首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 394 毫秒
1.
Edge habitats create environmental gradients that affect plant community composition and herbivore behavior. Silvicultural disturbance creates edge habitat with direct (via changes in light) and indirect (via changes in herbivore behavior) consequences for the growth and survival of tree seedlings, and thus, the composition of the future forest stands. Herbivores, particularly ungulates, can be a major limiting factor in oak regeneration, and silvicultural disturbance may alter the abundance or behavior of herbivores following harvest. We measured the severity of herbivory on experimentally planted white (Quercus alba) and black oak (Quercus velutina) seedlings by white-tailed deer (Odocoileus virginianus) and eastern cottontail rabbits (Sylvilagus floridanus), as well as foliar damage from insects, across gradients created by clearcuts in a deciduous forest in Indiana, USA. Overall browse pressure on oaks was low in our study. Nonetheless, spatial variation in herbivory depended on herbivore taxa; herbivory by rabbits was highest inside harvest openings, whereas foliar damage by insects peaked in the forest. Intensity of deer herbivory was constant across the edge. In addition, we observed indirect interactions among herbivore species mediated by a seedling’s browsing history. Herbivore damage by deer was positively related to past browsing by rabbits, and foliar damage from insects was positively related to past browsing by both deer and rabbits. Increasing woody plant competition reduced herbivory on seedlings by both deer and rabbits. Given the lack of spatial variability in deer herbivory and low overall herbivory by rabbits, we suspect that interactions between timber harvesting and herbivory did not have a strong impact on oak seedlings at our study sites.  相似文献   

2.
Foliar nitrogen isotope (δ15N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ15N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ15N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ15N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ15N, and mycorrhizae on foliar δ15N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ15N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ15N. There was no correlation between foliar δ13C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ15N in several dominant species occurring in temperate forest ecosystems.  相似文献   

3.
The proportion of planted forests in the Mediterranean Basin is one of the largest in the world. These plantations are dominated by pine species and present a series of characteristics such as low elevation, high competition or small tree size that make them more vulnerable to droughts. However, quantitative assessments of their post-drought growth resilience in accordance with species, site factors and tree characteristics are lacking. In this study we sampled 164 trees at four forest sites located in the drought-prone Sierra Nevada, southeastern Spain. We compared growth responsiveness to drought in rear-edge planted vs. relic natural Scots pine (Pinus sylvestris) and coexisting Pyrenean oak (Quercus pyrenaica) stands. Our objective was to characterize and compare the different growth responses to drought between species and sites and the effect of the main physiographic factors (altitude, aspect, and slope) on these responses since the influence of these factors on post-drought resistance and resilience has received little attention to date. Our results reveal that the planted pine sites with the lowest mean growth rates displayed greater resistance during drought, and that higher altitude was associated with improved resistance and/or resilience for all species and sites. Natural pine and Pyrenean oak stands were better adapted to the dry climatic conditions of the Mediterranean region where the study was undertaken, displaying greater resistance and/or resilience and lower influence of drought on growth in comparison to stands of planted pines. These results suggest that promoting the conservation of high-elevation pine plantations and enhancing the regeneration of natural pine and oak may improve the resistance and resilience of these drought-prone forest ecosystems.  相似文献   

4.
Many tree species from Mediterranean regions have started to show increased rates of crown defoliation, reduced growth, and dieback associated with the increase in temperatures and changes in the frequency and intensity of drought events experienced during the last decades. In this regard, Quercus ilex L. subsp. ballota [Desf.] (Holm oak), despite being a drought-tolerant species widely distributed in the Mediterranean basin, it has recently started to show acute signs of decline, extended areas from Spain being affected. However, few studies have assessed the role of climatic variability (i.e., temperature, precipitation, and drought) on the decline and resilience of Holm oak. Here, we measured secondary growth of seventy Holm oaks from a coppice stand located in central Spain. Sampled trees had different stages of decline, so they were classified into four vigour groups considering their crown foliar lost: healthy (0%), low defoliated (<25%), highly defoliated (25–70%), and dying (70–100%). Our results showed that during the study period (1980–2009) the highly defoliated and dying Holm oaks grew significantly less than their healthy and low defoliated neighbours, suggesting permanent growth reduction in the less vigorous individuals. Despite these differences, all four vigour groups showed similar responses to climatic variations, especially during winter and late spring – early summer seasons, and similar resilience after severe drought events, managing to significantly recover to pre-drought growth rates after only two years. Our findings, hence, illustrate that tree vigour influences secondary growth but not responsiveness to climatic variability in Holm oak. Still, as reduced growth rates are frequently associated with the process of tree mortality, we conclude that the less vigorous Holm oaks might not be able to cope with future water stress conditions, leading to increased mortality rates among this emblematic Mediterranean species.  相似文献   

