首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE degradation by 2 × 106 cells ml−1 were 0.07, 1.17, and 3.56 μg ml−1 h−1 for initial concentrations of 5, 50, and 500 μg MTBE ml−1, respectively. When incubated with 20 μg of uniformly labeled [14C]MTBE ml−1, strain PM1 converted 46% to 14CO2 and 19% to 14C-labeled cells within 120 h. This yield is consistent with the measurement of protein accumulation at different MTBE concentrations from which was estimated a biomass yield of 0.18 mg of cells mg MTBE−1. Strain PM1 was inoculated into sediment core material collected from a contaminated groundwater plume at Port Hueneme, California, in which there was no evidence of MTBE degradation. Strain PM1 readily degraded 20 μg of MTBE ml−1 added to the core material. The rate of MTBE removal increased with additional inputs of 20 μg of MTBE ml−1. These results suggest that PM1 has potential for use in the remediation of MTBE-contaminated environments.  相似文献   

2.
This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10,201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO2 by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization (53% of added [14C]benzo[a]pyrene was recovered as 14CO2 in 100 days), and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula.  相似文献   

3.
Carbon partitioning and residue formation during microbial degradation of polycyclic aromatic hydrocarbons (PAH) in soil and soil-compost mixtures were examined by using [14C]anthracenes labeled at different positions. In native soil 43.8% of [9-14C]anthracene was mineralized by the autochthonous microflora and 45.4% was transformed into bound residues within 176 days. Addition of compost increased the metabolism (67.2% of the anthracene was mineralized) and decreased the residue formation (20.7% of the anthracene was transformed). Thus, the higher organic carbon content after compost was added did not increase the level of residue formation. [14C]anthracene labeled at position 1,2,3,4,4a,5a was metabolized more rapidly and resulted in formation of higher levels of residues (28.5%) by the soil-compost mixture than [14C]anthracene radiolabeled at position C-9 (20.7%). Two phases of residue formation were observed in the experiments. In the first phase the original compound was sequestered in the soil, as indicated by its limited extractability. In the second phase metabolites were incorporated into humic substances after microbial degradation of the PAH (biogenic residue formation). PAH metabolites undergo oxidative coupling to phenolic compounds to form nonhydrolyzable humic substance-like macromolecules. We found indications that monomeric educts are coupled by C-C- or either bonds. Hydrolyzable ester bonds or sorption of the parent compounds plays a minor role in residue formation. Moreover, experiments performed with 14CO2 revealed that residues may arise from CO2 in the soil in amounts typical for anthracene biodegradation. The extent of residue formation depends on the metabolic capacity of the soil microflora and the characteristics of the soil. The position of the 14C label is another important factor which controls mineralization and residue formation from metabolized compounds.  相似文献   

