首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human activities have caused dramatic land use changes, impacting plant community composition, diversity and function. Fertilization and grazing are the two most common land use modes in grasslands. To understand the effects of grazing and fertilization on sexual and asexual recruitment in alpine grasslands, we conducted a demographic field investigation of species recruitment in an alpine meadow on the Tibetan Plateau. Grazing and fertilization had different effects on the quantity and diversity of sexual and asexual recruitment. Sexual recruitment increased significantly in grazed plots, but decreased significantly in fertilized plots. Asexual recruitment increased significantly in fertilized plots, but decreased significantly in grazed plots. For functional groups, grazing significantly reduced offspring recruitment of graminoids, but significantly increased offspring recruitment of forbs and legumes; fertilization significantly reduced offspring recruitment of forbs and legumes, but significantly increased offspring recruitment of graminoids. Furthermore, offspring diversity from sexual recruitment was significantly higher than from asexual recruitment in grazed plots, and as compared to non‐grazed and fertilized grasslands. Our studies indicate that moderate grazing disturbance has positive effects on seedling recruitment and offspring diversity, and fertilization has negative effects on offspring diversity, but may significantly increase asexual recruitment.  相似文献   

2.
Field experiments were designed to examine tree and shrub seedling emergence in temperate grassy woodlands on the New England Tablelands. The effects of study sites, intensity of previous grazing, removal of ground cover by fire or clearing, burial of seeds and ant seed theft on seedling emergence were tested in two field experiments. Six tree and seven shrub species were used in the experiments and their cumulative emergence was compared with laboratory germination studies. All species used in field experiments had lower cumulative emergence than those in laboratory germination studies despite prolonged periods of above average rainfall before and after seeds were sown. Eucalypt species emerged faster in the field than the shrub species and generally attained higher cumulative emergence than the shrubs. Spatial effects of sites and patches within sites, and of previous grazing history did not strongly influence patterns of seedling emergence in most species. Ground and litter cover generally did not enhance or suppress the emergence of seedlings, although the removal of cover in recently grazed areas enhanced the emergence of some species. Burning enhanced the emergence of some tree and shrub species where plots had more fuel and intense fires, but this effect was not strong. Compared with other treatments, seedbed manipulations produced the strongest effects. In the absence of both invertebrate and vertebrate predators, seedling emergence was lower for surface‐sown seed, compared with seed sown on scarified soil surfaces. Higher seedling emergence of buried seeds in the presence of invertebrate predators probably resulted from the combined effects of predator escape and enhanced moisture status of the germination environment. Some promotion of emergence was achieved for all species in most sown treatments probably as a result of a prolonged above average rainfall. In contrast, the natural recruitment of trees and shrubs was negligible in experimental plots, highlighting the importance of seed supply and dispersal as ultimate determinants of recruitment.  相似文献   

3.
L. P. HUNT 《Austral ecology》2010,35(7):794-805
Atriplex vesicaria Heward ex Benth. (Chenopodiaceae) is a widespread perennial shrub in southern Australia's chenopod rangelands but is sensitive to grazing. A detailed investigation of the demography and population dynamics of A. vesicaria under sheep grazing was conducted over 6.5 years at a range of sites across a typical paddock to assess the long‐term effects of grazing on the species and elucidate the mechanisms of population change under grazing. The effects of rainfall on recruitment and mortality were also examined. Six‐monthly censuses of all A. vesicaria individuals were conducted in permanent grazed and ungrazed plots at sites located across an 1100‐ha paddock. Grazing increased adult shrub mortality close to water and reduced recruitment over a broader area of the paddock, but seedling survival did not appear to be affected by grazing. As a result of these changes, the population declined on grazed plots up to 2200 m from water during the study, but the decline was greatest closer to water. The population was most dynamic at the sites furthest from the water point where it was unaffected by grazing because of the greater recruitment and mortality of young plants, but because these processes balanced out over time, population density was effectively unchanged by the end of the study. Although statistical models indicated that six‐monthly rainfall did not explain temporal variation in recruitment or mortality, rainfall nevertheless has a central role in both processes. In particular, longer periods of favourable rainfall and drought appear to have an important influence on recruitment and mortality, respectively, with heavy grazing during a drought period increasing mortality. Occasional shortages of seed or rains occurring during the warmer months when seed germination is limited possibly explain poor recruitment at sites unaffected by grazing following good rainfall.  相似文献   