5.
Biological nitrogen (N) fixation is a key pathway in terrestrial ecosystems and is therefore critical for understanding the responses of ecosystems to global environmental changes. The free‐living diazotrophic community is distributed along the canopy‐to‐soil profile, but the ecological significance of epiphyllic N2 fixers, despite their functional relevance, on plant foliar surfaces remains very poorly understood compared with the N2‐fixing community in forest litter and soils. We assessed the community structure of N2 fixers and overall bacteria by genetic fingerprinting (t‐RFLP) to explore the seasonal successional patterns of the microbial community in the natural phyllosphere of a Holm oak (Quercus ilex) forest submitted to 12‐year field experiment of rain exclusion mimicking the conditions of drought projected for the coming decades. Leaves of Holm oak were analysed in different seasons over a period of 1.5 years. The bacterial community of the phyllosphere did not correspond to the surrounding soil biome in the same area. These analyses provided field evidence for the presence of free‐living diazotrophs associated with the tissues of leaves of Holm oak, the dominant tree species of many Mediterranean forests. The results also revealed that the community composition is affected seasonally and inter‐annually by the environment, and that the composition shifts in response to climate change. Drought treatment increased the richness of the epiphyllic microbial community, especially during the summer. These changes were associated with higher C:N ratios of leaves observed in response to drought in semiarid areas. This epiphyllic microbiota that can potentially fix N2 extends the capacity of plants to adapt to the environment.  相似文献   

6.
Land degradation and desertification is a common feature in Mediterranean landscapes due to extensive and intensive land use and natural or man induced disturbances. The ecosystem may need external inputs to recover its composition and function as soils are often impoverished and vegetal key stone species lost. We evaluated the effects of the application of fresh and air-dried biosolids in the establishment and morphological and physiological performance of seedlings of Pinus halepensis and Quercus ilex under dry Mediterranean field conditions. Seedling survival was not affected by biosolid treatments in any of the studied species both two and ten years after planting. During the first two years, growth was enhanced by the two biosolid treatments in relation to control, although the change in the biomass allocation pattern differed between species. Rooting depth was significantly enhanced by liquid biosolid in Q. ilex and marginally reduced in P. halepensis as well as the exploration of soil. As a consequence, root-to-shoot ratio reduced significantly with dry and liquid sludge due to promoted aboveground growth while maintaining and even reducing belowground fractions. An improvement of the nutritional status, of fertilized seedlings especially of phosphorus, is the explanation for the better field performance. Vector analysis revealed an important phosphorus limitation for both species that was overcome with the application of liquid (both species) and air-dried biosolid (pine). The higher growth of pine seedlings attained in the liquid biosolid treatment was coupled with a significant decrease in foliar δ13C, suggesting lower water use efficiency. The significant increase in foliar δ15N in the biosolid treatments in both species suggested that a large proportion of the total nitrogen uptake came from the applied biosolids. Instead, with regard to the low biosolid application rate used in the study, treatments had an overall positive effect as a restoration tool by improving nutritional status and promoting growth of planted seedlings.  相似文献   

