首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Dmc1 (disrupted meiotic cDNA) is a functionally specific gene, which was firstly discovered in yeast and then found to encode a protein required for homologous chromosome synapsis during the process of meiosis. In this investigation, we cloned the partial cDNAs of Dmc1 of diploid red crucian carp, Japanese crucian carp, common carp, triploid crucian carp and allotetraploid hybrids by using a pair of degenerate primers based on the conservative sequence of amino acids of the DMC1 protein in yeast, mouse and human. The full length cDNAs were then obtained by rapid amplification of cDNA ends (RACE). Our data showed that the full length cDNAs of Dmc1 in the three diploid fishes are all 1375 bp long, while it is 1383 bp long in triploids and 1379 bp long in allotetraploids. And despite of the variation in length, all the cDNAs encode a protein of 342 amino acids. A high homology of 97.3% of the DMC1 protein can be drawn by comparing the amino acid sequences in the three diploids, which is also of 86%, 86% and 95% similarity to human, mouse and zebrafish, respectively. A comparative study of the expression pattern of Dmc1 was carried out by RT-PCR using specific primers against the same se-quences of coding regions in different ploidy cyprinid fishes, from which it was showed that Dmc1 was expressed only in gonads of these five kinds of fishes. The expression pattern of Dmc1 in both ovaries and testes from different ploidy fishes within breeding season was also studied by Real-time PCR, and the results showed that the expression of this gene was greatly different among the three different ploidy fishes, which was the highest of triploid and lowest of allotetraploids. The histological sections data showed matured gonads of both diploid red crucian carp and allotetraploids in breeding season, although the latter demonstrated a higher maturation, and no gonadal maturation could be observed in triploids. In conclusion, we suggest that Dmc1 is specifically expressed in the period of meiosis in all the ploidy cyprinid fishes and directly related with the development of gonad in a manner of ploidy-independent way. And further, the high expression of Dmc1 in female triploids might be associ-ated with abnormal meiosis and sterility.  相似文献   

2.
雌核发育二倍体鲫鲤Dmc1基因的全长cDNA克隆及表达分析   总被引:1,自引:0,他引:1  
Dmc1(disrupted meiotic cDNA)基因是一个在减数分裂前期Ⅰ表达的特异基因,其产物是减数分裂前期Ⅰ同源染色体配对所必需的。根据据酵母菌、小鼠以及人的DMC1中保守的氨基酸基序设计简并引物,PCR扩增克隆获得了第四代雌核发育二倍体鲫鲤(G4)Dmc1基因部分cDNA序列。在此基础上,通过RACE获得了G4Dmc1基因全长cDNA序列,长度为1369bp,其中开放阅读框为1029bp,编码含342个氨基酸的蛋白质。同时,系统进化分析表明,在进化过程中Dmc1基因在鱼类中保持着高度保守的进化特征。RT-PCR结果表明,Dmc1基因只在G4性腺中表达,在其他组织中不表达。通过实时荧光定量PCR,对Dmc1基因在G4和普通鲤鱼的早期卵巢的表达进行分析,发现G4表达比鲤鱼高。由此可见,雌核发育二倍体鲫鲤Dmc1基因也是减数分裂特异基因,而且其高表达暗示雌核发育二倍体鲫鲤具有正常的减数分裂过程并且其早期性腺存在着多倍体卵原细胞。  相似文献   

3.
The histological and ultra-structure of the pituitary in diploid red crucian carp(Carassius auratus red var.),triploid crucian carp and allotetraploid hybrids within and after the breeding season were comparatively studied.The result showed that there were six endocrine cell types in the pituitary of these three kinds of fishes,and there was an obvious difference in cell size among different ploidy level fishes.As for the same type of pituitary cells,the cell size was increased gradually with the in- creasing ploidy level.In the breeding season,the allotetraploid hybrids had higher proportion of go- nadotropin cells(GTH)than triploids,and the triploids had higher proportion of GTH than diploids.The results were related to the earlier sexual maturity of allotetraploid hybrids and sterility of triploid cru- cian carp.On the other hand,among the three kinds of fishes,the proportion of somatotropin(STH) cells in triploids crucian carp was the highest,whereas that in allotetraploid hybrids was the lowest. The results might be connected with the faster growth rate of triploids and slower growth rate of al- lotetraploid hybrids.In addition,in GTH cells of meso-adenohypophysis after the breeding season, there were many endocrine particles in triploids,while those endocrine particles were released from the cells in allotetraploids and diploids.This result showed that the sterility of triploid crucian carp might be related to the hormone which was not released from the GTH cells.In a word,the present study indicated that the differences in the structure of pituitary among different ploidy level fishes contributed to their difference in the growth rate and gonadal development.  相似文献   