4.
The metabolism of phthalic acid (PA) and di-(2-ethylhexyl)phthalate (DEHP) in sludge-amended agricultural soil was studied with radiotracer techniques. The initial rates of metabolism of PA and DEHP (4.1 nmol/g [dry weight]) were estimated to be 731.8 and 25.6 pmol/g (dry weight) per day, respectively. Indigenous microorganisms assimilated 28 and 17% of the carbon in [14C]PA and [14C]DEHP, respectively, into microbial biomass. The rates of DEHP metabolism were much greater in sludge assays without soil than in assays with sludge-amended soil. Mineralization of [14C]DEHP to 14CO2 increased fourfold after inoculation of sludge and soil samples with DEHP-degrading strain SDE 2. The elevated mineralization potential was maintained for more than 27 days. Experiments performed with strain SDE 2 suggested that the bioavailability and mineralization of DEHP decreased substantially in the presence of soil and sludge components. The microorganisms metabolizing PA and DEHP in sludge and sludge-amended soil were characterized by substrate-specific radiolabelling, followed by analysis of 14C-labelled phospholipid ester-linked fatty acids (14C-PLFAs). This assay provided a radioactive fingerprint of the organisms actively metabolizing [14C]PA and [14C]DEHP. The 14C-PLFA fingerprints showed that organisms with different PLFA compositions metabolized PA and DEHP in sludge-amended soil. In contrast, microorganisms with comparable 14C-PLFA fingerprints were found to dominate DEHP metabolism in sludge and sludge-amended soil. Our results suggested that indigenous sludge microorganisms dominated DEHP degradation in sludge-amended soil. Mineralization of DEHP and PA followed complex kinetics that could not be described by simple first-order equations. The initial mineralization activity was described by an exponential function; this was followed by a second phase that was described best by a fractional power function. In the initial phase, the half times for PA and DEHP in sludge-amended soil were 2 and 58 days, respectively. In the late phase of incubation, the apparent half times for PA and DEHP increased to 15 and 147 days, respectively. In the second phase (after more than 28 days), the half time for DEHP was 2.9 times longer in sludge-amended soil assays than in sludge assays without soil. Experiments with radiolabelled DEHP degraders suggested that a significant fraction of the 14CO2 produced in long-term degradation assays may have originated from turnover of labelled microbial biomass rather than mineralization of [14C]PA or [14C]DEHP. It was estimated that a significant amount of DEHP with poor biodegradability and extractability remains in sludge-amended soil for extended periods of time despite the presence of microorganisms capable of degrading the compound (e.g., more than 40% of the DEHP added is not mineralized after 1 year).  相似文献   

5.
Pseudomonas sp. strain ADP uses the herbicide atrazine as the sole nitrogen source. We have devised a simple atrazine degradation assay to determine the effect of other nitrogen sources on the atrazine degradation pathway. The atrazine degradation rate was greatly decreased in cells grown on nitrogen sources that support rapid growth of Pseudomonas sp. strain ADP compared to cells cultivated on growth-limiting nitrogen sources. The presence of atrazine in addition to the nitrogen sources did not stimulate degradation. High degradation rates obtained in the presence of ammonium plus the glutamine synthetase inhibitor MSX and also with an Nas mutant derivative grown on nitrate suggest that nitrogen regulation operates by sensing intracellular levels of some key nitrogen-containing metabolite. Nitrate amendment in soil microcosms resulted in decreased atrazine mineralization by the wild-type strain but not by the Nas mutant. This suggests that, although nitrogen repression of the atrazine catabolic pathway may have a strong impact on atrazine biodegradation in nitrogen-fertilized soils, the use of selected mutant variants may contribute to overcoming this limitation.  相似文献   

6.
Alasan, a high-molecular-weight bioemulsifier complex of an anionic polysaccharide and proteins that is produced by Acinetobacter radioresistens KA53 (S. Navon-Venezia, Z. Zosim, A. Gottlieb, R. Legmann, S. Carmeli, E. Z. Ron, and E. Rosenberg, Appl. Environ. Microbiol. 61:3240–3244, 1995), enhanced the aqueous solubility and biodegradation rates of polyaromatic hydrocarbons (PAHs). In the presence of 500 μg of alasan ml−1, the apparent aqueous solubilities of phenanthrene, fluoranthene, and pyrene were increased 6.6-, 25.7-, and 19.8-fold, respectively. Physicochemical characterization of the solubilization activity suggested that alasan solubilizes PAHs by a physical interaction, most likely of a hydrophobic nature, and that this interaction is slowly reversible. Moreover, the increase in apparent aqueous solubility of PAHs does not depend on the conformation of alasan and is not affected by the formation of multimolecular aggregates of alasan above its saturation concentration. The presence of alasan more than doubled the rate of [14C]fluoranthene mineralization and significantly increased the rate of [14C]phenanthrene mineralization by Sphingomonas paucimobilis EPA505. The results suggest that alasan-enhanced solubility of hydrophobic compounds has potential applications in bioremediation.  相似文献   

