首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three steps of chromatography of a post-ribosomal supernatant fraction have provided a highly purified preparation of peptide elongation factor 3 (EF-3) with a molecular weight of 125,000 from the typical budding yeast Saccharomyces carlsbergensis and of the factor with a molecular weight of 120,000 from the fission yeast Schizosaccharomyces pombe. Both of the proteins consist of a single peptide chain. The purified factors fulfilled the requirement for polyphenylalanine synthesis on yeast ribosomes and exhibited strong ATPase and GTPase activities dependent on yeast ribosomes. The activity profiles of the nucleotidases dependent on pH and salt concentration and the inhibition studies indicated that the ATPase and GTPase activities of EF-3 were displayed by the same active site with a wide substrate specificity, showing the highest activity with ATP. Those experiments also revealed that the ATPase and GTPase of EF-3 were characteristically different from the GTPases of EF-1 alpha and EF-2. Both Km and kcat of EF-3 for ATP (Km = 0.12 mM and Kcat = 610 mol/mol/min) and GTP (Km = 0.20 mM and kcat = 390 mol/mol/min) are much higher than those of the GTPases of EF-1 alpha and EF-2. Inactivation experiments and studies on the ATP effect led us to conclude that this ATPase activity was an essential requirement for the functional role of EF-3 and therefore, in addition to the GTPases of EF-1 alpha and EF-2, the third nucleoside triphosphate hydrolyzing step by the ATPase of EF-3 was necessary for the yeast peptide elongation cycle.  相似文献   

2.
Factor requirements for yeast and rat liver ribosomes were determined in several different reactions using either yeast or liver factors. In polymerization assays yeast ribosomes required a factor in addition to elongation factor 1 (EF-1) and elongation factor 2 (EP-2). The third factor (EF-3) requirement was observed with EFs from either yeast or liver for both poly(U)-directed polyphenylalanine synthesis and elongation of endogenous peptidyl-tRNA. No significant effect of EF-3 was observed with liver risomes in either assay. In contrast to results with polypeptide synthesis EF-3 was not required for EF-1 dependent binding of [3H]Phe-tRNA or the translocation-dependent formation of N-acetylphenylalanylpuromycin. Up to 2-fold stimulation of the binding reaction was observed with saturating levels of either yeast or liver EF-1. No effect of EF-3 was observed on ribosome-EF-2-GDP-fusidic acid complex formation. The data suggest that the yeast EF-3 may be a loosely bound ribosomal protein which is not required for a specific step in the elongation cycle but is involved in the coordination of the partial reactions required for polymerization.  相似文献   

3.
Role of yeast elongation factor 3 in the elongation cycle   总被引:7,自引:0,他引:7  
Investigation of the role of the polypeptide chain elongation factor 3 (EF-3) of yeast indicates that EF-3 participates in the elongation cycle by stimulating the function of EF-1 alpha in binding aminoacyl-tRNA (aa-tRNA) to the ribosome. In the yeast system, the binding of the ternary complex of EF-1 alpha.GTP.aa-tRNA to the ribosome is stoichiometric to the amount of EF-1 alpha. In the presence of EF-3, EF-1 alpha functions catalytically in the above mentioned reaction. The EF-3 effect is manifest in the presence of ATP, GTP, or ITP. A nonhydrolyzable analog of ATP does not replace ATP in this reaction, indicating a role of ATP hydrolysis in EF-3 function. The stimulatory effect of EF-3 is, in many respects, distinct from that of EF-1 beta. Factor 3 does not stimulate the formation of a binary complex between EF-1 alpha and GTP, nor does it stimulate the exchange of EF-1 alpha-bound GDP with free GTP. The formation of a ternary complex between EF-1 alpha.GTP.aa-tRNA is also not affected by EF-3. It appears that the only reaction of the elongation cycle that is stimulated by EF-3 is EF-1 alpha-dependent binding of aa-tRNA to the ribosome. Purified elongation factor 3, isolated from a temperature-sensitive mutant, failed to stimulate this reaction after exposure to a nonpermissive temperature. A heterologous combination of ribosomal subunits from yeast and wheat germ manifest the requirement for EF-3, dependent upon the source of the "40 S" ribosomal subunit. A combination of 40 S subunits from yeast and "60 S" from wheat germ showed the stimulatory effect of EF-3 in polyphenylalanine synthesis (Chakraburtty, K., and Kamath, A. (1988) Int. J. Biochem. 20, 581-590). However, we failed to demonstrate the effect of EF-3 in binding aa-tRNA to such a heterologous combination of the ribosomal subunits.  相似文献   