4.
Abstract. The first objective of this paper was to assess the effects of grazing on seedling establishment of two species whose relative abundance at the adult stage is affected by grazing in a contrasting fashion. Second, we evaluated the relative importance of seed versus safe-site availability in explaining the effect of grazing on seedling establishment. We monitored seedling establishment on a grazed area, on two areas which had not been grazed for two and seven years, and on plots which had been experimentally defoliated. The species compared were Dan-thonia montevidensis, a native perennial grass which dominates both grazed and ungrazed communities, and Leontodón taraxacoides, an invading exotic rosette species from the Compositae family. Continuous grazing enhanced seedling establishment of both species through its effect on the availability of safe sites. Seed availability accounted for only one, but very important, grazing effect: the lack of response by L. taraxacoides to the defoliation in the seven-year old exclosure. Its seed supply was depleted by exclusion of grazing and, consequently, its short-term regeneration capacity after disturbance was lost.  相似文献   

5.
Abstract Annual grasslands in California are often managed with seasonal grazing and prescribed burning on the assumption that such practices have long‐term benefits for native species. Mature native perennial bunchgrasses, particularly Nassella pulchra (purple needlegrass), are often the focal species, although very little is known about responses at different life history stages. Thus, important questions remain about long‐term population dynamics of both mature plants and seedling recruitment. In plots receiving repeated grazing and burning events over 7 years, mortality of mature plants was threefold higher on mounds than on intermounds and likely reflected increased competition intensity associated with increased resource availability in deeper soil. Burning and grazing treatments had strong positive effects on basal area of mature N. pulchra. However, plants in grazed plots that were not burned contained considerable standing dead biomass. Topographic location strongly influenced growth as intermound plants grew relatively more than mound plants, but the effects on growth of burning and grazing did not vary with topographic location. In mapped plots N. pulchra recruitment was very low, and overall density dropped an average of 31%. However, a significant time‐by‐burning effect indicated that survival was significantly higher in burned plots. After 7 years of repeated treatments, effects of burning and grazing management on mature N. pulchra were positive but not for all phenological stages. Understanding long‐term influence of management on bunchgrass populations may not be easy to determine because short‐term results may not reflect long‐term responses and some life cycle dynamics may be observed only over very long periods.  相似文献   

6.
Anthropogenic activities usually trigger changes in the population density of plants. Thus, land management practices can influence density‐dependent demographic parameters and species interactions. We investigated plant‐pollinator interactions and reproduction in Prosopis flexuosa, the largest tree species in the Central Monte desert of Argentina, an important economic and cultural resource for humans and a functionally prominent species. We hypothesized that reproductive output of P. flexuosa would be limited at low densities, and that exclusion of catle grazing would enhance population density and consequently interaction frequency with pollinators and reproductive success. The study was conducted in and around Ñacuñán Biosphere Reserve (Mendoza, Argentina), where cattle grazing has been excluded for over 35 years. Working in five pairs of protected and cattle grazed 1‐ha plots, we recorded density of adult trees, pollinator visitation frequency to inflorescences and seeds per inflorescence in focal trees. Adult tree density was higher in protected plots than in cattle grazed plots. Density of reproductive trees was positively correlated with seed production, suggesting positive density dependence for reproduction (Allee effect). Pollinator visitation to inflorescences and seed production was higher in protected plots compared with plots under cattle grazing. Suppression of anthropogenic degradation has resulted in higher adult tree density in protected plots, indirectly higher pollinator visitation to inflorescences and higher reproductive success of trees. Increased frequency of plant‐pollinator interactions and tree reproduction suggest success of management practices aimed at protecting P. flexuosa woodlands.  相似文献   