7.
The direct involvement of manganese peroxidase (MnP) in the mineralization of natural and xenobiotic compounds was evaluated. A broad spectrum of aromatic substances were partially mineralized by the MnP system of the white rot fungus Nematoloma frowardii. The cell-free MnP system partially converted several aromatic compounds, including [U-14C]pentachlorophenol ([U-14C]PCP), [U-14C]catechol, [U-14C]tyrosine, [U-14C]tryptophan, [4,5,9,10-14C]pyrene, and [ring U-14C]2-amino-4,6-dinitrotoluene ([14C]2-AmDNT), to 14CO2. Mineralization was dependent on the ratio of MnP activity to concentration of reduced glutathione (thiol-mediated oxidation), a finding which was demonstrated by using [14C]2-AmDNT as an example. At [14C]2-AmDNT concentrations ranging from 2 to 120 μM, the amount of released 14CO2 was directly proportional to the concentration of [14C]2-AmDNT. The formation of highly polar products was also observed with [14C]2-AmDNT and [U-14C]PCP; these products were probably low-molecular-weight carboxylic acids. Among the aliphatic compounds tested, glyoxalate was mineralized to the greatest extent. Eighty-six percent of the 14COOH-glyoxalate and 9% of the 14CHO-glyoxalate were converted to 14CO2, indicating that decarboxylation reactions may be the final step in MnP-catalyzed mineralization. The extracellular enzymatic combustion catalyzed by MnP could represent an important pathway for the formation of carbon dioxide from recalcitrant xenobiotic compounds and may also have general significance in the overall biodegradation of resistant natural macromolecules, such as lignins and humic substances.  相似文献   

8.
Although metals are thought to inhibit the ability of microorganisms to degrade organic pollutants, several microbial mechanisms of resistance to metal are known to exist. This study examined the potential of cadmium-resistant microorganisms to reduce soluble cadmium levels to enhance degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under conditions of cocontamination. Four cadmium-resistant soil microorganisms were examined in this study. Resistant up to a cadmium concentration of 275 μg ml−1, these isolates represented the common soil genera Arthrobacter, Bacillus, and Pseudomonas. Isolates Pseudomonas sp. strain H1 and Bacillus sp. strain H9 had a plasmid-dependent intracellular mechanism of cadmium detoxification, reducing soluble cadmium levels by 36%. Isolates Arthrobacter strain D9 and Pseudomonas strain I1a both produced an extracellular polymer layer that bound and reduced soluble cadmium levels by 22 and 11%, respectively. Although none of the cadmium-resistant isolates could degrade 2,4-D, results of dual-bioaugmentation studies conducted with both pure culture and laboratory soil microcosms showed that each of four cadmium-resistant isolates supported the degradation of 500-μg ml−1 2,4-D by the cadmium-sensitive 2,4-D degrader Ralstonia eutropha JMP134. Degradation occurred in the presence of up to 24 μg of cadmium ml−1 in pure culture and up to 60 μg of cadmium g−1 in amended soil microcosms. In a pilot field study conducted with 5-gallon soil bioreactors, the dual-bioaugmentation strategy was again evaluated. Here, the cadmium-resistant isolate Pseudomonas strain H1 enhanced degradation of 2,4-D in reactors inoculated with R. eutropha JMP134 in the presence of 60 μg of cadmium g−1. Overall, dual bioaugmentation appears to be a viable approach in the remediation of cocontaminated soils.  相似文献   

9.
An active sulfate-reducing consortium that degrades 2-methylnaphthalene (2-MNAP) at rates of up to 25 μM day−1 was established. Degradation was inhibited in the presence of molybdate and ceased in the absence of sulfate. As much as 87% of 2-[14C]MNAP was mineralized to 14CO2. 2-Naphthoic acid (2-NA) was detected as a metabolite, and incubation with either deuterated 2-MNAP or [13C]bicarbonate indicates that 2-NA is the result of oxidation of the methyl group. Also detected were carboxylated 2-MNAPs, suggesting the presence of an alternative pathway for 2-MNAP degradation.  相似文献   