4.
Kiel MC  Aoki H  Ganoza MC 《Biochimie》1999,81(12):1097-1108
Eukaryotic ribosomes harbor an ATPase activity that has been shown to be essential for translation elongation in some lower fungi. Here we report the first identification of a ribosome bound ATPase, RbbA, in E. coli cells. RbbA accounts for most of the ATPase activity associated with 70S ribosomes and 30S ribosomal subunits. Both native and recombinant RbbA were purified and shown to possess ribosome-dependent ATPase activities and to stimulate polyphenylalanine synthesis in vitro. Biochemically, RbbA is similar to the fungi-specific translation elongation factor 3 (EF-3) and cross-reacts with antibody raised against EF-3. The gene encoding RbbA is identified as ORF yhih and the predicted RbbA amino acid sequence is 40% similar to that of the C-terminal half of EF-3. The discovery of a ribosomal ATPase in a prokaryotic cell suggests a common, conserved function for these proteins in translation.  相似文献   

5.
Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a monomeric protein with a molecular mass of 116,000. EF-3 is required by yeast ribosomes for in vitro translation and for in vivo growth. The protein stimulates the binding of EF-1 alpha :GTP:aa-tRNA ternary complex to the ribosomal A-site by facilitating release of deacylated-tRNA from the E-site. The reaction requires ATP hydrolysis. EF-3 contains two ATP-binding sequence motifs (NBS). NBSI is sufficient for the intrinsic ATPase function. NBSII is essential for ribosome-stimulated activity. By limited proteolysis, EF-3 was divided into two distinct functional domains. The N-terminal domain lacking the highly charged lysine blocks failed to bind ribosomes and was inactive in the ribosome-stimulated ATPase activity. The C-terminally derived lysine-rich fragment showed strong binding to yeast ribosomes. The purported S5 homology region of EF-3 at the N-terminal end has been reported to interact with 18S ribosomal RNA. We postulate that EF-3 contacts rRNA and/or protein(s) through the C-terminal end. Removal of these residues severely weakens its interaction mediated possibly through the N-terminal domain of the protein.  相似文献   

6.
The properties and role in peptide elongation of ATPase intrinsic to rat liver ribosomes were investigated. (i) Rat liver 80S ribosomes showed high ATPase and GTPase activities, whereas the GTPase activity of EF-1alpha and EF-2 was very low. mRNA, aminoacyl-tRNA, and elongation factors alone enhanced ribosomal ATPase activity and in combination stimulated it additively or synergistically. The results suggest that these translational components induce positive conformational changes of 80S ribosomes by binding to different regions of ribosomes. Translation inhibitors, tetracyclin and fusidic acid, inhibited ribosomal ATPase with or without elongational components. (ii) Two ATPase inhibitors, AMP-P(NH)P and vanadate, did not inhibit GTPase activities of EF-1alpha and EF-2 assayed as uncoupled GTPase, but they did inhibit poly(U)-dependent polyphe synthesis of 80S ribosomes. (iii) Effects of AMP-P(NH)P and ATP on poly(U)-dependent polyphe synthesis at various concentrations of GTP were examined. ATP enhanced the activity of polyphe synthesis even at high concentrations of GTP, suggesting a specific role of ATP. At low concentrations of GTP, the extent of inhibition by AMP-P(NH)P was very low, probably owing to the prevention of the reduction of the GTP concentration. (iv) Vanadate inhibited the translocation reaction by high KCl-washed polysomes. These findings together indicate that ribosomal ATPase participates in peptide translation by inducing positive conformational changes of mammalian ribosomes, in addition to its role of chasing tRNA from the E site.  相似文献   