7.
Holm oak (Quercus ilex ssp. ballota [Desf.] Samp) is one of the most important species in forest communities of the western Mediterranean Basin, but is very vulnerable to environmental stress during the first years of its life. In particular, summer drought and winter frosts limit the distribution, survival, and growth of Holm oak. These two stress factors can lead to plasmolysis and/or oxidative stress. We hypothesized that autumn fertilization with nitrogen (N) can improve plant tolerance to these abiotic stress factors and improve plant quality and therefore reforestation success. A 12-week autumn application of 30 or 60 mg N (plus 70 mg N applied to both treatments during the previous 28 weeks in the nursery, i.e. 100 and 130 mg N in total, respectively) improved overall growth, root growth capacity, frost tolerance, and nutritional status of plants relative to plants given 0.0 and 1.5 mg autumnal N, and had no negative effect on seedling response to water stress. A very small increment in N doses during the autumn (1.5 vs. 0.0 mg N) improved some morphological parameters, such as stem diameter (D) and shoot dry weight, and physiological parameters, such as total antioxidant activity. The highest autumnal N dose (60 mg) increased leaf nutrient content without decreasing the concentration, but had a tendency to reduce frost tolerance relative to seedlings given a lower autumnal N dose (30 mg).  相似文献   

8.
Food chains culminating with temperate insectivorous passerines are well described, yet whether trophic webs can be site‐specific remains a largely unexplored question. In the case of site‐ or habitat‐specificity of food webs, stable isotope signatures of bird feathers may enable assignment of unmarked individuals to a site or a habitat of origin. We address this question in landscapes that include contrasting forest habitat patches with either deciduous Downy Oak Quercus humilis or evergreen Holm Oak Quercus ilex as dominant tree species. First, we examine the spatial variation across habitats and sites in the stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) along the oak leaf–Tortrix moth Tortrix viridana caterpillar–Blue Tit Cyanistes caeruleus food chain. Secondly, we assess whether the isotopic signatures allow for correct assignment of individual birds to their site or habitat of origin. At the scale of the landscape, stable isotope values enabled identification of the different components of the Blue Tit food chain: from oak leaves to Blue Tit nestlings and yearling birds. However, isotopic signatures were site‐specific (i.e. geographical) more than habitat‐specific (i.e. deciduous vs. evergreen oaks). Discriminant analyses correctly assigned 85% of nestlings and 83% of resident yearling birds, indicating a pronounced effect of site on Blue Tit feather isotopic signatures. We thereby demonstrate that isotopes reflect a stronger association of locally born birds to the local features of their habitat than that of un‐ringed yearling birds, whose plumage may have grown while in a wider geographical area. This study provides evidence of site‐specific isotopic signatures from oak leaves to Blue Tit feathers at a fine spatial scale.  相似文献   

9.
Current Common Agricultural Policy (CAP) subsidies in the Mediterranean region tend to prioritize afforestation on former arable land with oaks rather than pines because pine plantations would maintain lower biological diversities than native forests. Nevertheless, no thorough evaluations of the conservation values of pine plantations as compared to oak remnants have been carried out to date. We analyze the diversity and conservation value of bird assemblages breeding in 200 remnants of Holm oak Quercus ilex woodlands and 82 mature (>50-year-old) pine plantations in central Spain, a Mediterranean region mostly devoted to arable farming. Species–area relationships were compared between forest types. The conservation value of bird assemblages was assessed using the “Species of European Conservation Concern” (SPEC) classification of Burfield and van Bommel [(2004). Birds in Europe: Populations estimates, trends and conservation status. Cambridge: BirdLife International]. Overall numbers of bird species maintained by oak and pine archipelagoes were rather similar, but species–area relationships differed between forest types. Intercepts were higher in oak fragments, whereas slopes were steeper in pine plantations. Small oak fragments held more species (mainly Mediterranean Sylvia warblers) than plantations, whereas large plantations held more species than large oak remnants. Differences in species–area relationships seemed to be due to differences in vegetation structure, especially understorey shrub cover and tree height and cover. We recorded nine SPECs, all exclusive (6) or near-exclusive (3) to oak woodlands, although such woodlands do not appear to be critical for their conservation. Hence, we conclude that pine afforestations have played a role for maintaining and restoring forest bird communities in the farming landscapes of central Spain. Promoting large and shrubby plantations would enhance their conservation value for breeding birds, together with promoting growth, regeneration and expansion of Holm oak remnants by means of set-aside measures previous or alternative to oak reafforestation. The increasing importance of non-commercial as compared to commercial values of Mediterranean forests would justify subsidizing the proposed policy.  相似文献   