4.
The histological and ultra-structure of the pituitary in diploid red crucian carp (Carassius auratus red var.), triploid crucian carp and allotetraploid hybrids within and after the breeding season were comparatively studied. The result showed that there were six endocrine cell types in the pituitary of these three kinds of fishes, and there was an obvious difference in cell size among different ploidy level fishes. As for the same type of pituitary cells, the cell size was increased gradually with the increasing ploidy level. In the breeding season, the allotetraploid hybrids had higher proportion of gonadotropin cells (GTH) than triploids, and the trploids had higher proportion of GTH than diploids. The results were related to the earlier sexual maturity of allotetraploid hybrids and sterility of triploid crucian carp. On the other hand, among the three kinds of fishes, the proportion of somatotropin (STH) cells in triploids crucian carp was the highest, whereas that in allotetraploid hybrids was the lowest. The results might be connected with the faster growth rate of triploids and slower growth rate of allotetraploid hybrids. In addition, in GTH cells of meso-adenohypophysis after the breeding season, there were many endocrine particles in triploids, while those endocrine particles were released from the cells in allotetraploids and diploids. This result showed that the sterility of triploid crucian carp might be related to the hormone which was not released from the GTH cells. In a word, the present study indicated that the differences in the structure of pituitary among different ploidy level fishes contributed to their difference in the growth rate and gonadal development.  相似文献   

5.
蛋白磷酸酶-2Ac在不同倍性鱼6种组织中的分化表达模式   总被引:3,自引:3,他引:0  
蛋白磷酸酶-2A是最重要的丝氨酸/苏氨酸蛋白磷酸酶之一,对于调控多细胞的生命活动起着非常重要的作用.以异源四倍体鲫鲤及其二倍体父/母本(湘江野鲤/红鲫)和子代三倍体湘云鲫等为实验材料,运用Westernblot技术及荧光免疫组织化学技术等实验手段,得到了Protein PJhosphatase-2A(PP2A)的催化亚基在上述不同倍性鱼体内6种不同组织的表达模式:Protein Phosphatase-2Ac(PP2Ac)在异源四倍体鲫鲤及其二倍体父/母本及子代三倍体湘云鲫不同组织中蛋白水平均有表达,而且出现了明显的种属特异性和组织特异性,如在大脑、肌肉、肝脏三组织中,三倍体湘云鲫中PP2Ae的表达相对最高.而在肾脏组织中,PP2Ac在异源四倍体鲫鲤中的表达水平最高,父本与三倍体湘云鲫中的表达比较相近,且最低;而在性腺组织中则是父本精巢中的表达最高;在心脏组织中,PP2Ae在母本红鲫中的表达相对较高.这种明显的种属之间组织特异性可能说明了子代与父母本之间的变异性.荧光免疫组化实验结果显示,从整体水平来看,4种不同鱼的同一组织中,PP2Ac的相对定位是非常相似的,这可能说明了异源四倍体鲫鲤与其二倍体父/母本及子代三倍体湘云鲫之间的遗传相似性.研究结果为进一步探索PP2Ac在脊椎动物不同组织中的功能提供了实验依据.  相似文献   

6.
郭新红  刘少军  颜金鹏  刘筠 《遗传》2004,26(6):875-880
采用质粒克隆测序方法,获得了异源四倍体鲫鲤5个个体、异源四倍体鲫鲤雌核发育二倍体后代2个个体、三倍体湘云鲫2个个体及红鲫、湘江野鲤和日本白鲫各1个个体的线粒体DNA 12S rRNA基因的全序列。经对比发现,异源四倍体5个个体共享2种单元型,异源四倍体鲫鲤雌核发育二倍体后代2个个体、三倍体湘云鲫2个个体以及红鲫、湘江野鲤和日本白鲫各1个个体分别共享1种单元型。用MEGA 1.0 软件分析了它们的碱基组成和核苷酸序列差异,用邻接法构建系统进化树。它们间的序列同源性在95%~99%之间,异源四倍体鲫鲤、三倍体湘云鲫和它们母本(分别为红鲫和日本白鲫)之间的序列同源性大于异源四倍体鲫鲤、三倍体湘云鲫和它们父本(分别为湘江野鲤和异源四倍体鲫鲤)之间的序列同源性,结果表明:异源四倍体鲫鲤和三倍体湘云鲫在线粒体DNA 12S rRNA基因上具有母性遗传特征。本研究另一值得注意地方的是异源四倍体鲫鲤经过9代(F3-F11)繁殖后,在5个个体中发现了2种单元型,说明在四倍体基因库中存在遗传多样性,为四倍体基因库的繁殖、保护和种群复壮提供了一些有价值的信息。  相似文献   