10.
Atrazine, a herbicide widely used in corn production, is a frequently detected groundwater contaminant. Nine gram-positive bacterial strains able to use this herbicide as a sole source of nitrogen were isolated from four farms in central Canada. The strains were divided into two groups based on repetitive extragenic palindromic (rep)-PCR genomic fingerprinting with ERIC and BOXA1R primers. Based on 16S ribosomal DNA sequence analysis, both groups were identified as Nocardioides sp. strains. None of the isolates mineralized [ring-U-14C]atrazine. There was no hybridization to genomic DNA from these strains using atzABC cloned from Pseudomonas sp. strain ADP or trzA cloned from Rhodococcus corallinus. S-Triazine degradation was studied in detail in Nocardioides sp. strain C190. Oxygen was not required for atrazine degradation by whole cells or cell extracts. Based on high-pressure liquid chromatography and mass spectrometric analyses of products formed from atrazine in incubations of whole cells with H218O, sequential hydrolytic reactions converted atrazine to hydroxyatrazine and then to the end product N-ethylammelide. Isopropylamine, the putative product of the second hydrolytic reaction, supported growth as the sole carbon and nitrogen source. The triazine hydrolase from strain C190 was isolated and purified and found to have a Km for atrazine of 25 μM and a Vmax of 31 μmol/min/mg of protein. The subunit molecular mass of the protein was 52 kDa. Atrazine hydrolysis was not inhibited by 500 μM EDTA but was inhibited by 100 μM Mg, Cu, Co, or Zn. Whole cells and purified triazine hydrolase converted a range of chlorine or methylthio-substituted herbicides to the corresponding hydroxy derivatives. In summary, an atrazine-metabolizing Nocardioides sp. widely distributed in agricultural soils degrades a range of s-triazine herbicides by means of a novel s-triazine hydrolase.  相似文献   

11.
We analyzed the impact of surfactant addition on hydrocarbon mineralization kinetics and the associated population shifts of hydrocarbon-degrading microorganisms in soil. A mixture of radiolabeled hexadecane and phenanthrene was added to batch soil vessels. Witconol SN70 (a nonionic, alcohol ethoxylate) was added in concentrations that bracketed the critical micelle concentration (CMC) in soil (CMC′) (determined to be 13 mg g−1). Addition of the surfactant at a concentration below the CMC′ (2 mg g−1) did not affect the mineralization rates of either hydrocarbon. However, when surfactant was added at a concentration approaching the CMC′ (10 mg g−1), hexadecane mineralization was delayed and phenanthrene mineralization was completely inhibited. Addition of surfactant at concentrations above the CMC′ (40 mg g−1) completely inhibited mineralization of both phenanthrene and hexadecane. Denaturing gradient gel electrophoresis of 16S rRNA gene segments showed that hydrocarbon amendment stimulated Rhodococcus and Nocardia populations that were displaced by Pseudomonas and Alcaligenes populations at elevated surfactant levels. Parallel cultivation studies revealed that the Rhodococcus population can utilize hexadecane and that the Pseudomonas and Alcaligenes populations can utilize both Witconol SN70 and hexadecane for growth. The results suggest that surfactant applications necessary to achieve the CMC alter the microbial populations responsible for hydrocarbon mineralization.  相似文献   