10.
The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species‐specific responses to multiple drivers. We compared the long‐term (1966–2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the inclusion of anthropogenic drivers on models of vegetation change will improve predicting the future of Mediterranean oak forests.  相似文献   

11.
European oaks have been reported to emit isoprene or monoterpenes derived from recently fixed photosynthetic carbon. The emission type is plant species specific and can be used as chemo‐taxonomic marker. In the present article the isoprenoid biochemical properties of mature Quercus × turneri‘Pseudoturneri’ hybrids resulting from a crossing of a Mediterranean evergreen monoterpene‐emitting species (subgenus Sclerophyllodrys; Quercus ilex L.) and an isoprene‐emitting deciduous oak species (subgenus Lepidobalanus; Quercus robur L.) are described. Both species are compared with respect to the capacity for isoprenoid synthesis and the actual isoprenoid emission pattern of different tree‐types. The analysis showed that the oak hybrid combines properties of both parental species. Furthermore, it could be shown that the enzyme activities of isoprene synthase and monoterpene synthases are reflected in the isoprenoid emission pattern of the hybrids as well as in the observed emission rates.  相似文献   

12.
Higher temperatures and reduced rainfalls that are expected with the advance of climate change can impair the emergence and establishment of tree seedlings in forest ecosystems. These climatic changes can also decrease the availability of soil resources and reduce the performance of seedlings. We evaluated these effects in a temperate forest from Mexico with two native oak species (Quercus crassifolia and Quercus eduardii). As recently emerged oak seedlings are highly sensitive to changing environmental conditions, our field experiment was conducted across the season in which seedling emergence occurs (October–February). In the field, we used open-top chambers to increase temperature and rainout shelters to reduce rainfall, while controls were exposed to the current climate. Experimental plots of both treatments were established beneath the forest canopy because most oaks recruit in understory habitats. In these plots, we sowed acorns of both species in October 2015 and recorded seedling emergence and survival until February 2016, also monitoring temperature, precipitation and contents of water and nitrogen in the soil. On seedlings that survived until the end of the experiment we measured their growth, photosynthetic efficiency and foliar contents of water, carbon and nitrogen. Both the emergence and survival of Q. crassifolia seedlings were lower in climate change plots than in controls, but no differences were found for Q. eduardii. However, seedlings of both species had lower growth rates, photosynthetic efficiencies and contents of water, nitrogen and carbon in climate change simulation plots. These results indicate that climate change can impair tree seedling establishment in oak forest, also suggesting that their development will be constrained by reduced water and nitrogen availability.  相似文献   

13.
In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species’ relative abundance and canopy trees’ health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.  相似文献   

14.
High evaporative demand and periodic drought characterize the growing season in midwestern grasslands relative to deciduous forests of the eastern US, and predicted climatic changes suggest that these climatic extremes may be exacerbated. Despite this less than optimal environment for tree seedling establishment, deciduous trees have expanded into adjacent tallgrass prairie within the last century leading to a dramatic land cover change. In order to determine the role of light and temperature on seedling establishment, we assessed carbon and water relations and aboveground growth of first‐year Quercus macrocarpa seedlings exposed to one of three conditions: (1) intact tallgrass prairie communities (control), (2) aboveground herbaceous biomass removed (grass removal), and (3) shade plus biomass removal to reduce light (PFD) to levels typical of the grassland‐forest ecotone (shade). In the 2000 growing season, precipitation was 35% below the long‐term average, which had a significant negative effect on oak seedling carbon gain at midseason (photosynthesis declined to 10% of maximum rates). However, net photosynthesis and stomatal conductance in the shade treatment was ca. 2.5 and 1.5 times greater, respectively, than in control treatment seedlings during this drought. During this period, leaf and air temperatures in control seedlings were similar whereas leaf temperatures in the shade treatment remained below air temperature. A late‐season recovery period, coincident with decreased air temperatures, resulted in increased net photosynthesis for all seedlings. Increased photosynthetic rates and water relations in shaded seedlings compared to seedlings in full sun suggest that, at least in dry years, high light and temperature may negatively impact oak seedling performance. However, high survival rates for all seedlings indicate that Q. macrocarpa seedlings are capable of tolerating both present‐day and future climatic extremes. Unless historic fire regimes are restored, forest expansion and land cover change are likely to continue.  相似文献   

