共查询到20条相似文献,搜索用时 24 毫秒
1.
V I Palamarchuk V M Klimashevsky V P Vendt 《Prikladnaia biokhimiia i mikrobiologiia》1975,11(3):469-470
An attempt was made to develop a new method for separate measurement of sterols of similar chemical structure--desmosterol, cholesterol, 7-dehydrocholesterol--by means of thin-layer and gas-liquid chromatography. Fluoroanalogues of the sterols were well separated in the adsorbent thin layer. This facilitated their further identification, quantitation and accumulation. Similar results were obtained with the aid of gas liquid chromatography. 相似文献
2.
3.
Xiaoxue Zhang Hengyi Xie David Iaea George Khelashvili Harel Weinstein Frederick R. Maxfield 《The Journal of biological chemistry》2022,298(7)
There is substantial evidence for extensive nonvesicular sterol transport in cells. For example, lipid transfer by the steroidogenic acute regulator-related proteins (StarD) containing a StarT domain has been shown to involve several pathways of nonvesicular trafficking. Among the soluble StarT domain–containing proteins, StarD4 is expressed in most tissues and has been shown to be an effective sterol transfer protein. However, it was unclear whether the lipid composition of donor or acceptor membranes played a role in modulating StarD4-mediated transport. Here, we used fluorescence-based assays to demonstrate a phosphatidylinositol phosphate (PIP)-selective mechanism by which StarD4 can preferentially extract sterol from liposome membranes containing certain PIPs (especially, PI(4,5)P2 and to a lesser degree PI(3,5)P2). Monophosphorylated PIPs and other anionic lipids had a smaller effect on sterol transport. This enhancement of transport was less effective when the same PIPs were present in the acceptor membranes. Furthermore, using molecular dynamics (MD) simulations, we mapped the key interaction sites of StarD4 with PIP-containing membranes and identified residues that are important for this interaction and for accelerated sterol transport activity. We show that StarD4 recognizes membrane-specific PIPs through specific interaction with the geometry of the PIP headgroup as well as the surrounding membrane environment. Finally, we also observed that StarD4 can deform membranes upon longer incubations. Taken together, these results suggest a mechanism by which PIPs modulate cholesterol transfer activity via StarD4. 相似文献
4.
The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation 总被引:13,自引:0,他引:13
Detergent-insoluble membrane domains, enriched in saturated lipids and cholesterol, have been implicated in numerous biological functions. To understand how cholesterol promotes domain formation, the effect of various sterols and sterol derivatives on domain formation in mixtures of the saturated lipid dipalmitoylphosphatidylcholine (DPPC) and a fluorescence quenching analogue of an unsaturated lipid was compared. Quenching measurements demonstrated that several sterols (cholesterol, dihydrocholesterol, epicholesterol, and 25-hydroxycholesterol) promote formation of DPPC-enriched domains. Other sterols and sterol derivatives had little effect on domain formation (cholestane and lanosterol) or, surprisingly, strongly inhibit it (coprostanol, androstenol, cholesterol sulfate, and 4-cholestenone). The effect of sterols on domain formation was closely correlated with their effects on DPPC insolubility. Those sterols that promoted domain formation increased DPPC insolubility, whereas those sterols that inhibit domain formation decreased DPPC insolubility. The effects of sterols on the fluorescence polarization of diphenylhexatriene incorporated into DPPC-containing vesicles were also correlated with sterol structure. These experiments indicate that the effect of sterol on the ability of saturated lipids to form a tightly packed (i.e., tight in the sense that the lipids are closely packed with one another) and ordered state is the key to their effect on domain formation. Those sterols that promote tight packing of saturated lipids promote domain formation, while those sterols that inhibited tight packing of saturated lipids inhibited domain formation. The ability of some sterols to inhibit domain formation (i.e., act as "anti-cholesterols") should be a valuable tool for examining domain formation and properties in cells. 相似文献
5.
In brain, levels of cholesterol, desmosterol and 7-dehydrodesmosterol are reduced in shiverer and quaking, but not in trembler 60-day-old dysmyelinating mutant mice. Very interestingly, 7-dehydrocholesterol is not altered in any mutant. The amount of cholesterol is similar in the different normal control mouse strains and in rat. In contrast, levels of precursors are not the same. In sciatic nerve, cholesterol is slightly reduced in shiverer, reduced 2-fold in quaking, and dramatically reduced in trembler (10-fold). 7-Dehydrocholesterol is affected in all mutants. 相似文献
6.