12.
White rot fungi can oxidize high-molecular-weight polycyclic aromatic hydrocarbons (PAH) rapidly to polar metabolites, but only limited mineralization takes place. The objectives of this study were to determine if the polar metabolites can be readily mineralized by indigenous microflora from several inoculum sources, such as activated sludge, forest soils, and PAH-adapted sediment sludge, and to determine if such metabolites have decreased mutagenicity compared to the mutagenicity of the parent PAH. 14C-radiolabeled benzo[a]pyrene was subjected to oxidation by the white rot fungus Bjerkandera sp. strain BOS55. After 15 days, up to 8.5% of the [14C]benzo[a]pyrene was recovered as 14CO2 in fungal cultures, up to 73% was recovered as water-soluble metabolites, and only 4% remained soluble in dibutyl ether. Thin-layer chromatography analysis revealed that many polar fluorescent metabolites accumulated. Addition of indigenous microflora to fungal cultures with oxidized benzo[a]pyrene on day 15 resulted in an initially rapid increase in the level of 14CO2 recovery to a maximal value of 34% by the end of the experiments (>150 days), and the level of water-soluble label decreased to 16% of the initial level. In fungal cultures not inoculated with microflora, the level of 14CO2 recovery increased to 13.5%, while the level of recovery of water-soluble metabolites remained as high as 61%. No large differences in 14CO2 production were observed with several inocula, showing that some polar metabolites of fungal benzo[a]pyrene oxidation were readily degraded by indigenous microorganisms, while other metabolites were not. Of the inocula tested, only PAH-adapted sediment sludge was capable of directly mineralizing intact benzo[a]pyrene, albeit at a lower rate and to a lesser extent than the mineralization observed after combined treatment with white rot fungi and indigenous microflora. Fungal oxidation of benzo[a]pyrene resulted in rapid and almost complete elimination of its high mutagenic potential, as observed in the Salmonella typhimurium revertant test performed with strains TA100 and TA98. Moreover, no direct mutagenic metabolite could be detected during fungal oxidation. The remaining weak mutagenic activity of fungal cultures containing benzo[a]pyrene metabolites towards strain TA98 was further decreased by subsequent incubations with indigenous microflora.  相似文献   

13.
The effects of the photosystem II herbicides diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) on the photosynthetic membranes of a cyanobacterium, Aphanocapsa 6308, were compared to the effects on a higher plant, Spinacia oleracea. The inhibition of photosystem II electron transport by these herbicides was investigated by measuring the photoreduction of the dye 2,6-dichlorophenol-indophenol spectrophotometrically using isolated membranes. The concentration of herbicide that caused 50% inhibition of electron transport (I50 value) in Aphanocapsa membranes for diuron was 6.8 × 10−9 molar and the I50 value for atrazine was 8.8 × 10−8 molar. 14C-labeled diuron and atrazine were used to investigate herbicide binding with calculated binding constants (K) being 8.2 × 10−8 molar for atrazine and 1.7 × 10−7 molar for diuron. Competitive binding studies carried out on Aphanocapsa membranes using radiolabeled [14C]atrazine and unlabeled diuron revealed that diuron competed with atrazine for the herbicide-binding site. Experiments involving the photoaffinity label [14C]azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-2-triazine) and autoradiography of polyacrylamide gels indicated that the herbicide atrazine binds to a 32-kilodalton protein in Aphanocapsa 6308 cell extracts.  相似文献   

14.
I examined the activity of fungi associated with yellow poplar (Liriodendron tulipifera) and white oak (Quercus alba) leaves in two streams that differed in pH and alkalinity (a hardwater stream [pH 8.0] and a softwater stream [pH 6.7]) and contained low concentrations of dissolved nitrogen (<35 μg liter−1) and phosphorus (<3 μg liter−1). The leaves of each species decomposed faster in the hardwater stream (decomposition rates, 0.010 and 0.007 day−1 for yellow poplar and oak, respectively) than in the softwater stream (decomposition rates, 0.005 and 0.004 day−1 for yellow poplar and oak, respectively). However, within each stream, the rates of decomposition of the leaves of the two species were not significantly different. During the decomposition of leaves, the fungal biomasses determined from ergosterol concentrations, the production rates determined from rates of incorporation of [14C]acetate into ergosterol, and the sporulation rates associated with leaves were dynamic, typically increasing to maxima and then declining. The maximum rates of fungal production and sporulation associated with yellow poplar leaves were greater than the corresponding rates associated with white oak leaves in the hardwater stream but not in the softwater stream. The maximum rates of fungal production associated with the leaves of the two species were higher in the hardwater stream (5.8 mg g−1 day−1 on yellow poplar leaves and 3.1 mg g−1 day−1 on oak leaves) than in the softwater stream (1.6 mg g−1 day−1 on yellow poplar leaves and 0.9 mg g−1 day−1 on oak leaves), suggesting that effects of water chemistry other than the N and P concentrations, such as pH or alkalinity, may be important in regulating fungal activity in streams. In contrast, the amount of fungal biomass (as determined from ergosterol concentrations) on yellow poplar leaves was greater in the softwater stream (12.8% of detrital mass) than in the hardwater stream (9.6% of detrital mass). This appeared to be due to the decreased amount of fungal biomass that was converted to conidia and released from the leaf detritus in the softwater stream.  相似文献   