15.

Aims

We investigated the influence of tree species on the natural 15N abundance in forest stands under elevated ambient N deposition.

Methods

We analysed δ15N in litter, the forest floor and three mineral soil horizons along with ecosystem N status variables at six sites planted three decades ago with five European broadleaved tree species and Norway spruce.

Results

Litter δ15N and 15N enrichment factor (δ15Nlitter–δ15Nsoil) were positively correlated with N status based on soil and litter N pools, nitrification, subsoil nitrate concentration and forest growth. Tree species differences were also significant for these N variables and for the litter δ15N and enrichment factor. Litter from ash and sycamore maple with high N status and low fungal mycelia activity was enriched in 15N (+0.9 delta units) relative to other tree species (European beech, pedunculate oak, lime and Norway spruce) even though the latter species leached more nitrate.

Conclusions

The δ15N pattern reflected tree species related traits affecting the N cycling as well as site fertility and former land use, and possibly differences in N leaching. The tree species δ15N patterns reflected fractionation caused by uptake of N through mycorrhiza rather than due to nitrate leaching or other N transformation processes.  相似文献   

16.
Foliar δ15N has been used increasingly in research on ecosystem nitrogen (N) cycling, because it can serve as an integrator of ecosystem N cycling and thus has a potential to reveal temporal and spatial patterns of N cycling as well as how the N cycle is altered by disturbances. However, the current understanding on controls of foliar δ15N is based principally on studies from America, Europe, Australia and Africa. Here we compiled data from 65 forests at 33 sites across East Asia to explore regional patterns and what controls foliar δ15N by linking it to climate, species composition, soil depth, slope position, N deposition, and soil N availability. In East Asia, foliar δ15N ranged from ?7.1 to +2.7‰. Mean foliar δ15N values for tropical, subtropical and temperate forests were all ?3.1‰, which was unexpected. The patterns of foliar δ15N with precipitation, temperature and altitude were not clear. The variation in foliar δ15N among species and between different slope positions appeared to be small within a given forest. The δ15N for both bulk soil N and extractable inorganic N generally increased with soil depth as expected, strengthening the idea that deep-rooted trees may have access to 15N-enriched N. Different from the positive correlations reported across America and Europe, in East Asia we found that foliar δ15N decreased with increasing N deposition and did not relate to soil N availability. These discrepancies deserve more research to elucidate the mechanisms by which foliar δ15N is affected by ecosystem N availability at a regional scale.  相似文献   

17.
Ferran  A.  Vallejo  V. R. 《Plant Ecology》1992,(1):239-246
Forest floor regeneration after fire in a holm oak forest was studied in a chronosequence in Catalonia (NE Spain). The sampled area represented situations of high fire disturbance because of the frequency of wildfires and the high impact of erosive processes. Forest floor bulk samples from the L, F and H layers were taken in 5 burned plots, aging from 0 to 35 years. They were analyzed for dry standing weight, and organic carbon and N content.Plant cover reached almost 100% two years after the fire. During the first 20 years, shrubs and herbs had the highest surface covering, and thereafter, holm oaks became dominant.Holm oak litterfall stabilized by the fourth year after burning.The major shrub species which were present in the chronosequence had two different patterns with respect to nitrogen: 1) a low litter C/N ratio (i.e. nitrogen fixing species); 2) a high litter C/N ratio.The litter decay coefficients were relatively high, allowing for a rapid structuration and formation of the L and F layers after the fire. Indeed, 95% of the maximum steady standing weight accumulates in 8–9 years. The pattern of cover in the different strata influenced the lateral distribution and variable accumulation of the forest floor layers and determined different turnover rates.  相似文献   