The influence of 1-alkanols and external pressure on the lateral pressure profiles of lipid bilayers
The suggestion by Robert Cantor, that drug-induced pressure changes in lipid bilayers can change the conformational equilibrium between open and closed states of membrane proteins and thereby cause anesthesia, attracted much attention lately. Here, we studied the effect of both large external pressure and of 1-alkanols of different chain lengths—some of them anesthetics, others not—on the lateral pressure profiles across dimyristoylphosphatidylcholine (DMPC) bilayers by molecular dynamics simulations. For a pure DMPC bilayer, high pressure both reduced and broadened the tension at the interface hydrophobic/hydrophilic and diminished the repulsion between the phospholipid headgroups. Whereas the effect of ethanol on the lateral pressure profile was similar to the effect of a large external pressure on a DMPC bilayer, long-chain 1-alkanols significantly amplified local maxima and minima in the lateral pressure profile. For most 1-alkanols, external pressure had moderate effects and did not reverse the changes 1-alkanols exerted on the pressure profile. Nevertheless, assuming the bent helix model as a simple geometric model for the transmembrane region of a membrane protein, protein conformational equilibria were shifted in opposite directions by addition of 1-alkanols and additional application of external pressure. 相似文献
7.
Daniel Voß Susanne Pfefferle Christian Drosten Lea Stevermann Elisabetta Traggiai Antonio Lanzavecchia Stephan Becker 《Virology journal》2009,6(1):1-13
Background
Dengue is the most important arbovirus disease in tropical and subtropical countries. The viral envelope (E) protein is responsible for cell receptor binding and is the main target of neutralizing antibodies. The aim of this study was to analyze the diversity of the E protein gene of DENV-3. E protein gene sequences of 20 new viruses isolated in Ribeirao Preto, Brazil, and 427 sequences retrieved from GenBank were aligned for diversity and phylogenetic analysis.Results
Comparison of the E protein gene sequences revealed the presence of 47 variable sites distributed in the protein; most of those amino acids changes are located on the viral surface. The phylogenetic analysis showed the distribution of DENV-3 in four genotypes. Genotypes I, II and III revealed internal groups that we have called lineages and sub-lineages. All amino acids that characterize a group (genotype, lineage, or sub-lineage) are located in the 47 variable sites of the E protein.Conclusion
Our results provide information about the most frequent amino acid changes and diversity of the E protein of DENV-3. 相似文献8.
9.
We have employed four lipids in the present study, of which two are cationic and two bear phosphatidylcholine (PC) headgroups. Unlike dipalmitoylphosphatidylcholine, the other lipids employed herein do not have any ester linkage between the hydrocarbon chains and the respective lipid backbones. Small unilamellar vesicles formed from each of the PC and cationic lipids with or without varying amounts of cholesterol have been examined using the steady-state fluorescence anisotropy method as a function of temperature. The anisotropy data clearly indicate that the order in the lipid bilayer packing is strongly affected upon inclusion of cholesterol. This effect is similar irrespective of the electrostatic character of the lipid employed. The influence of cholesterol inclusion on multi-lamellar lipid dispersions has also been examined by 1H-nuclear magnetic resonance spectroscopy above the phase transition temperatures. With all the lipids, the line widths of (CH2)n protons of hydrocarbon chains in the NMR spectra respond to the addition of cholesterol to membranes. The influence on the bilayer widths of various lipids upon inclusion of cholesterol was determined from X-ray diffraction studies of the cast films of the lipid-cholesterol coaggregates in water. The effect of cholesterol on the efflux rates of entrapped carboxyfluorescein (CF) from the phospholipid vesicles was determined. Upon incremental incorporation of cholesterol into the phospholipid vesicles, the CF leakage rates were progressively reduced. Independent experiments measuring transmembrane OH- ion permeation rates from cholesterol-doped cationic lipid vesicles using entrapped dye riboflavin also demonstrated that the addition of cholesterol into the cationic lipid vesicles reduced the leakage rates irrespective of lipid molecular structure. It was found that the cholesterol induced changes on the membrane properties such as lipid order, linewidth broadening, efflux rates, bilayer widths, etc., did not depend on the ability of the lipids to participate in the hydrogen bonding interactions with the 3beta-OH of cholesterol. These findings emphasize the importance of hydrophobic interaction between lipid and cholesterol and demonstrate that it is not necessary to explain the observed cholesterol induced effects on the basis of the presence of hydrogen bonding between the 3beta-OH of cholesterol and the lipid chain-backbone linkage region or headgroup region. 相似文献
10.
