首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although a link between toxic smoke and oxidant lung vascular injury has been indicated, the cellular mechanisms of smoke-induced injury to lung endothelial cells are unknown. We investigated oxidative stress and apoptosis induced by wood smoke extract (SE) in human pulmonary artery endothelial cells (HPAECs) and delineated their relationship. We found that SE increased intracellular reactive oxygen species (ROS), depleted intracellular glutathione, and upregulated Cu/Zn superoxide dismutase and heme oxygenase-1 (2 antioxidant enzymes), but it failed to alter the expression of catalase and glutathione peroxidase. In addition, SE promoted apoptosis as indicated by the external exposure of membrane phosphatidylserine, the loss of mitochondrial membrane potential, an increase in the level of Bax (a proapoptotic protein), and enhanced DNA fragmentation. This apoptosis was associated with mitochondrial-to-nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) (2 apoptogenic proteins) but was independent of caspase cascade activation. Whereas N-acetylcysteine (an antioxidant) effectively reversed the SE-induced increase in ROS and depletion of glutathione, it also suppressed SE-induced nuclear translocation of either AIF or EndoG and prevented the enhanced DNA fragmentation that would have resulted from this. We conclude that 1) although SE upregulates Cu/Zn superoxide dismutase and heme oxygenase-1, it nevertheless increases intracellular oxidative stress in HPAECs, and 2) SE promotes oxidative stress-mediated caspase-independent HPAEC apoptosis that involves mitochondrial-to-nuclear translocation of AIF and EndoG. Thus modulations of the expression of antioxidant enzymes and the caspase-independent apoptotic pathway are possible target choices for potential therapeutic regimes to treat smoke-induced lung injury.  相似文献   

2.
3.
An increase in protease activity was shown in thymus nuclei of rats exposed to gamma-radiation. The activation of histone-specific proteases depended on the duration of postradiation period. Also, it was revealed that incubation of thymus nuclear with the intermembrane fraction of liver mitochondria caused degradation of histones and nonhistone nuclear proteins, as well as internucleosomal fragmentation of DNA. Simultaneously, nuclear proteases tightly bound to histones and specifically cleaving histones were observed to be activated by apoptogenic factors of the mitochondrial intermembrane fraction. Probably, the apoptogenic action of gamma-radiation involves not only a direct DNA damage that induces activation of DNA-dependent proteases but also an indirect component: destructive alterations in mitochondria leading to the exit of apoptogenic factors from the intermembrane space.  相似文献   

4.
Mimosine, a non-protein amino acid, is mainly known for its action as a reversible inhibitor of DNA replication and, therefore, has been widely used as a cell cycle synchronizing agent. Recently, it has been shown that mimosine also induces apoptosis, as mainly reflected in its ability to elicit characteristic nuclear changes. The present study elucidates the mechanism underlying mimosine’s apoptotic effects, using the U-937 leukemia cell line. We now demonstrate that in isolated rat liver mitochondria, mimosine induces mitochondrial swelling that can be inhibited by cyclosporine A, indicative of permeability transition (PT) mega-channel opening. Mimosine-induced apoptosis was accompanied by formation of hydrogen peroxide and a decrease in reduced glutathione levels. The apoptotic process was partially inhibited by cyclosporine A and substantially blocked by the antioxidant N-acetylcysteine, suggesting an essential role for reactive oxygen species formation during the apoptotic processes. The apoptosis induced by mimosine was also accompanied by a decrease in mitochondrial membrane potential, cytochrome c release and caspase 3 and 9 activation. Our results thus imply that mimosine activates apoptosis through mitochondrial activation and formation of H2O2, both of which play functional roles in the induction of cell death. Maher Hallak and Liat Vazana have contributed equally to the work.  相似文献   

5.
From time of their discovery, sarcolemmal ATP-sensitive K+ (sarcK ATP) channels were thought to have an important protective role in the heart during stress whereby channel opening protects the heart from stress-induced Ca2+ overload and resulting damage. In contrast, some recent studies indicate that sarcK ATP channel closing can lead to cardiac protection. Also, the role of the sarcK ATP channel in apoptotic cell death is unclear. In the present study, the effects of channel inhibition on apoptosis and the specific interaction between the sarcK ATP channel and mitochondria were investigated. Apoptotic cell death of cultured HL-1 and neonatal cardiomyocytes following exposure to oxidative stress was significantly increased in the presence of sarcK ATP channel inhibitor HMR-1098 as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and caspase-3,7 assays. This was paralleled by an increased release of cytochrome c from mitochondria to cytosol, suggesting activation of the mitochondrial death pathway. sarcK ATP channel inhibition during stress had no effect on Bcl-2, Bad, and phospho-Bad, indicating that the increase in apoptosis cannot be attributed to these modulators of the apoptotic pathway. However, monitoring of mitochondrial Ca2+ with rhod-2 fluorescent indicator revealed that mitochondrial Ca2+ accumulation during stress is potentiated in the presence of HMR-1098. In conclusion, this study provides novel evidence that opening of sarcK ATP channels, through a specific Ca2+-related interaction with mitochondria, plays an important role in preventing cardiomyocyte apoptosis and mitochondrial damage during stress.  相似文献   