7.
四倍体鲫鲤、三倍体湘云鲫染色体减数分裂观察   总被引:10,自引:0,他引:10  
用精巢细胞直接制片法观察了异源四倍体鲫鲤、三倍体湘云鲫和二倍体红鲫、湘江野鲤精母细胞染色体第一次减数分裂中期配对情况 ;作为对照 ,观察了上述四种鱼肾细胞的有丝分裂中期染色体。在精母细胞第一次减数分裂中 ,异源四倍体鲫鲤同源染色体两两配对 ,形成 10 0个二价体 ,没有观察到单价体、三价体和四价体 ;三倍体湘云鲫精母细胞形成 5 0个二价体和 5 0个单价体 ;红鲫和湘江野鲤精母细胞分别形成 5 0个二价体。肾细胞检测表明异源四倍体的染色体数目为 4n =2 0 0 ;湘云鲫为 3n =15 0 ;红鲫和湘江野鲤分别为 2n =10 0。减数分裂时染色体分布情况与肾细胞染色体检测结果相吻合。具有四套染色体的异源四倍体鲫鲤在减数分裂中只形成 10 0个二价体 ,而不形成 2 5个四价体或其它形式 ,为产生稳定一致的二倍体配子提供了重要的遗传保障 ,也为人工培育的异源四倍体鲫鲤群体能够世世代代自身繁衍下去提供了重要的遗传学证据。三倍体湘云鲫在减数分裂过程中出现二价体、单价体共存 ,同源染色体在配对和分离中出现紊乱 ,导致非整倍体生殖细胞的产生 ,为湘云鲫的不育性提供了染色体水平上的证据  相似文献   

8.
9.
The ploidy of silver crucian carp Carassius auratus gibelio individuals, originating from nine natural habitats of Hungary, was estimated by erythrocyte nucleus area analysis. On the basis of DNA polymorphism, the genetic homogeneity or heterogeneity and the chromosome number of different offspring derived from the crossing of triploid and diploid populations and of two types of silver crucian carp females with other cyprinid males ( Cyprinus carpio, Carassius carassius, Carassius auratus and Barbus conchonius ) were determined. The results of chromosome and RAPD analysis demonstrated that diploid females could reproduce sexually with silver crucian carp and other cyprinid males and that the offspring of intra‐ and interspecific crosses contained the paternal DNA. Triploid females usually reproduced by gynogenesis and their offspring were clones, however, in very rare cases paternal genes were actually transmitted ( i.e . paternal leakage) to the offspring and the progeny were triploid interspecific hybrids. RAPD analysis showed that while the paternal DNA appeared in the offspring, the maternal phenotype was strongly expressed.  相似文献   

10.
Isozyme zymograms of esterase (EST), lactate dehydrogenase (LDH), malate dehydrogenase (MDH) and superoxide dismutase (SOD) were analysed by polyacrylamide gradient gel electrophoresis at different developmental stages of embryogenesis in 4 types of various ploidy crucian carp embryos, including haploids, diploids, natural triploids, and multiple tetraploids, and 2 types of haploid and diploid common carp embryos. Haploid embryos of crucian carp (Carassius auratus) and common carp (Cyprinus carpio) were produced by treating eggs with UV-irradiated milt from blunt snout bream (Megalobrama amblycephala). Natural triploid embryos were obtained from the eggs of gynogenetic silver crucian carp (Carassius auratus gibelio) inseminated with milt from red common carp. Multiple tetraploid embryos were also produced by gynogenesis from eggs of the newly discovered multiple tetraploid females inseminated with milt from red common carp. Gradient gel electrophoresis indicated that the band types and staining intensity of 4 isozymes expressed in haploid embryos of crucian carp and red common carp were similar to that in the correlative diploid embryos. In natural triploid silver crucian carp embryos, the zymograms of MDH and SOD isozymes were identical with that of diploid crucian carp embryos, but the EST and LDH isozymes manifested more new enzyme bands in comparison with diploid embryos. The corresponding expressed products of some bands in the triploid embryos, such as EST5 and EST6, could be observed also in red common carp embryos, which provided evidence for hybrid origin about the gynogenetic fish. The multiple tetraploids incorporated one foreign genome of red common carp, therefore, the effects of genes from the foreign genome could be observed in the multiple tetraploid embryos. Gene expression of the isozymes in the tetraploid embryos was somewhat similar to that in hybrids. Owing to interaction of triploid silver crucian carp genomes and common carp haploid genome, some isozyme bands, such as EST5 and EST6, changed in quantity, and some bands increased, such as s-SOD1, s-SOD2, s-SOD3 and s-SOD4 in the tetraploid embryos. Moreover, the heterogeneity was revealed among embryos developed from gynogenetic eggs of 3 different multiple tetraploid individuals.  相似文献   