11.
The ESR of 7- and 16-doxylstearic spin-labeled fatty acids (7NS and 16NS, respectively) reveal the distinct influence of cholesterol or cholesterol precursor analogue, delta7-dehydrocholesterol, on the molecular ordering and the fluidity of lipid mixtures containing sphingomyelin (SM). The phase-separation of sphingomyelin domains mixed within fluid glycerophospholipids (phosphatidylethanolamine and phosphatidylserine) can be followed by ESR as a function of the temperature and in the presence of sterols [cholesterol (CHOL) or 7-dehydrocholesterol (DHCHOL)]. The time scale of spin-label exchange among phases is appropriate to follow the occurrence of the specific sphingomyelin/sterol association forming liquid ordered (Lo) microdomains which separate from the fluid surrounding phase Lalpha. Sphingomyelin embedded within the fluid bilayer associates with both sterols below 36 degrees C to give a phase Lo traceable by ESR in the form of a highly anisotropic component. Above 36 degrees C, the contribution in the ESR spectrum, of the Lo phase formed by 7-dehydrocholesterol with sphingomyelin is reduced by contrast with cholesterol forming a temperature-stable liquid ordered phase up to 42 degrees C. The consequences of this destabilization of the SM/sterol microdomains are envisioned in the biosynthesis defect where the precursor 7-dehydrocholesterol substitutes, for a significant part, the embryonic cell cholesterol. 相似文献
12.
Most biological membranes are extremely complex structures consisting of hundreds of different lipid and protein molecules. According to the famous fluid-mosaic model lipids and many proteins are free to diffuse very rapidly in the plane of the membrane. While such fast diffusion implies that different membrane lipids would be laterally randomly distributed, accumulating evidence indicates that in model and natural membranes the lipid components tend to adopt regular (superlattice-like) distributions. The superlattice model, put forward based on such evidence, is intriguing because it predicts that 1) there is a limited number of allowed compositions representing local minima in membrane free energy and 2) those energy minima could provide set-points for enzymes regulating membrane lipid compositions. Furthermore, the existence of a discrete number of allowed compositions could help to maintain organelle identity in the face of rapid inter-organelle membrane traffic. 相似文献
13.
The kinetics of exchange of radiolabeled cholesterol and phospholipids between intact Mycoplasma gallisepticum cells and unilamellar lipid vesicles were investigated over a wide range of cholesterol/phospholipid molar ratio. The change in cholesterol/phospholipid molar ratio was achieved by adapting the sterol-requiring M. gallisepticum to grow in cholesterol-poor media, providing cells with decreased unesterified cholesterol content. At least 90% of the cholesterol molecules in unsealed M. gallisepticum membranes underwent exchange at 37 degrees C as a single kinetic pool in the presence of albumin (2%, w/v). However, we observed biphasic exchange kinetics with intact cells, indicating that cholesterol translocation from the inner to outer monolayers was rate-limiting in the exchange process. Approximately 50% of the cholesterol molecules were localized in each kinetic pool, independent of the cholesterol/phospholipid molar ratio in the cells and vesicles. A striking change in the kinetic parameters for cholesterol exchange occurred between 20 and 26 mol % cholesterol; for example, when the cholesterol/phospholipid molar ratio was decreased from 0.36 to 0.25, the half-time for equilibration of the two cholesterol pools at 37 degrees C decreased from 4.6 +/- 0.5 to 2.5 +/- 0.1 h. Phospholipid exchange rates were also enhanced on decreasing the membrane cholesterol content. The ability of cholesterol to modulate its own exchange rate, as well as that of phospholipids, is suggested to arise from the sterol's ability to regulate membrane lipid order. Extensive chemical modification of the membrane surface by cross-linking of some of the protein constituents with 1,4-phenylenedimaleimide decreased the cholesterol exchange rate. Depletion of membrane proteins by treatment of growing cultures with chloramphenicol increased the cholesterol exchange rate, possibly because of removal of some of the protein mass that may impede lipid translocation. The observations that phospholipid exchange was one order of magnitude slower than cholesterol exchange and that dimethyl sulfoxide, potassium thiocyanate, and potassium salicylate enhanced the cholesterol exchange rate are consistent with a mechanism involving lipid exchange by diffusion through the aqueous phase. 相似文献
14.