6.
Mutations in the ceramide kinase-like gene (CERKL) are associated with severe retinal degeneration. However, the exact function of the encoded protein (CERKL) remains unknown. Here we show that CERKL interacts with mitochondrial thioredoxin 2 (TRX2) and maintains TRX2 in the reduced redox state. Overexpression of CERKL protects cells from apoptosis under oxidative stress, whereas suppressing CERKL renders cells more sensitive to oxidative stress. In zebrafish, CERKL protein prominently locates in the outer segment and inner segment of the photoreceptor of the retina. Knockdown of CERKL in the zebrafish leads to an increase of retinal cell death, including cone and rod photoreceptor degeneration. Signs of oxidative damage to macromolecules were also detected in CERKL deficient zebrafish retina. Our results show that CERKL interacts with TRX2 and plays a novel key role in the regulation of the TRX2 antioxidant pathway and, for the first time, provides an explanation of how mutations in CERKL may lead to retinal cell death.  相似文献   

7.
Apoptosis-inducing factor (AIF) exhibits reactive oxygen species (ROS)-generating NADH oxidase activity of unknown significance, which is dispensable for apoptosis. We knocked out the aif gene in two human colon carcinoma cell lines that displayed lower mitochondrial complex I oxidoreductase activity and produced less ROS, but showed increased sensitivity to peroxide- or drug-induced apoptosis. AIF knockout cells failed to form tumors in athymic mice or grow in soft agar. Only AIF with intact NADH oxidase activity restored complex I activity and anchorage-independent growth of aif knockout cells, and induced aif-transfected mouse NIH3T3 cells to form foci. AIF knockdown in different carcinoma cell types resulted in lower superoxide levels, enhanced apoptosis sensitivity and loss of tumorigenicity. Antioxidants sensitized AIF-expressing cells to apoptosis, but had no effect on tumorigenicity. In summary, AIF-mediated resistance to chemical stress involves ROS and probably also mitochondrial complex I. AIF maintains the transformed state of colon cancer cells through its NADH oxidase activity, by mechanisms that involve complex I function. On both counts, AIF represents a novel type of cancer drug target.  相似文献   

8.
p21-activated protein kinase (PAK2) is a unique member of the PAK family kinases that plays important roles in stress signaling. It can be activated by binding to the small GTPase, Cdc42 and Rac1, or by caspase 3 cleavage. Cdc42-activated PAK2 mediates cytostasis, whereas caspase 3-cleaved PAK2 contributes to apoptosis. However, the relationship between these two states of PAK2 activation remains elusive. In this study, through protein biochemical analyses and various cell-based assays, we demonstrated that full-length PAK2 activated by Cdc42 was resistant to the cleavage by caspase 3 in vitro and within cells. When mammalian cells were treated by oxidative stress using hydrogen peroxide, PAK2 was highly activated through caspase 3 cleavage that led to apoptosis. However, when PAK2 was pre-activated by Cdc42 or by mild stress such as serum deprivation, it was no longer able to be cleaved by caspase 3 upon hydrogen peroxide treatment, and the subsequent apoptosis was also largely inhibited. Furthermore, cells expressing active mutants of full-length PAK2 became more resistant to hydrogen peroxide-induced apoptosis than inactive mutants. Taken together, this study identified two states of PAK2 activation, wherein Cdc42- and autophosphorylation-dependent activation inhibited the constitutive activation of PAK2 by caspase cleavage. The regulation between these two states of PAK2 activation provides a new molecular mechanism to support PAK2 as a molecular switch for controlling cytostasis and apoptosis in response to different types and levels of stress with broad physiological and pathological relevance.  相似文献   