7.
Despite the importance of invertebrates in grassland ecosystems, few studies have examined how grassland invertebrates have been impacted by disturbances in the southwestern United States. These grasslands may be particularly sensitive to one common disturbance, livestock grazing, because they have not recently evolved in the presence of large herds of bison, an important mammalian herbivore. This study examined how livestock grazing influenced vegetation-associated insect communities in southeastern Arizona. Insect abundance, richness, diversity, community composition, and key environmental variables were compared between sites on active cattle ranches and sites on a 3160 ha sanctuary that has not been grazed by cattle for over 25 years. Vegetation-associated insect communities were found to be sensitive to livestock grazing. Overall abundance of these insects was lower on grazed grasslands, and certain insect orders appeared to be negatively affected by livestock grazing; beetles were less rich, flies were less diverse, and Hymenoptera were less rich and diverse on grazed sites. Conversely, Hemiptera were more diverse on grazed sites. Species composition of vegetation-associated insect communities also differed and was significantly correlated with percent vegetation cover and number of shrubs. Insect species responsible for these differences were taxonomically diverse, and included herbivores and predators/parasites. When compared to other studies conducted in areas of the United States that fall within the historic range of bison, this study suggests that invertebrates in areas outside this range may be more sensitive to grazing pressure.  相似文献   

8.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

9.
Long-term grazing shaped plant diversity in dry Mediterranean grasslands. Abandonment of grazing affects plant diversity especially in the northern Mediterranean. Considerable efforts are, therefore, under way for grassland conservation and restoration. Yet, we do not know at which temporal scales impacts of grazing abandonment appear and in particular how soil seed banks evolve after longer grazing abandonment. Here, we provide detailed data from one of the very few long-term experiments available. These experiments provide data for up to 23 years (1982–2005) of grazing exclusion built in 1982, 1989, 2000 and 2001. Grazing exclusion decreased species richness, modified vegetation structure and changed soil parameters. Decline in species richness appears in communities that experienced 16 and 23 years of grazing exclusion. Only four to nine plant species of this Mediterranean grassland built persistent soil seed banks appearing after grazing exclusion, compared to 40–50 species in the established vegetation of grazed plots. Hence, similarity between vegetation and soil seed bank decreased with time of grazing exclusion. Even 23 years after abandonment, no woody plants colonised the experiments. We conclude that vegetation will recover fast from grazing abandonment in the short-term. Nevertheless, longer abandonment will impact diversity due to reduced soil seed banks.  相似文献   

10.
Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi‐arid savanna of Ethiopia. We tested whether the availability of persistent seeds in the soil could drive the transition from a degraded system under heavy grazing to healthy vegetation with ample perennial grasses. A total of 77 species emerged from the soil seed bank samples: 21 annual grasses, 12 perennial grasses, 4 herbaceous legumes, 39 forbs, and 1 woody species. Perennial grass species dominated the lightly grazed sites, whereas the heavily grazed sites were dominated by annual forbs. Heavy grazing reduced the number of seeds that can germinate in the seed bank. Species richness in the seed bank was, however, not affected by grazing. With increasing soil depth, the seed density and its species richness declined. There was a higher similarity in species composition between the soil seed bank and aboveground vegetation at the lightly grazed sites compared with the heavily grazed sites. The mean similarity between the seed banks and aboveground vegetation was relatively low, indicating the effect of heavy grazing. Moreover, seeds of perennial grasses were less abundant in the soil seed banks under heavy grazing. We concluded that restoration of grass and woody species from the soil seed banks in the heavily grazed areas could not be successful in semi‐arid savannas of Ethiopia.  相似文献   

11.
We investigate the persistent soil seed bank composition and its relation to the above-ground flora of grazed and non-grazed sub-Mediterranean deciduous oak forests of NW Greece. Twenty-eight taxa were recorded in the soil seed bank and 83 taxa (70 taxa in plots of seed bank sampling) in the above-ground vegetation. The dominant tree species and many woodland species found in the above-ground vegetation were absent from the soil seed bank. Similarity between the soil seed bank and the above-ground vegetation decreased with grazing, and grazing led to a decrease of species richness in above-ground vegetation and soil seed bank. Beta diversity of vegetation among grazed and among non-grazed plots did not differ, but was significantly higher between grazed and non-grazed areas. Beta diversity of the soil seed bank declined with grazing. When applying classification tree and logistic regression analyses, non-grazed forest sites are clearly differentiated by the presence of Phillyrea latifolia, Euphorbia amygdaloides and Brachypodium sylvaticum. PCA ordination of above-ground species composition reflected a gradient from sites grazed by ruminants to non-grazed sites, but no clear structure was detected in the seed bank.  相似文献   