15.
White rot fungi can oxidize high-molecular-weight polycyclic aromatic hydrocarbons (PAH) rapidly to polar metabolites, but only limited mineralization takes place. The objectives of this study were to determine if the polar metabolites can be readily mineralized by indigenous microflora from several inoculum sources, such as activated sludge, forest soils, and PAH-adapted sediment sludge, and to determine if such metabolites have decreased mutagenicity compared to the mutagenicity of the parent PAH. 14C-radiolabeled benzo[a]pyrene was subjected to oxidation by the white rot fungus Bjerkandera sp. strain BOS55. After 15 days, up to 8.5% of the [14C]benzo[a]pyrene was recovered as 14CO2 in fungal cultures, up to 73% was recovered as water-soluble metabolites, and only 4% remained soluble in dibutyl ether. Thin-layer chromatography analysis revealed that many polar fluorescent metabolites accumulated. Addition of indigenous microflora to fungal cultures with oxidized benzo[a]pyrene on day 15 resulted in an initially rapid increase in the level of 14CO2 recovery to a maximal value of 34% by the end of the experiments (>150 days), and the level of water-soluble label decreased to 16% of the initial level. In fungal cultures not inoculated with microflora, the level of 14CO2 recovery increased to 13.5%, while the level of recovery of water-soluble metabolites remained as high as 61%. No large differences in 14CO2 production were observed with several inocula, showing that some polar metabolites of fungal benzo[a]pyrene oxidation were readily degraded by indigenous microorganisms, while other metabolites were not. Of the inocula tested, only PAH-adapted sediment sludge was capable of directly mineralizing intact benzo[a]pyrene, albeit at a lower rate and to a lesser extent than the mineralization observed after combined treatment with white rot fungi and indigenous microflora. Fungal oxidation of benzo[a]pyrene resulted in rapid and almost complete elimination of its high mutagenic potential, as observed in the Salmonella typhimurium revertant test performed with strains TA100 and TA98. Moreover, no direct mutagenic metabolite could be detected during fungal oxidation. The remaining weak mutagenic activity of fungal cultures containing benzo[a]pyrene metabolites towards strain TA98 was further decreased by subsequent incubations with indigenous microflora.Bioremediation of polycyclic aromatic hydrocarbon (PAH)-polluted soil is severely hampered by the low rate of degradation of the higher PAH, particularly the four- and five-ring PAH (6, 32). These higher PAH have very low water solubility and are often tightly bound to soil particles. This results in very low bioavailability for bacterial degradation. The observation that white rot fungi can oxidize PAH rapidly with their extracellular ligninolytic enzyme systems has therefore raised interest in the use of these organisms for bioremediation of PAH-polluted soils (3, 9). Although PAHs are extensively oxidized by white rot fungi, the degree of mineralization to CO2 is always limited. In various studies evaluating the degradation of the potent carcinogen benzo[a]pyrene by several white rot fungal species, from 0.17 to 19% of the radiolabeled PAH was recovered as 14CO2 (4, 5, 26). The major products of the oxidation were both nonpolar and polar metabolites. The accumulation of such metabolites could be a reason for concern, since mammalian and fungal monooxygenases can oxidize benzo[a]pyrene to epoxides and dihydrodiols, which are very potent carcinogens (28, 29). However, peroxidase-mediated extracellular oxidation of benzo[a]pyrene in cultures of white rot fungi results initially in benzo[a]pyrenediones, which show weak mutagenic activity (29). These primary metabolites are rapidly oxidized further to unidentified metabolites by Phanerochaete laevis and Phanerochaete chrysosporium (5, 26). Furthermore, the oxidized benzo[a]pyrene metabolites have a higher aqueous solubility. Since the low bioavailability of PAH is a major rate-limiting factor in the degradation of these compounds by bacteria (27, 31), the increased bioavailability of oxidized PAH metabolites suggests that these compounds can be more easily mineralized by bacteria.The aim of this study was to investigate the degradation and mineralization of the five-ring PAH benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and the subsequent mineralization of the metabolites by natural mixed cultures of microorganisms. During the oxidation and mineralization of benzo[a]pyrene, the decrease in the mutagenicity of the metabolites was monitored. The white rot fungal strain Bjerkandera sp. strain BOS55 was used because of its outstanding ability to rapidly oxidize PAH (8, 19) and because extensive information concerning its physiology is available (7, 18, 20, 22, 23).  相似文献   