9.
10.
Tuo QH  Wang C  Yan FX  Liao DF 《Life sciences》2004,76(5):487-497
Our recent studies have shown that onychin could protect rabbit aortic rings from lysophosphatidylcholine-induced injury by preserving endothelium-dependent relaxation and alleviating acute endothelial damage mediated by oxidative stress. However, the effect of onychin on apoptosis of endothelial cells induced by oxidative stress was not evaluated. In the present study, we investigated the effect of onychin on Hydrogen Peroxide (H2O2) induced apoptosis of ECV304 endothelial cells. Cultured human umbilical vein endothelial cell line (ECV304) was pretreated with vehicle (DMSO), genistein, or different concentrations of onychin (0.1, 0.3, 1, 3, and 10 micromol/L) for 30 minutes and then exposed to 1 mmol/L H2O2 for 24 hours. Cell apoptosis was determined by TUNEL and flow cytometric analysis. Meanwhile, Western-blot was used to measure the expression of phospho-ERK1/2, phospho-p38 and caspase-3. Our data showed that onychin treatment exhibited a protective effect on ECV304 endothelial cells from H2O2-induced apoptosis in a concentration-dependent manner. Moreover, onychin attenuated H2O2-induced phosphorylation of p38MAPK and increased H2O2-induced phosphorylation of ERK1/2. Furthermore, onychin decreased the activation of caspase-3. The opposing effects of onychin on phosphorylation levels of p38MAPK and ERK1/2, and its caspase-3 inhibition might play a role in the beneficial effect of onychin on endothelial injury.  相似文献   

11.
Type-2 diabetes results from the development of insulin resistance and a concomitant impairment of insulin secretion. Recent studies place altered mitochondrial oxidative phosphorylation (OxPhos) as an underlying genetic element of insulin resistance. However, the causative or compensatory nature of these OxPhos changes has yet to be proven. Here, we show that muscle- and liver-specific AIF ablation in mice initiates a pattern of OxPhos deficiency closely mimicking that of human insulin resistance, and contrary to current expectations, results in increased glucose tolerance, reduced fat mass, and increased insulin sensitivity. These results are maintained upon high-fat feeding and in both genetic mosaic and ubiquitous OxPhos-deficient mutants. Importantly, the effects of AIF on glucose metabolism are acutely inducible and reversible. These findings establish that tissue-specific as well as global OxPhos defects in mice can counteract the development of insulin resistance, diabetes, and obesity.  相似文献   

12.
Apoptotic signaling plays an important role in skeletal muscle degradation, atrophy, and dysfunction. Mitochondria are central executers of apoptosis by directly participating in caspase-dependent and caspase-independent cell death signaling. Given the important apoptotic role of mitochondria, altering mitochondrial content could influence apoptosis. Therefore, we examined the direct effect of modest, but physiological increases in mitochondrial biogenesis and content on skeletal muscle apoptosis using a cell culture approach. Treatment of L6 myoblasts with SNAP or AICAR (5 h/day for 5 days) significantly increased PGC-1, AIF, cytochrome c, and MnSOD protein content as well as MitoTracker staining. Following induction of mitochondrial biogenesis, L6 myoblasts displayed decreased sensitivity to apoptotic cell death as well as reduced caspase-3 and caspase-9 activation following exposure to staurosporine (STS) and C2-ceramide. L6 myoblasts with higher mitochondrial content also exhibited reduced apoptosis and AIF release following exposure to hydrogen peroxide (H2O2). Analysis of several key apoptosis regulatory proteins (ARC, Bax, Bcl-2, XIAP), antioxidant proteins (catalase, MnSOD, CuZnSOD), and reactive oxygen species (ROS) measures (DCF and MitoSOX fluorescence) revealed that these mechanisms were not responsible for the observed cellular protection. However, myoblasts with higher mitochondrial content were less sensitive to Ca2 +-induced mitochondrial permeability transition pore formation (mPTP) and mitochondrial membrane depolarization. Collectively, these data demonstrate that increased mitochondrial content at physiological levels provides protection against apoptotic cell death by decreasing caspase-dependent and caspase-independent signaling through influencing mitochondrial Ca2 +-mediated apoptotic events. Therefore, increasing mitochondrial biogenesis/content may represent a potential therapeutic approach in skeletal muscle disorders displaying increased apoptosis.  相似文献   

13.
ABSTRACT

Honokiol is one of the main active components of Magnolia officinalis, and has been demonstrated to have multiple pharmacological activities against a variety of diseases. Recently, this phenolic compound is known to have antioxidant activity, but its mechanism of action remains unclear. The purpose of the current study was to evaluate the preventive effects of honokiol against oxidative stress-induced DNA damage and apoptosis in C2C12 myoblasts. The present study found that honokiol inhibited hydrogen peroxide (H2O2)-induced DNA damage and mitochondrial dysfunction, while reducing reactive oxygen species (ROS) formation. The inhibitory effect of honokiol on H2O2-induced apoptosis was associated with the up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio that in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose) polymerase cleavage, which was associated with the blocking of cytochrome c release to the cytoplasm. Collectively, these results demonstrate that honokiol defends C2C12 myoblasts against H2O2-induced DNA damage and apoptosis, at least in part, by preventing mitochondrial-dependent pathway through scavenging excessive ROS.  相似文献   