12.
The American Bison (Bison bison Linnaeus) in the Henry Mountains are one of the last free-roaming, genetically pure herds of bison remaining in North America. Anecdotal evidence indicates that this herd is utilising a cattle winter range during the summer and fall, creating a conflict between the state agency that manages the bison, and the Bureau of Land Management (BLM) and local ranchers. In theory, the addition of bison grazing pressure could reduce forage availability in the short term and lead to undesired changes in the plant community in the long term. Our objective was to determine whether bison have altered the plant species composition of the cattle winter range. We characterised plant species composition, percent cover, and grazing intensity on three adjacent, geomorphologically similar mesas. Grazing regimes were different on the three mesas, one with bison and cattle present, one with cattle only present, and the third with neither cattle nor bison present. Vegetation surveys were accompanied by a 28-year remote sensing time series to test for temporal shifts in an index of primary productivity. We found a higher grazing intensity on two dominant forage species on the bison plus cattle grazed mesa in fall, before the cattle were turned out to winter pasture. Despite this difference in grazing intensity, we found few differences in species composition, percent cover, or NDVI across the three grazing regimes. Our results suggest that high intensity summer bison grazing, while likely creating short-term reductions in forage availability, has not caused differences in plant community composition or productive potential. Shifts in community composition can take years to unfold and just as long to correct; therefore, continued monitoring of the combined effects of cattle and bison is needed.  相似文献   

13.
The effects of stock grazing on native grassy ecosystems in temperate southern Australia are well documented. However, less is known about the potential of ecosystems to recover after a long history of stock grazing and, in particular, whether the removal of stock will have positive, negative or neutral impacts on biodiversity. We examined the response of understorey vegetation to the removal of sheep grazing in a herb‐rich Eucalyptus camaldulensis (red gum) woodland in western Victoria. Using a space‐for‐time chronosequence, woodlands were stratified into groups based on their time‐since‐grazing removal; these were long‐ungrazed (>20 years), intermediate‐time‐since‐grazing (9–14 years), recently ungrazed (5 years) and continuously grazed. We found significantly higher species density in long‐ungrazed sites relative to sites with a more recent grazing history. No differences were found in species density between continuously grazed sites and those ungrazed in the previous 14 years. Species composition differed with time‐since‐grazing removal and indicator species analysis detected several native species (including tall native geophytes and herbs) associated with long‐ungrazed sites that were absent or in low abundance in the more recently grazed sites. Seven of the eight species significantly associated with continuously grazed sites were exotic. Removal of sheep grazing in red gum woodlands can have positive benefits for understorey diversity but it is likely that recovery of key indicators such as native species will be slow.  相似文献   

14.
Keystone species restoration, or the restoration of species whose effect on an ecosystem is much greater than their abundance would suggest, is a central justification for many wildlife reintroduction projects globally. Following restoration, plains bison (Bison bison L.) have been identified as a keystone species in the tallgrass prairie ecoregion, but we know of no research to document similar effects in the mixed‐grass prairie where restoration efforts are ongoing. This study addresses whether Northern Great Plains (NGP) mixed‐grass prairie plant communities exhibit traits consistent with four central keystone effects documented for bison in the tallgrass prairie. We collected species composition, diversity, abundance, bare ground cover, and plant height data in three treatments: where livestock (Bos taurus L.) continuously grazed, livestock were removed for 10 years, and bison have been introduced and resident for 10 years. We observed mixed support for bison acting as keystone species in this system. Supporting the keystone role of bison, we observed higher species richness and compositional heterogeneity (β‐diversity) in the bison treatment than either the livestock retention or livestock removal treatments. However, we observed comparable forb, bare ground, and plant height heterogeneity between bison‐restored sites and sites where livestock were retained, contradicting reported keystone effects in other systems. Our results suggest that after 10 years of being restored, bison partially fulfill their role as a keystone species in the mixed‐grass prairie, and we encourage continued long‐term data collection to evaluate their influence in the NGP.  相似文献   