18.
Abstract. European Mediterranean landscapes have undergone changes in structure in recent years as a result of widespread agricultural land abandonment and cessation of silvicultural regimes. Studies concerning the regeneration dynamics of dominant forest species have become critical to the prediction of future landscape trends in these changing forest stands. Quercus ilex (holm oak) and Q. pubescens (downy oak) are considered to be the terminal point of secondary succession in extensive areas of the Mediterranean region. Recent studies, however, have suggested the existence of recruitment bottlenecks in oak genet populations as a result of current management regimes. In this study, we present evidence of the successful establishment of Q. ilex and Q. pubescens in Pinus halepensis (Aleppo pine) woodlands. We investigate the distribution patterns and spatial relationships among oak recruits and resident pines. Established P. halepensis is randomly distributed throughout the study area. Oak seedlings are positively associated with pine trees, suggesting that P. halepensis individuals provide safe sites for oak genet recruitment. We show that spatial patterns of recruitment are in agreement with the general model of spatial segregation described for other Mediterranean plant communities, with seeder species colonizing large openings after disturbance, followed by a more aggregated recruitment of resprouter species.  相似文献   

19.
落叶栎林是桂西地区南亚热带的典型次生林,也是该区域落叶阔叶林的重要群系组。该研究采用典型样方法对桂西地区落叶栎林群落进行调查,分析了该区域落叶栎林群落的物种组成、区系成分、物种多样性特征及其与地形因子的关系,为桂西地区南亚热带植物多样性保护与恢复提供依据。结果显示:(1)研究区落叶栎林群落维管束植物共计269种,隶属80科178属。(2)种子植物区系以热带成分为主,同时表现出一定程度的温带过渡性质。(3)聚类分析表明,调查的落叶栎林群落可分为云南波罗栎林、栓皮栎林、白栎林、麻栎林4种林分类型,其中以白栎林群落的物种多样性最高,且灌木层的物种多样性显著高于乔木层和草本层。(4)RDA分析显示,落叶栎林群落不同层次物种多样性的差异受地形因子的影响,多样性指标与经度、纬度、海拔之间具有明显的相关性(P<0.05),其中乔木层物种多样性主要与经度、纬度呈显著的相关性,灌木层物种多样性与纬度、海拔相关,草本层物种多样性与经度、纬度、海拔之间均有相关性。  相似文献   

20.
Drought-induced events of massive tree mortality appear to be increasing worldwide. Species-specific vulnerability to drought mortality may alter patterns of species diversity and affect future forest composition. We have explored the consequences of the extreme drought of 2005, which caused high sapling mortality (approx. 50 %) among 10-year-old saplings of two coexisting pine species in the Mediterranean mountains of Sierra Nevada (Spain): boreo-alpine Pinus sylvestris and Mediterranean P. nigra. Sapling height growth, leaf δ13C and δ18O, and foliar nitrogen concentration in the four most recent leaf cohorts were measured in dead and surviving saplings. The foliar isotopic composition of dead saplings (which reflects time-integrated leaf gas-exchange until mortality) displayed sharp increases in both δ13C and δ18O during the extreme drought of 2005, suggesting an important role of stomatal conductance (gs) reduction and diffusional limitations to photosynthesis in mortality. While P. nigra showed decreased growth in 2005 compared to the previous wetter year, P. sylvestris maintained similar growth levels in both years. Decreased growth, coupled with a sharper increase in foliar δ18O during extreme drought in dead saplings, indicate a more conservative water use strategy for P. nigra. The different physiological behavior of the two pine species in response to drought (further supported by data from surviving saplings) may have influenced 2005 mortality rates, which contributed to 2.4-fold greater survival for P. nigra over the lifespan of the saplings. This species-specific vulnerability to extreme drought could lead to changes in dominance and distribution of pine species in Mediterranean mountain forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号