7.
Monoclonal antibody specific for yeast elongation factor 3   总被引:1,自引:0,他引:1  
Hybridomas have been prepared by fusing mouse myeloma (P3 X 63 Ag8) cells with spleen cells of mice immunized with a yeast fraction enriched with respect to non-ribosomal translational components. Cloned hybridoma lines were grown in the form of ascites tumors, and the monoclonal antibodies produced were purified from the ascites fluid by chromatography on DEAE-Affi-Gel Blue. One of the antibodies, from a hybridoma cell line designated as PSH-1, inhibited the translation of natural mRNA and poly(U) and polysomal chain elongation in a cell-free protein-synthesizing system from yeast. Resolution and partial purification of the elongation factors indicated that the monoclonal antibody from PSH-1 did not interact with EF-1 or EF-2 but reacted with and inactivated EF-3, the 125 000 molecular weight additional elongation factor specifically required with yeast ribosomes. The EF-3 purified from the cytosol by immunoaffinity chromatography was comparable to that prepared by ion-exchange chromatography. Evidence was obtained which indicated that EF-3 was essential for the translation of natural mRNA as well as poly(U), was associated with polysomes but not ribosomal subunits, and was required for every cycle in the elongation phase of protein synthesis.  相似文献   

8.
Two forms of elongation factor 1 (EF-1) have been tested for a variety of biological functions. One form, EF-1H, is a high-molecular-weight aggregate (Mr > 500,000) containing four distinct polypeptides (α, β, γ, δ). The other form, EF-1α, consists of a single polypeptide which is the same as the α subunit of EF-1H. Both EF-1α and EF-1H function catalytically in binding Phe-tRNA to ribosomes, and in poly(U)-directed polyphenylalanine synthesis. The activity of EF-1α is enhanced in polyphenylalanine synthesis by a complementary component, EF-1βδ. It is also shown that EF-1βδ can facilitate an exchange of EF-1α-bound GDP for GTP. The EF-1α dissociation constants for GDP and GTP were 0.47 and 0.55 μm respectively, while the EF-1H dissociation constants for GDP and GTP were 2.0 and 1.6 μm, respectively. Thus, while EF-1α and EF-1H had approximately the same affinities for GDP and GTP, the EF-1α dissociation constants were about fourfold lower than the EF-1H dissociation constants. Attempts to isolate complexes of EF-1α or EF-1H with GTP and Phe-tRNA or with GTP, Phe-tRNA, and ribosomes were unsuccessful using either Millipore filters, gel filtration, or sucrose density gradients. The results presented in this report, along with studies from other laboratories, strengthen the hypothesis that the general mechanism of the elongation cycle is similar in eucaryotes and procaryotes.  相似文献   

9.
We have investigated how point mutations in the two ATP-binding motifs (G463PNGCGK469ST and G701PNGAGK707ST) of elongation factor 3 (EF-3) affect ribosome-activated ATPase activity of EF-3, polyphenylalanine synthesis, and growth of Saccharomyces cerevisiae. The point mutation impaired the ribosome-activated ATPase activity of EF-3, when glycine463 and 701 and lysine469 and 707 were replaced with valine and arginine, respectively. Thus, each glycine and lysine residue in both ATP-binding motifs is indispensable for EF-3's binding with ATP and the ensuing generation of ribosome-activated ATPase activity. Additionally, the mutant EF-3s did not catalyze polyphenylalanine synthesis in vitro when each glycine463 and 701 was replaced with valine. The mutant EF-3s did not support cell growth in TEF3-disrupted S. cerevisiae, when each lysine469 and 707 and glycine463 was replaced with arginine and valine, respectively. Thus, each of the two ATP-binding motifs of EF-3 is indispensable for the ribosome-activated ATPase activity of EF-3, which is required for protein synthesis and cell growth in S. cerevisiae.  相似文献   