14.
Apoptosis was induced in human foreskin fibroblasts by the redox-cycling quinone naphthazarin (5,8-dihydroxy-1,4-naphthoquinone). Most of the cells displayed ultrastructure typical of apoptosis after 8 h of exposure to naphthazarin. Apoptosis was inhibited in fibroblasts pretreated with the cathepsin D inhibitor pepstatin A. Immunofluorescence analysis of the intracellular distribution of cathepsin D revealed a distinct granular pattern in control cells, whereas cells treated with naphthazarin for 30 min exhibited more diffuse staining that corresponded to release of the enzyme from lysosomes to the cytosol. After 2 h, release of cytochrome c from mitochondria to the cytosol was indicated by immunofluorescence. The membrane-potential-sensitive probe JC-1 and flow cytometry did not detect a permanent decrease in mitochondrial transmembrane potential (delta psi(m)) until after 5 h of naphthazarin treatment. Our findings show that, during naphthazarin-induced apoptosis, lysosomal destabilization (measured as release of cathepsin D) precedes release of cytochrome c, loss of delta psi(m), and morphologic alterations. Moreover, apoptosis could be inhibited by pretreatment with pepstatin A.  相似文献   

15.
We have elucidated the cytoprotective effect of annphenone (2,4-dihyroxy-6-methoxy-acetophenone 4-O-beta-d-glucopyranoside) against oxidative stress-induced apoptosis. Annphenone scavenged intracellular reactive oxygen species (ROS) and increased antioxidant enzyme activities. It thereby prevented lipid peroxidation and DNA damage, which was demonstrated by the inhibition of the formation of thiobarbituric acid reactive substance (TBARS), inhibition of the comet tail and decreased phospho-H2A.X expression. Annphenone protected Chinese hamster lung fibroblast (V79-4) cells from cell death via the inhibition of apoptosis induced by hydrogen peroxide (H(2)O(2)), as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population and inhibited mitochondrial membrane potential (Deltapsi) loss. Taken together, these findings suggest that annphenone exhibits antioxidant properties by inhibiting ROS generation and thus protecting cells from H(2)O(2)-induced cell damage.  相似文献   

16.
Cadmium-induced cellular toxicity has been related to necrosis and/or caspase-dependent apoptosis. In the present study, we show that, on cadmium exposure, the human hepatocarcinoma Hep3B cells undergo caspase-independent apoptosis associated with nuclear translocation of endonuclease G and apoptosis-inducing factor, two mitochondrial apoptogenic proteins. Release of these proteins is likely related to calcium-induced alteration of mitochondrial homeostasis. Indeed, it was first preceded by a rapid and sustained increase in cytoplasmic calcium and then by a coincident loss in mitochondrial membrane potential and production of reactive oxygen species. Bapta-AM (acetoxymethyl ester of 5, 5′-dimethyl-bis (o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid), a calcium chelator, blocked all these events and prevented cadmium-induced apoptosis. Production of reactive oxygen species was inhibited by ruthenium red and rotenone, two mitochondrial inhibitors, and by diphenyleneiodonium, a flavoprotein inhibitor, which also prevented both loss in mitochondrial membrane potential and apoptosis. In addition, Bapta-AM and diphenyleneiodonium were found to almost totally block decreased expression of the mitochondrial anti-apoptotic nuclear factor-κB-regulated bcl-xL protein in cadmium-treated cells. Taken together, our results show that cadmium induces Hep3B cells apoptosis mainly by calcium- and oxidative stress-related impairment of mitochondria, which probably favors release of apoptosis-inducing factor and endonuclease G.  相似文献   