11.
用聚丙烯酰胺梯度凝胶电泳比较分析了单倍体、二倍体、三倍体和复合四倍体4类不同倍性鲫鱼以及单倍体和二倍体鲤鱼在胚胎发育时期4种同工酶(EST,LDH,MDH,SOD)酶谱。结果表明,单倍体鲫鱼和单倍体鲤鱼胚胎与各自的二倍体胚胎相比,同工酶酶谱看不出差异;天然三倍体银鲫胚胎的MDH和SOD同工酶酶谱与二倍体鲫相似,但EST和LDH同工酶比二倍体增多了酶带,有的酶带如EST5和EST6还可在鲤鱼胚胎中找到相应的表达产物,提供了天然雌核发育三倍体银鲫杂交起源的证据;复合四倍体由于含有鲤鱼的一个外来基因组,其胚胎的基因表达有些与杂种类似,在所分析的4种同工酶酶谱中,都可观察到来自鲤鱼基因的影响。此外,在由源于不同复合四倍体个体的卵子发育形成的胚胎间,还观察到同工酶基因表达的异质性。  相似文献   

12.
二倍体鲫鲤F2产生不同倍性卵子的证据   总被引:4,自引:0,他引:4  
在检测到鲫鲤F2产生3种不同大小(直径分别为0.13 cm,0.17cm和0.2 cm)类型的卵子基础上,进行了F2(♀)×红鲫(♂)及F2(♀)×四倍体鲫鲤(♂)的交配实验.通过染色体计数和流式细胞仪分析,在F2(♀)×红鲫(♂)后代中获得了四倍体、三倍体、二倍体鱼;在F2(♀)×四倍体鲫鲤(♂)后代中获得了四倍体和三倍体鱼.这两个交配组合后代中出现的不同倍性的鱼类为证明鲫鲤F2能产生三倍体、二倍体和单倍体卵子提供了进一步证据.F2(♀)×红鲫(♂)中雄性四倍体鱼的存在说明在四倍体后代中存在基因型为XXXY的个体.对上述两个交配组合后代的四倍体鱼和三倍体鱼的性腺结构观察表明四倍体鱼是可育的,而三倍体鱼是不育的.作者认为鲫鲤F2能够产生二倍体和三倍体卵子与核内复制机制和生殖细胞的融合有关.  相似文献   

13.
Based on the presence of three types of eggs with different diameters 0.13, 0.17 and 0.2 cm, we made two crosses: F2 (♀) × diploid red crucian carp (♂), and F2 (♀) × F10 tetraploid (♂). The ploidy levels of the progeny of the two crosses were examined by chromosome counting and DNA content measurement by flow cytometer. In the offspring of the former cross, tetraploids, trip-loids, and diploid were obtained. In the progeny of the latter cross, tetraploids and triploids were observed. The production of the different ploidy level fish in the progeny of the two crosses provided a further evidence that F2 might generate triploid, diploid and haploid eggs. The presence of the male tetraploid found in F2 (♀) × diploid red crucian carp (♂) suggested that the genotype of XXXY probably existed in the tetraploid progeny. The gonadal structures of the tetraploids and triploids indicated that both female and male tetraploids were fertile and the triploids were sterile. We concluded that the formations of different ploidy level eggs from F2 were contributed by endoreduplication and fusion of germ cells.  相似文献   