10.
Three elongation factors, EF-1 alpha, EF-1 beta gamma and EF-2, have been isolated from wheat germ. EF-1 alpha and EF-2 are single polypeptides with molecular weights of approximately 52,000 and 102,000, respectively. The most highly purified preparations of EF-1 beta gamma contain four polypeptides with molecular weights of approximately 48,000, 46,000 and 36,000, 34,000. EF-1 alpha supports poly(U)-directed binding of Phe-tRNA to wheat germ ribosomes and catalyzes the hydrolysis of GTP in the presence of ribosomes, poly(U), and Phe-tRNA. EF-2 catalyzes the hydrolysis of GTP in the presence of ribosomes alone and is ADP-ribosylated by diphtheria toxin to the extent of 0.95 mol of ADP-ribose/mol of EF-2. EF-1 beta gamma decreases the amount of EF-1 alpha required for polyphenylalanine synthesis about 20-fold. EF-1 beta gamma enhances the ability to EF-1 alpha to support the binding of Phe-tRNA to the ribosomes and enhances the GTPase activity of EF-1 alpha. Wheat germ EF-1 alpha, EF-1 beta gamma, and EF-2 support polyphenylalanine synthesis on rabbit reticulocyte ribosomes as well as on yeast ribosomes.  相似文献   

11.
Translation elongation factor 3: a fungus-specific translation factor?   总被引:1,自引:0,他引:1  
Fungi appear to be unique in their requirement for a third soluble translation elongation factor. This factor, designated elongation factor 3 (EF-3), was first described in the yeast Saccharomycescerevisiae and has subsequently been identified in a wide range of fungal species Including Candida albicans and Schizo-saccharomyces pombe. EF-3 exhibits ribosome-dependent ATPase and GTPase activities that are not intrinsic to the fungal ribosome, but which are essential for translation elongation. Recent studies on the structure of EF-3 from several fungal species have shown that it consists of a repeated domain, with each domain containing the expected putative ATP- and GTP-binding motifs. Overall, EF-3 shows striking amino acid similarity to members of the ATP-binding Cassette (ABC) family of membrane-associated transport proteins although EF-3 is not itself directly membrane-associated. Regions of the EF-3 polypeptide also show structural homology with other translation-associated factors including aminoacyl-tRNA synthetases and the Escherichia coli ribosomal protein S5. While the precise role of EF-3 in the translation elongation cycle remains to be defined, recent evidence suggests that it may be involved in optimizing accuracy during mRNA decoding at the ribosomal A site. Furthermore, the essential nature of EF-3 with respect to the fungal cell indicates that it may be an effective antifungal target. Its apparently ubiquitous occurrence throughout the fungal kingdom also suggests that it may be a useful fungal taxonomic marker.  相似文献   