15.
The use of local seed sources for revegetation is accepted practice to reduce the potential that propagules will be poorly adapted to site conditions. However, data are often lacking to determine the distance within which seed sources represent local genotypes. Short‐term reciprocal transplant studies represent a class of tools to detect local adaptation of target species. We conducted a reciprocal transplant of Nassella pulchra between two central California locations to test for adaptation to local environmental conditions over a 3‐year period. Experimental plots at one location were split between grazed and ungrazed sites to evaluate the potential influence of livestock grazing on the detection or magnitude of local adaptation. During each year of the study, evidence of a home‐site advantage depended on the location, traits studied, and population. At the end of the 3‐year study period, however, we detected consistent evidence of a home‐site advantage for seedling biomass among grazed sites at one location and ungrazed plots at the other location. In effect, local adaptation was only apparent in the final year of the study. Short‐term reciprocal transplant studies are an effective tool to guide the selection of seed sources most likely to germinate and to become established at a restoration site, but such studies cannot rule out local adaptation, which may not be immediately detectable.  相似文献   

16.
Recent loss of plant species richness in Swedish semi-natural grasslands has led to an increase in grassland recreation and restoration. To increase the establishment of declining species favoured by grazing and to re-establish original species richness, seed sowing has been discussed as a conservation tool. In this study, I examined to what extent seed sowing in former arable fields increases species richness and generates a species composition typical of semi-natural grasslands. Six grassland species favoured by grazing (target species) and six generalist species favoured by ceased grazing, were studied in a seed-addition experiment. Four different seed densities were used on four different grassland categories, two grazed former arable fields, one continuously grazed grassland and one abandoned grassland. Target and generalist species emerged in all grassland categories, but seedling emergence was higher in the grazed than in the abandoned grassland. Target species had higher emergence in the two grasslands with the longest grazing continuity. Seedling emergence and frequency of established plants of each target species were positively associated. The largest fraction of seeds germinated at an intermediate sowing density, 20–50 seeds/dm2, suggesting that aggregation of seeds positively affects emergence up to a certain threshold. In conclusion, artificial seed sowing may induce the recreation of typical grassland communities on former arable fields, which may be an important contribution to increase the total grassland area and species richness in the landscape.  相似文献   

17.
Tree establishment in grazed vegetation mosaics involves a series of early bottlenecks, including seed dispersal, germination, seedling emergence, survival and growth. In a field experiment, we studied seedling emergence of two species with contrasting recruitment strategies, Fraxinus excelsior and Quercus robur, in five structurally different vegetations: grazed and ungrazed grassland, ruderal pioneer vegetation, soft rush tussocks, tall sedge mats and bramble scrub. In a simulation experiment, we studied the interaction effects of pre-emergence flooding (3 weeks of inundation), trampling and grazing (simulated by clipping) of grassland vegetation on the emergence and early growth of both tree species in grass swards. Seedling emergence was enhanced in low swards and sparse vegetation types. Despite different recruitment strategies, the interaction of flooding and trampling of swards enhanced seedling emergence of both species. Grazing of soft rush and tall sedges enhanced emergence of F. excelsior. Clipping grass swards increased early growth of emerging Q. robur. Our results support the hypothesis that natural disturbances of soil and vegetation create microsites for seedling emergence and reduce above-ground competition. In grazed systems however, these results suggest a discordant relationship between successful seedling emergence and subsequent seedling growth/survival during the establishment process in structurally different vegetations.  相似文献   