16.
Michael Zook 《Plant physiology》1998,118(4):1389-1393
Camalexin (3-thiazol-2′-yl-indole) is the principal phytoalexin that accumulates in Arabidopsis after infection by fungi or bacteria. Camalexin accumulation was detectable in Arabidopsis cell-suspension cultures 3 to 5 h after inoculation with Cochliobolus carbonum (Race 1), and then increased rapidly from 7 to 24 h after inoculation. Levels of radioactivity incorporated into camalexin during a 1.5-h pulse labeling with [14C]anthranilate also increased with time after fungal inoculation. The levels of radioactive incorporation into camalexin increased rapidly between 7 and 18 h after inoculation, and then decreased along with camalexin accumulation. Relatively low levels of radioactivity from [14C]anthranilate incorporated into camalexin in the noninoculated controls. Autoradiographic analysis of the accumulation of chloroform-extractable metabolites labeled with [14C]anthranilate revealed a transient increase in the incorporation of radioactivity into indole in fungus-inoculated Arabidopsis cell cultures. The time-course measurement of radioactive incorporation into camalexin during a 1.5-h pulse labeling with [14C]indole was similar to that with [14C]anthranilate. These data suggest that indole destined for camalexin synthesis is produced by a separate enzymatic reaction that does not involve tryptophan synthase.  相似文献   

17.
The uptake and degradation of nanomolar levels of [methyl-14C]choline in estuarine water samples and in seawater filtrate cultures composed mainly of natural free-living bacteria was studied. Uptake of [14C]choline exhibited Michaelis-Menten kinetics, with Kt + Sn values of 1.7 to 2.9 nM in filtrate cultures and 1.7 to 4.1 nM in estuarine-water samples. Vmax values ranged from 0.5 to 3.3 nM · h−1. The uptake system for choline in natural microbial assemblages therefore displays very high affinity and appears able to scavenge this compound at the concentrations expected in seawater. Uptake of choline was inhibited by some natural structural analogs and p-chloromercuribenzoate, indicating that the transporter may be multifunctional and may involve a thiol binding site. When 11 nM [14C]choline was added to water samples, a significant fraction (>50%) of the methyl carbon was respired to CO2 in incubations lasting 10 to 53 h. Cells taking up [14C]choline produced [14C]glycine betaine ([14C]GBT), and up to 80% of the radioactivity retained by cells was in the form of GBT, a well-known osmolyte. Alteration of the salinity in filtrate cultures affected the relative proportion of [14C]choline degraded or converted to [14C]GBT, without substantially affecting the total metabolism of choline. Increasing the salinity from 14 to 25 or 35 ppt caused more [14C]GBT to be produced from choline but less 14CO2 to be produced than in the controls. Lowering the salinity to 7 ppt decreased [14C]GBT production and increased 14CO2 production slightly. Intracellular accumulations of [14C]GBT in the salt-stressed cultures were osmotically significant (34 mM). Choline may be used as an energy substrate by estuarine bacteria and may also serve as a precursor of the osmoprotectant GBT, particularly as bacteria are mixed into higher-salinity waters.  相似文献   