12.
Cytoplasmic elongation factor 1 alpha (EF-1 alpha) [corrected] was purified to homogeneity in high yield from the two different yeasts Saccharomyces carlsbergensis (S. carls.) and Schizosaccharomyces pombe (S. pombe). The purification was easily achieved by CM-Sephadex column chromatography of the breakthrough fractions from DEAE-Sephadex chromatography of cell-free extracts. The basic proteins have a molecular weight of 47,000 for the S. carls. factor and of 49,000 for the S. pombe factor. While the purified yeast EF-1 alpha s function analogously to other eukaryotic factors and the E. coli EF-Tu in Phe-tRNA binding and polyphenylalanine synthesis, the yeast factor unusually hydrolyzed GTP on yeast ribosomes upon addition of Phe-tRNA in the absence of poly(U) as mRNA. This novelty is probably owing to the yeast ribosomes, which are assumed to lack elongation factor 3-equivalent component(s). Trypsin and chymotrypsin selectively cleaved the two yeast factors to generate resistant fragments with the same molecular weight of 43,000 (by trypsin) and of 44,000 (by chymotrypsin), respectively. Those cleavage sites were characteristically protected by the presence of several ligands bound to EF-1 alpha such as GDP, GTP, and aminoacyl-tRNA. Based on the sequence analysis of the fragments generated by the two proteases, the partial amino acid sequence of the S. carls. EF-1 alpha was deduced to be in accordance with the N-terminal region covering positions (1) to 94 and two Lys residues at the C-terminal end of the predicted total sequence of the Saccharomyces cerevisiae (S. cerev.) factor derived from DNA analysis, except for a few N-terminal residues, confirming the predicted S. cerev. sequence at the protein level. EF-1 beta and EF-1 beta gamma were isolated and highly purified as biologically active entities from the two yeasts. EF-1 beta s from the two yeasts have the same molecular weight of 27,000, whereas component gamma of the S. carls. EF-1 beta gamma showed a higher molecular weight (47,000) than that of the S. pombe factor (40,000). It was also shown that a stoichiometric complex was formed between EF-1 alpha and EF-1 beta gamma from S. pombe. Furthermore, a considerable amount of Phe-tRNA binding activity was distributed in the EF-1H (probably EF-1 alpha beta gamma) fraction from freshly prepared cell-free extracts of yeast.  相似文献   

13.
The stimulatory effect of peptide elongation factor 3 (EF-3), which is uniquely required for the yeast elongation cycle, on the step of binding of aminoacyl-tRNA (AA-tRNA) to ribosomes has been investigated in detail. Yeast EF-1 alpha apparently functions in a stoichiometric manner in the binding reaction of AA-tRNA to the ribosomes. The addition of EF-3 and ATP to this binding system strikingly stimulated the binding reaction, and the stimulated reaction proceeded catalytically with respect to both EF-1 alpha and EF-3, accompanied by ATP hydrolysis, indicating that EF-3 stimulated the AA-tRNA binding reaction by releasing EF-1 alpha from the ribosomal complex, thus recycling it. This binding stimulation by EF-3 was in many respects distinct from that by EF-1 beta gamma. The idea that EF-3 may participate in the regeneration of GTP from ATP and the formed GDP, as indicated by the findings that the addition of EF-3 along with ATP allowed the AA-tRNA binding and Phe polymerization reactions to proceed even in the presence of GDP in place of GTP, was not verified by the results of direct measurement of [32P]GTP formation from [gamma-32P]ATP and GDP under various conditions. Examination of the stability of the bound AA-tRNA disclosed the different binding states of AA-tRNA on ribosomes between in the cases of the complexes formed with EF-1 alpha alone, or factor-independently, and with EF-1 alpha and EF-3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
ATPase and GTPase activities of EF-3 were similarly inhibited by various nucleotides including CTP, UTP and four dNTP's. The low specificity of EF-3 was in remarkable contrast with the high specificity of EF-1 alpha and EF-2 directed only to quanine nucleotides. The pH-activity and salt concentration-activity profiles as well as the above inhibition experiments coincidently supported that the same active site functions for ATPase and GTPase of EF-3. The stimulation of poly(Phe) synthesis was not observed with AMPPNP in place of ATP. The stimulation required ATP hydrolysis, probably catalyzed by ATPase of EF-3. Reflecting the low specificity of the ATPase, UTP, dTTP, dATP and dGTP stimulated the poly(Phe) synthesis. EF-3 appears to drive yeast elongation cycle using the energy from ATP hydrolysis by its ATPase without serving for GTP regeneration.  相似文献   