Yamada M Nagatomo J Setoguchi Y Kuroki N Higashi S Setoguchi T 《Biological chemistry》2000,381(12):1149-1153
Circadian rhythms of important enzymes involved in the conversion of cholesterol to bile acids [sterol 12alpha-hydroxylase (12alpha-hydroxylase) and cholesterol 7alpha-hydroxylase (7alpha-hydroxylase)] and an albumin site D-binding protein (DBP) were examined in rats. When the animals were fed freely, they usually ate in the dark and the circadian rhythms of activities of 12alpha-hydroxylase and 7alpha-hydroxylase showed the same peaks (at 10 p.m.) and lows (at 2 p.m.). Their mRNA levels were determined at four timepoints: 3 a.m., 10 a.m., 3 p.m. and 10 p.m. A maximum of the rhythm of 12alpha-hydroxylase was observed at 3 p.m. and the minimum at 3 a.m. These results are distinct from those of 7alpha-hydroxylase, whose maximum point was at 10 p.m. and minimum at 3 p.m. When the rats were fed only in the day-time (from 9 a.m. to 5 p.m.), a marked shift of the activity and mRNA rhythms was observed with both enzymes. The circadian rhythms of the activities of both enzymes showed the same peaks (at 3 p.m.), but the mRNA levels of 12alpha-hydroxylase were distinct from those of 7alpha-hydroxylase, whose maximum point was at 3 a.m. and minimum at 10 p.m. Differences between the maximum and the minimum points of each enzyme mRNA level were statistically significant (P < 0.01 for 12alpha-hydroxylase and 0.05 for 7alpha-hydroxylase). Moreover, circadian rhythms of DBP were also markedly shifted with the change of feeding period. The maximum mRNA level was observed at 10 p.m. instead of 10 a.m. and the minimum was at 10 a.m. instead of 10 p.m. 相似文献
15.
Cholesterol removal from lipid-loaded macrophages is an important, potentially antiatherogenic process, and we have previously shown that an oxysterol, 7-ketocholesterol (7K), can impair efflux to lipid-free apoprotein A-1 (apoA-1). This publication investigates whether incorporation of 7K into membranes could account for this impairment of cholesterol efflux. Cholesterol efflux was studied from lipoprotein-loaded THP-1 cells, from plasma membrane vesicles obtained from these cells, and from artificial, protein-free liposomes. Impairment of cholesterol efflux by 7K was observed for all cholesterol donor systems whether measured as decline in cholesterol removal rates or as the percentage mass of total cellular cholesterol exported. 7-Ketocholesterol itself was not removed by apoA-1 from any of the cholesterol donor systems. Increasing membrane cholesterol content increased the rate of cholesterol removal by apoA-1 (as seen with plasma membrane vesicles), the quantity of cholesterol removed at equilibrium (liposomes), or both (whole cells). Although the minimum inhibitory 7K concentrations varied between the cholesterol donor systems, 7K inhibited cholesterol efflux in all systems. It was concluded that 7K induces alteration in membranes which decreased the efficiency of cholesterol efflux and the quantity of removed cholesterol induced by apoA-1. As cell membrane proteins are not essential for cholesterol efflux in these systems, the impairment of such by 7K suggests that its effect on membrane lipid composition and its structure are key regulatory elements in this efflux process. 相似文献
16.