17.
Combining sequence analysis, structure prediction, and site-directed mutagenesis, we have investigated the mechanism of catalysis and substrate binding by the apoptotic mitochondrial nuclease EndoG, which belongs to the large family of DNA/RNA non-specific betabetaalpha-Me-finger nucleases. Catalysis of phosphodiester bond cleavage involves several highly conserved amino acid residues, namely His143, Asn174, and Glu182 required for water activation and metal ion binding, as well as Arg141 required for proper substrate binding and positioning, respectively. These results indicate that EndoG basically follows a similar mechanism as the Serratia nuclease, the best studied representative of the family of DNA/RNA non-specific nucleases, but that differences are observed for transition state stabilisation. In addition, we have identified two putative DNA/RNA binding residues of bovine EndoG, Arg135 and Arg186, strictly conserved only among mammalian members of the nuclease family, suggesting a similar mode of binding to single and double-stranded nucleic acid substrates by these enzymes. Finally, we demonstrate by ectopic expression of active and inactive variants of bovine EndoG in HeLa and CV1-cells that extramitochondrial active EndoG by itself induces cell death, whereas expression of an enzymatically inactive variant does not.  相似文献   

18.
Apoptosis was induced in human foreskin fibroblasts by the redox-cycling quinone naphthazarin (5,8-dihydroxy-1,4-naphthoquinone). Most of the cells displayed ultrastructure typical of apoptosis after 8 h of exposure to naphthazarin. Apoptosis was inhibited in fibroblasts pretreated with the cathepsin D inhibitor pepstatin A. Immunofluorescence analysis of the intracellular distribution of cathepsin D revealed a distinct granular pattern in control cells, whereas cells treated with naphthazarin for 30 min exhibited more diffuse staining that corresponded to release of the enzyme from lysosomes to the cytosol. After 2 h, release of cytochrome c from mitochondria to the cytosol was indicated by immunofluorescence. The membrane-potential–sensitive probe JC-1 and flow cytometry did not detect a permanent decrease in mitochondrial transmembrane potential (ΔΨm) until after 5 h of naphthazarin treatment. Our findings show that, during naphthazarin-induced apoptosis, lysosomal destabilization (measured as release of cathepsin D) precedes release of cytochrome c, loss of ΔΨm, and morphologic alterations. Moreover, apoptosis could be inhibited by pretreatment with pepstatin A.  相似文献   

19.
The p53-activated gene PAG608, which encodes a nuclear zinc finger protein, is a p53-inducible gene that contributes to p53-mediated apoptosis. However, the mechanisms by which PAG608 is involved in the apoptosis of neuronal cells are still obscure. In this study, we demonstrated that expression of p53 was induced by 100 microm 6-hydroxydopamine (6-OHDA), accompanied by increased PAG608 expression in PC12 cells. On the other hand, transient or permanent transfection of antisense PAG608 cDNA into PC12 cells significantly prevented apoptotic cell death induced by 100 microm 6-OHDA or 200 microm hydrogen peroxide but not by 250 microm 1-methyl-4-phenylpyridinium ion. The 6-OHDA-induced activation of caspase-3, DNA fragmentation, loss of mitochondrial membrane potential, and induction of p53 and Bax were also prevented in PC12 cells that stably expressed antisense PAG608 cDNA. These results suggest that PAG608 is associated with the apoptotic pathway induced by these oxidative stress-generating reagents, upstream of the collapse in the mitochondrial membrane potential in PC12 cells. Interestingly, transient transfection with PAG608 cDNA increased p53 expression in both PC12 cells and B65 cells, indicating that PAG608 induced by p53 is able to induce p53 expression in these cells inversely. Furthermore, transient transfection of a truncated mutant PAG608 cDNA, lacking the first zinc finger domain, inhibited 6-OHDA-induced cell death and altered the nuclear and nucleolar localization of wild-type PAG608 in PC12 cells. These results suggest that PAG608 may induce or regulate p53 expression and translocate to the nucleus and nucleolus using its first zinc finger domain during oxidative stress-induced apoptosis of catecholamine-containing cells.  相似文献   

20.
Activation of Bax or Bak is essential for the completion of many apoptotic programmes. Under cytotoxic conditions, these proteins undergo a series of conformational rearrangements that end up with their oligomerization. We found that unlike inactive monomeric Bax, active oligomerized Bax is partially resistant to trypsin digestion, providing a convenient read out to monitor Bax activation. Using this assay, we studied how the lipid composition of membranes affects tBid-induced Bax activation in vitro with pure liposomes. We report that Bax activation is inhibited by cholesterol and by decreases in membrane fluidity. This observation was further tested in vivo using the drug U18666A, which we found increases mitochondrial cholesterol levels. When incubated with tBid, mitochondria isolated from U18666A-treated cells showed a delay in the release of Smac/Diablo and Cytochrome c, as well as in Bax oligomerization. Moreover, pre-incubation with U18666A partially protected cells from stress-induced apoptosis. As many tumours display high mitochondrial cholesterol content, inefficient Bax oligomerization might contribute to their resistance to apoptosis-inducing agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号