15.
Postpolysomal extracts from wild-type (wt A364A) and temperature-sensitive (ts 7'-14) yeast cells were preincubated for short periods of time at the nonpermissive temperature (37-41 degrees C) prior to incubations for protein synthesis at 20 degrees C. Whereas wt A364A extracts were relatively unaffected by preincubation at the elevated temperature, mutant extracts lost their ability to translate exogenous natural mRNA and poly(U). Phe-tRNA synthetase and ribosomes from ts 7'-14 cells were not inactivated by preincubation at 37-41 degrees C, but a cytosolic component required for chain elongation, as measured by poly(U) translation, was extensively inactivated. The three elongation factors (EF-1, EF-2, and EF-3) required for chain elongation in yeast were resolved chromatographically. Only one factor, EF-3, was able to restore the poly(U)-translational activity of mutant extracts inactivated at the elevated temperature. Heat-inactivated yeast cytosols, which did not support protein synthesis with yeast ribosomes, were perfectly able to translate poly(U) with rat liver ribosomes, which require only EF-1 and EF-2. These and other experiments indicated that the genetically altered component in 7'-14 mutant cells is EF-3.  相似文献   

16.
Hygromycin B is an unusual aminoglycoside antibiotic active against both prokaryotic and eukaryotic cells. Hygromycin B at 0.38 mM concentration completely halts yeast cell growth in rich media, presumably by preventing protein synthesis by cytoplasmic ribosomes. Polypeptide synthesis in cell-free extracts from rabbit reticulocytes, wheat germ and yeast is strongly blocked by low concentrations of hygromycin B. The antibiotic inhibits peptide chain elongation by yeast polysomes by preventing elongation factor EF-2-dependent translocation, although it does not affect either the formation of the EF-2-GTP-ribosome complex or the EF-2- and ribosome-dependent GTP hydrolysis which takes place uncoupled from translocation. The inhibition of translocation by hygromycin B might result from the stabilization of peptidyl-tRNA bound to the ribosomal acceptor site, since the stability of [3H]Phe-tRNA-EF-1-poly(U)-ribosome and [3H]Phe-tRNA-poly(U)-ribosome complexes is increased in the presence of hygromycin B. The inhibition of polyphenylalanine synthesis by reticulocyte ribosomes and enzymic translocation of peptidyl-tRNA by yeast polysomes can be reversed by increasing concentrations of EF-2 suggesting a relationship between the binding sites of EF-2 and hygromycin B on the ribosome. Neither non-enzymic translocation, that takes place in the presence of high potassium concentrations, nor the peptide bondforming step are affected by hygromycin B.  相似文献   

17.
Two species of elongation factor 1 (EF-1) differing in molecular weight have been obtained from the postribosomal supernatant fraction of yeast by chromatography on Sephadex G-200. These two forms are present in approximately equal amounts and both appear to be of cytoplasmic origin. Preparations of the higher and lower molecular weight forms of EF-1 catalyze the poly(U)-directed binding of N-acetylphenylalanylt-RNA (AcPhe-tRNA) to yeast ribosomes. The AcPhe-tRNA binding activity of these preparations is consistently lower than the phenylalanyl-tRNA (Phe-tRNA) binding activity and is more sensitive to N-ethylmaleimide. However, the AcPhe-tRNA binding activity co-purifies with EF-1 on phosphocellulose and has the same heat inactivation profile. Several lines of evidence indicate that the AcPhe-tRNA is bound to the acceptor site of the ribosomes. These and other data strongly suggest that yeast EF-1 is capable of catalyzing the binding of both Phe-tRNA and AcPhe-tRNA to ribosomes.  相似文献   