18.
Six chlorpyrifos-degrading bacteria were isolated from an Australian soil and compared by biochemical and molecular methods. The isolates were indistinguishable, and one (strain B-14) was selected for further analysis. This strain showed greatest similarity to members of the order Enterobacteriales and was closest to members of the Enterobacter asburiae group. The ability of the strain to mineralize chlorpyrifos was investigated under different culture conditions, and the strain utilized chlorpyrifos as the sole source of carbon and phosphorus. Studies with ring or uniformly labeled [14C]chlorpyrifos in liquid culture demonstrated that the isolate hydrolyzed chlorpyrifos to diethylthiophospshate (DETP) and 3, 5, 6-trichloro-2-pyridinol, and utilized DETP for growth and energy. The isolate was found to possess mono- and diphosphatase activities along with a phosphotriesterase activity. Addition of other sources of carbon (glucose and succinate) resulted in slowing down of the initial rate of degradation of chlorpyrifos. The isolate degraded the DETP-containing organophosphates parathion, diazinon, coumaphos, and isazofos when provided as the sole source of carbon and phosphorus, but not fenamiphos, fonofos, ethoprop, and cadusafos, which have different side chains. Studies of the molecular basis of degradation suggested that the degrading ability could be polygenic and chromosome based. Further studies revealed that the strain possessed a novel phosphotriesterase enzyme system, as the gene coding for this enzyme had a different sequence from the widely studied organophosphate-degrading gene (opd). The addition of strain B-14 (106 cells g−1) to soil with a low indigenous population of chlorpyrifos-degrading bacteria treated with 35 mg of chlorpyrifos kg−1 resulted in a higher degradation rate than was observed in noninoculated soils. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the environment.  相似文献   

19.
The inhibitory activities of known microcins were evaluated against some diarrheagenic Escherichia coli strains. Some antibacterial properties of microcin J25, the most active one, were studied. A rapid two-step purification was performed. The MIC and the minimum bactericidal concentration of J25 against E. coli O157:H7 were 1 and 100 μg ml−1, respectively. A 104-CFU ml−1 contamination by this strain was destroyed in milk and meat extract by 6.25 μg of J25 ml−1 and in half-diluted egg yolk by 50 μg of J25 ml−1.  相似文献   

20.
The s-triazine herbicide atrazine was rapidly mineralized (i.e., about 60% of 14C-ring-labelled atrazine released as 14CO2 within 21 days) by an agricultural soil from the Nile Delta (Egypt) that had been cropped with corn and periodically treated with this herbicide. Seven strains able to degrade atrazine were isolated by enrichment cultures of this soil. DNA fingerprint and phylogenetic studies based on 16S rRNA analysis showed that the seven strains were identical and belonged to the phylogeny of the genus Arthrobacter (99% similarity with Arthrobacter sp. AD38, EU710554). One strain, designated Arthrobacter sp. strain TES6, degraded atrazine and mineralized the 14C-chain-labelled atrazine. However, it was unable to mineralize the 14C-ring-labelled atrazine. Atrazine biodegradation ended in a metabolite that co-eluted with cyanuric acid in HPLC. This was consistent with its atrazine-degrading genetic potential, shown to be dependent on the trzN, atzB, and atzC gene combination. Southern blot analysis revealed that the three genes were located on a large plasmid of about 175 kb and clustered on a 22-kb SmaI fragment. These results reveal for the first time the adaptation of a North African agricultural soil to atrazine mineralization and raise interesting questions about the pandemic dispersion of the trzN, atzBC genes among atrazine-degrading bacteria worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号