a dose-dependent manner; in contrast, no change in insulin secretion was observed after 1 h incubation with PA. Furthermore, PA treatment did not cause any change of preproinsulin mRNA level during 1-h incubation period. Thus, our data indicate that PA primarily suppresses glucose-induced proinsulin biosynthesis within 1 h at the translational level.  相似文献   

19.
Insulin stimulates its own secretion and synthesis by pancreatic beta-cells. Although the exact molecular mechanism involved is unknown, changes in beta-cell insulin signalling have been recognized as a potential link between insulin resistance and its impaired release, as observed in non-insulin-dependent diabetes. However, insulin resistance is also associated with elevated plasma levels of free fatty acids (FFA) that are well known modulators of insulin secretion by pancreatic islets. This information led us to investigate the effect of FFA on insulin receptor signalling in pancreatic islets. Exposure of pancreatic islets to palmitate caused up-regulation of several insulin-induced activities including tyrosine phosphorylation of insulin receptor and pp185. This is the first evidence that short exposure of these cells to 100 microM palmitate activates the early steps of insulin receptor signalling. 2-Bromopalmitate, a carnitine palmitoyl-CoA transferase-1 inhibitor, did not affect the effect of the fatty acid. Cerulenin, an acylation inhibitor, abolished the palmitate effect on protein levels and phosphorylation of insulin receptor. This result supports the proposition that protein acylation may be an important mechanism by which palmitate exerts its modulating effect on the intracellular insulin signalling pathway in rat pancreatic islets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号