18.
The effect of the protein synthesis inhibitor II from barley seeds (Hordeum sp.) on protein synthesis was studied in rabbit reticulocyte lysates. Inhibitor treatment of the lysates resulted in a rapid decrease in amino acid incorporation and an accumulation of heavy polysomes, indicating an effect of the inhibitor on polypeptide chain elongation. The protein synthesis inhibition was due to a catalytic inactivation of the large ribosomal subunit with no effect on the small subparticle. The inhibitor-treated ribosomes were fully active in participating in the EF-1-dependent binding of [14C]phenylalanyl-tRNA to poly(U)-programmed ribosomes in the presence of GTP and the binding of radioactively labelled EF-2 in the presence of GuoPP[CH2]P. Furthermore, the ribosomes were still able to catalyse peptide-bond formation. However, the EF-1- and ribosome-dependent hydrolysis of GTP was reduced by more than 40% in the presence of inhibitor-treated ribosomes, while the EF-2- and ribosome-dependent GTPase remained unaffected. This suggests that the active domains involved in the two different GTPases are non-identical. Treatment of reticulocyte lysates with the barley inhibitor resulted in a marked shift of the steady-state distribution of the ribosomal phases during the elongation cycle as determined by the ribosomal content of elongation factors. Thus, the content of EF-1 increased from 0.38 mol/mol ribosome to 0.71 mol/mol ribosome, whereas the EF-2 content dropped from 0.20 mol/mol ribosome at steady state to 0.09 mol/mol ribosome after inhibitor treatment. The data suggest that the inhibitor reduces the turnover of ribosome-bound ternary EF-1 X GTP X aminoacyl-tRNA complexes during proof-reading and binding of the cognate aminoacyl-tRNA by inhibiting the EF-1-dependent GTPase.  相似文献   

19.
Periodate-oxidized guanine nucleotides (GTPox and GDPox) were shown to bind stoichiometrically to rat liver elongation factor 2 (EF-2). This binding was quantitatively inhibited in the presence of GTP. After binding, oxidized nucleotides remained on EF-2 despite extensive dialysis. They exchanged, however, with free quanine nucleotides in the course of prolonged (greater than 1 h) incubations. The prior reduction EF-2.GTPox with NaBH4 abolished, to a large extent, this slow exchange. Thus, a Schiff's base was implicated to be formed between EF-2 and oxidized guanine nucleotides. Mg2+ increased the GTPox concentration necessary for a stoichiometric binding to EF-2. EF-2-oxidized nucleotide conjugates bound in the presence of ribosomes a second molecule of GTP (or GTPox). GTPox bound to EF-2 in the presence of ribosomes appeared to exchange readily with free GTP. Moreover, GTPox proved to be active as substrate in EF-2 and ribosome-dependent GTPase reaction: Km values found for GTPox and GTP were 7.7 and 3.4 microM, respectively. The binding of GTPox to EF-2 inhibited only partially the subsequent ribosome-dependent GTP binding, and GTPase reaction or polyphenylalanine (polyPhe) synthesis. On the other hand, the binding of GuoPP[CH2]Pox to EF-2 inhibited all of these reactions strongly. The nature of the binding site involved in the direct interactions of EF-2 with guanine nucleotides is discussed in the light of these results.  相似文献   

20.
An autoantibody reactive with a conserved sequence of 28 S rRNA (anti-28 S) was identified in serum from a patient with systemic lupus erythematosus. Anti-28 S protected a unique 59-nucleotide fragment synthesized in vitro against RNase T1 digestion. RNA sequence analysis revealed that it corresponded to residues 1944-2002 in human 28 S rRNA and 1767-1825 in mouse 28 S rRNA. These sequences are identical and highly conserved throughout all known eukaryotic 28 S rRNAs. In addition, this fragment is homologous to residues 1052-1110 of Escherichia coli 23 S rRNA that lies within the GTP hydrolysis center of the 50 S ribosomal subunit. Anti-28 S and its Fab fragments strongly inhibited poly(U)-directed polyphenylalanine synthesis, but had no effect on ribosomal peptidyltransferase activity. This effect resulted from inhibition of the binding of elongation factors EF-1 alpha and EF-2 to ribosomes and of the associated GTP hydrolysis. The inhibitory effect was almost completely suppressed by preincubation of anti-28 S with 28 S rRNA or in vitro synthesized RNA fragments containing the immunoreactive region. These results show that the immunoreactive conserved region of 28 S rRNA participates in the interaction of ribosomes with the two elongation factors in protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号