14.
The improved tetraploids (G1×AT) were obtained by distant crossing and gynogenesis and the high-body individuals accounted for 2% among G1×AT. After mating with each other, the high-body in- dividuals produced three kinds of bisexual fertile diploid fishes: high-body red crucian carp, high-body fork-like-tails goldfish and gray common carp. The high-body red crucian carp mating with each other formed three types of improved crucian carp (ICC) including improved red crucian carp (IRCC), im- proved color crucian carp (ICCC) and improved gray crucian carp (IGCC). The phenotypes, chromo- some numbers, gonadal structure and fertility of the three kinds of ICC and their offspring were observed. All the three kinds of ICC possessed some improved phenotypes such as higher body, smaller head and shorter tail. The ratios of the body height to body length of IRCC, ICCC and IGCC were 0.54, 0.51 and 0.54, respectively. All of them were obviously higher than that of red crucian carp 0.41 (P<0.01). Three kinds of ICC had the same chromosome number as red crucian carp with 100 chromosomes. All the ICC possessed normal gonads producing mature eggs or sperm, which was important for the production of an improved diploid population. Compared with red crucian carp, all the ICC had stronger fertility such as higher gametes production, higher fertilization rate and higher hatchery rate. Three types of improved diploid fish population were generated from the three kinds of ICC by self-crossing, respectively. The ICC can serve as ornamental fish and edible fish. They are also ideal parents to produce triploids by mating with tetraploids. The new ICC plays an important role in biological evolution and fish genetic breeding.  相似文献   

15.
A triploid crucian carp, ginbuna ( Carassius auratus langsdorfii ), reproduces by gynogenesis, in which sperm of diploid ginbuna or of other species triggers the development of the triploid eggs, but a male genome makes no contribution to the zygotic genome. Gynogenesis is maintained by two mechanisms: exclusion of male genome during fertilization and retention of somatic ploidy levels during oogenesis. We examined the mechanisms responsible for producing unreduced eggs. Microfluorometry with a DNA staining dye showed that DNA content in the ginbuna oocytes was not reduced in half during meiosis I. Cytological observations revealed that a tripolar spindle was formed at meiosis I and the first polar body was not extruded, whereas an ordinary bipolar spindle was formed and the second polar body was extruded at meiosis II. Activity of histone H1 kinase (as an indicator of maturation-promoting factor) decreased transiently between meiosis I and II, strongly suggesting a "normal" meiotic cycle progression in the ginbuna oocytes. These results have indicated that in the gynogenetic ginbuna the somatic ploidy levels are maintained by inhibiting the first polar body extrusion via the formation of the tripolar spindle at meiosis I.  相似文献   

16.
鲤鲫人工多倍体谱系中同工酶和蛋白的基因表达   总被引:7,自引:0,他引:7  
通过对红鲤、红鲫、镜鲤、鲤鲫杂种二倍体一代,二代,鲤鲫杂种三倍体,鲤鲫复合三倍体,鲤鲫杂种四倍体一代,二代的同工酶及蛋白电泳谱型和扫描数据分析表明,在鲤鲫人工多倍体谱系中,亲代的等位基因在杂交子代中共有四种表达模式;(1)两亲本基因在子代中共同表达,即共显表达;(2)父本的基因表达受到部分或完全的抑制,即母本的基因优先得到表达;(3)母本的基因表达受到抑制,父本的基因得到表达;(4)双亲本的基因表达均受到一定程度的抑制或都不表达。其中第一种表达模式是主要的模式。根据以上基因在杂交子代中的表达特点,可用同工酶和蛋白电泳图谱将鲤鲫人工多倍体谱系的各种生物型逐一加以区分。  相似文献   

17.
This study investigated the gynogenetic cytobiological behavior of the third gynogenetic generation (G3), which was generated from the diploid eggs produced by the second gynogenetic generation (G2)of red crucian carp × common carp, and determined the chromosomal numbers of G3, G2×scatter scale carp and G2×allotetraploid hybrids of red crucian carp × common carp. The results showed that the diploid eggs of G2 with 100 chromosomes, activated by UV-irradiated sperm from scatter scale carp and without the treatment for doubling the chromosomes, could develop into G3 with 100 chromosomes.Similar to the first and second gynogenetic generations (G1 and G2), G3 was also diploid (2n=100) and presented the hybrid traits. The triploids (3n=150) and tetraploids (4n=200) were produced by crossing G2 with scatter scale carp, and crossing G2 with allotetraploids, respectively. The extrusion of the second polar body in the eggs of G2 ruled out the possibility that the retention of the second polar body led to the formation of the diploid eggs. In addition, we discussed the mechanism of the formation of the diploid eggs generated by G2. The establishment of the diploid gynogenesis clonal line (G1, G2 and G3) provided the evidence that the diploid eggs were able to develop into a new diploid hybrid clonal line by gynogenesis. By producing the diploid eggs as a unique reproductive way, the diploid gynogenetic progeny of allotetrapioid hybrids of red crucian carp × common carp had important significances in both biological evolution and production application.  相似文献   