The biological conversion of 7-dehydrocholesterol into cholesterol and comments on the reduction of double bonds 总被引:22,自引:22,他引:0 下载免费PDF全文
It is shown that the 7-dehydrocholesterol reductase-catalysed conversion of 7-dehydrocholesterol into cholesterol (II), with a 105000g microsomal pellet of rat liver in the presence of [4-(3)H(2)]NADPH, results in the transfer of radioactivity to the 7alpha-position of cholesterol. When the conversion is carried out in the presence of tritiated water the label is introduced exclusively at the 8beta-position. However, when the conversion of 7-dehydrocholesterol into cholesterol is performed with a 500g supernatant of rat liver homogenate the radioactivity is incorporated at both the 7alpha- and the 8beta-position. Evidence is provided for the presence of an enzyme system in the 500g supernatant that catalyses an equilibration of hydrogen atoms between those at the 4-position of NADPH and those of water. The work with stereospecifically labelled cofactors shows that both the equilibrating system and the 7-dehydrocholesterol reductase utilize the 4B-hydrogen atom of NADPH. In the light of these results a mechanism for the reduction of carbon-carbon double bonds is discussed. 相似文献
17.
Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies
This paper presents the results of constant-current (chronopotentiometric) measurements of the egg yolk phosphatidylcholine (PC) bilayer membrane without and with cholesterol. The experiments were performed on planar bilayer lipid membrane (BLM) formed by the Mueller-Rudin method. It is demonstrated that the constant-intensity current flow through bilayer membranes generated fluctuating pores in their structure. The presence of cholesterol in the membrane caused an increase in the value of the breakdown potential. It is postulated that greater stability of the bilayer with cholesterol can result from an increased critical pore radius (at which the bilayer would undergo irreversible rupture). This confirms that cholesterol has a stabilizing effect on BLM. Besides, our results suggest that addition of cholesterol causes shift in the distribution of pore conductance towards a smaller value. It is suggested that this can be connected with the phenomenon of domain formation in the membranes containing high concentration of cholesterol. Moreover, it is shown that chronopotentiometry with programmable current intensity is a promising method for observation of the membrane recovery process. 相似文献
18.
OmpG is an intermediate size, monomeric, outer membrane protein from Escherichia coli, with n beta = 14 beta-strands. It has a large pore that is amenable to modification by protein engineering. The stoichiometry ( N b = 20) and selectivity ( K r = 0.7-1.2) of lipid-protein interaction with OmpG incorporated in dimyristoyl phosphatidylcholine bilayer membranes was determined with various 14-position spin-labeled lipids by using EPR spectroscopy. The limited selectivity for different lipid species is consistent with the disposition of charged residues in the protein. The conformation and orientation (beta-strand tilt and beta-barrel order parameters) of OmpG in disaturated phosphatidylcholines of odd and even chain lengths from C(12:0) to C(17:0) was determined from polarized infrared spectroscopy of the amide I and amide II bands. A discontinuity in the protein orientation (deduced from the beta-barrel order parameters) is observed at the point of hydrophobic matching of the protein with lipid chain length. Compared with smaller (OmpA; n beta = 8) and larger (FhuA; n beta = 22) monomeric E. coli outer membrane proteins, the stoichiometry of motionally restricted lipids increases linearly with the number of beta-strands, the tilt (beta approximately 44 degrees ) of the beta-strands is comparable for the three proteins, and the order parameter of the beta-barrel increases regularly with n beta. These systematic features of the integration of monomeric beta-barrel proteins in lipid membranes could be useful for characterizing outer membrane proteins of unknown structure. 相似文献
19.
Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies
This paper presents the results of constant-current (chronopotentiometric) measurements of the egg yolk phosphatidylcholine (PC) bilayer membrane without and with cholesterol. The experiments were performed on planar bilayer lipid membrane (BLM) formed by the Mueller-Rudin method. It is demonstrated that the constant-intensity current flow through bilayer membranes generated fluctuating pores in their structure. The presence of cholesterol in the membrane caused an increase in the value of the breakdown potential. It is postulated that greater stability of the bilayer with cholesterol can result from an increased critical pore radius (at which the bilayer would undergo irreversible rupture). This confirms that cholesterol has a stabilizing effect on BLM. Besides, our results suggest that addition of cholesterol causes shift in the distribution of pore conductance towards a smaller value. It is suggested that this can be connected with the phenomenon of domain formation in the membranes containing high concentration of cholesterol. Moreover, it is shown that chronopotentiometry with programmable current intensity is a promising method for observation of the membrane recovery process. 相似文献
20.
Pankov R Markovska T Antonov P Ivanova L Momchilova A 《General physiology and biophysics》2006,25(3):313-324
Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers. 相似文献