18.
Joris P. G. M. Cromsigt  Han Olff 《Oikos》2008,117(10):1444-1452
Grazing lawns are characteristic for African savanna grasslands, standing out as intensely grazed patches of stoloniferous grazing‐tolerant grass species. Grazing lawn development has been associated with grazing and increased nutrient input by large migratory herds. However, we argue that in systems without mass migrations disturbances, other than direct grazing, drive lawn development. Such disturbances, e.g. termite activity or megaherbivore middens, also increase nutrient input and keep the bunch vegetation down for a prolonged time period. However, field observations show that not all such disturbances lead to grazing lawns. We hypothesize that the initial disturbance has to be of a minimal threshold spatial scale, for grazing intensity to be high enough to induce lawn formation. We experimentally tested this idea in natural tall savanna grassland. We mowed different‐sized plots to simulate initial disturbances of different scales (six times during one year) and applied fertilizer to half of the plots during two years to simulate increased nutrient input by herbivores or termite activity. Allowing grazing by naturally occurring herbivores, we followed the vegetation development over more than three years. Grazing kept bunch grass short in coarser, fertilized plots, while grasses grew out toward their initial height in fine‐scale and unfertilized plots. Moreover, lawn grasses strongly increased in cover in plots with an increased nutrient input but only after coarser scale disturbance. These results support our hypothesis that an increased nutrient input in combination with grazing indeed induces grazing lawn formation, but only above a threshold scale of the initial disturbance. Our results provide an alternative mechanism for the development of grazing lawns in systems that lack mass migrating herds. Moreover, it gives a new spatial dimension to the processes behind grazing lawn development, and hence help to understand how herbivores might create and maintain spatial heterogeneity in grassland systems.  相似文献   

19.
Questions: Does vegetation structure display any stability over the grazing season and in two successive years, and is there any correlation between the stability of these spatial patterns and local sward composition? Location: An upland grassland in the French Massif Central. Method: The mosaic of short and tall vegetation stands considered as grazed and ungrazed patches respectively is modeled as the realization of a Boolean process. This method does not require any arbitrarily set sward‐height thresholds to discriminate between grazed and ungrazed areas, or the use of additional variables such as defoliation indexes. The model was validated by comparing empirical and simulated sward‐height distributions and semi‐variograms. Results: The model discriminated between grazed and ungrazed patches at both a fine (1 m2) and a larger (500 m2) scale. Selective grazing on legumes and forbs and avoidance of reproductive grass could partly explain the stability of fine‐scale grazing patterns in lightly grazed plots. In these plots, the model revealed an inter‐annual stability of large‐scale grazing patterns at the time peak biomass occurred. At the end of the grazing season, lightly grazed plots showed fluctuating patch boundaries while heavily grazed plots showed a certain degree of patch stability. Conclusion: The model presented here reveals that selective grazing at the bite scale could lead to the creation of relatively stable patches within the pasture. Locally maintaining short cover heights would result in divergent within‐plot vegetation dynamics, and thus favor the functional diversity of vegetation.  相似文献   

20.
Understanding the factors governing ecological stability in variable environments is a central focus of ecology. Functional diversity can stabilize ecosystem function over time if one group of species compensates for an environmentally driven decline in another. Although intuitively appealing, evidence for this pattern is mixed. We hypothesized that diverse functional responses to rainfall will increase the stability of vegetation cover and biomass across rainfall conditions, but that this effect depends on land-use legacies that maintain functional diversity. We experimentally manipulated grazing in a California grassland to create land-use legacies of low and moderate grazing, across which we implemented rainout shelters and irrigation to create dry and wet conditions over 3 years. We found that the stability of the vegetation cover was greatly elevated and the stability of the biomass was slightly elevated across rainfall conditions in areas with histories of moderate grazing. Initial functional diversity—both in the seed bank and aboveground—was also greater in areas that had been moderately grazed. Rainfall conditions in conjunction with this grazing legacy led to different functional diversity patterns over time. Wet conditions led to rapid declines in functional diversity and a convergence on resource-acquisitive traits. In contrast, consecutively dry conditions maintained but did not increase functional diversity over time. As a result, grazing practices and environmental conditions that decrease functional diversity may be associated with lasting effects on the response of ecosystem functions to drought. Our results demonstrate that theorized relationships between diversity and stability are applicable and important in the context of working grazed landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号