18.
Guo X  Liu S  Liu Y 《Genetics》2006,172(3):1745-1749
In this study, we report the complete mitochondrial DNA (mtDNA) sequences of the allotetraploid and triploid crucian carp and compare the complete mtDNA sequences between the triploid crucian carp and its female parent Japanese crucian carp and between the triploid crucian carp and its male parent allotetraploid. Our results indicate that the complete mtDNA nucleotide identity (98%) between the triploid crucian carp and its male parent allotetraploid was higher than that (93%) between the triploid crucian carp and its female parent Japanese crucian carp. Moreover, the presence of a pattern of identity and difference at synonymous sites of mitochondrial genomes between the triploid crucian carp and its parents provides direct evidence that triploid crucian carp possessed the recombination mtDNA fragment (12,759 bp) derived from the paternal fish. These results suggest that mtDNA recombination was derived from the fusion of the maternal and paternal mtDNAs. Compared with the haploid egg with one set of genome from the Japanese crucian carp, the diploid sperm with two sets of genomes from the allotetraploid could more easily make its mtDNA fuse with the mtDNA of the haploid egg. In addition, the triple hybrid nature of the triploid crucian carp probably allowed its better mtDNA recombination. In summary, our results provide the first evidence of mtDNA combination in polyploid fish.  相似文献   

19.
Gonadotropin-releasing hormone (GnRH), gonadotropin hormone (GTH), and gonadotropin hormone receptor (GTHR) are the pivotal signal molecules of the hypothalamic-pituitary-gonad (HPG) axis, which plays a crucial role in regulating gonadal development in vertebrate. In this study, we comparatively analyze the expression characteristics of Gnrh2, Gthβ, and Gthr in red crucian carp diploids, triploids, and allotetraploids. The expression patterns of these genes are similar in the three fish ploidy types: the Gnrh2 gene is expressed in midbrains, pituitaries, and gonads; the Gthβ gene is expressed in pituitaries; the Gthr gene is mainly expressed in gonads. These results indicate that the three genes participate in the regulation of gonadal development. By real-time polymerase chain reaction and in situ hybridization, we find that, among these three fish ploidy types, the expression level of Gthr in the gonads of triploids is lower than those of diploids and tetraploids; this weakens the combination of GTHR with GTH released from the pituitary and leads to the sterility of triploids, since the gonad cannot produce enough sex steroids. In addition, the low expression of Gthr in triploids may affect the down-regulation of Gthβ, which then affects the down-regulation of Gnrh2; hence, the expression levels of Gnrh2 and Gthβ genes in triploids are the highest after the breeding season. In conclusion, the differential expression of Gnrh2, Gthβ, and Gthr in triploids and tetraploids is related to their sterility and bisexual fertility, respectively.  相似文献   

20.
Guo X  Liu S  Zhang C  Liu Y 《Genetica》2004,121(3):295-301
The mitochondrial cyt b genes in the allotetraploid and triploid crucian carp as well as triploid common carp were isolated and completely sequenced. Their DNA sequences were compared with those derived from the cyt b genes of the red crucian carp, Japanese crucian carp, and common carp with MEGA 1.0 software. Phylogenetic analysis revealed the sister relationships between allotetraploid and diploid red crucian carp, between the triploid crucian carp and diploid Japanese crucian carp, and between triploid common carp and diploid common carp. Our results indicated the cyt b genes in the allotetraploid, triploid crucian carp, and triploid common carp were maternally inherited. Through maternal inheritance, the cyt b gene in the F11 tetraploid displayed extremely high similarity to that in the female parent red crucian carp after 11 generations (from F1 to F11 hybrids). Since the establishment of the new tetraploid stocks has great significance in analyzing evolutionary theory of vertebrate and in improving aquaculture industry, analysis of the cyt b gene and the elucidation of the variation of the cyt b gene DNA in different cyprinids prove that cyt b is a useful genetic marker to monitor the variations in the progeny of the crosses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号