首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic phospholipase A2 (cPLA2)alpha responds to the rise in cytosolic Ca2+ ([Ca2+]i) attending cell stimulation by moving to intracellular membranes, releasing arachidonic acid (AA) from these membranes, and thereby initiating the synthesis of various lipid mediators. Under some conditions, however, cPLA2alpha translocation occurs without any corresponding changes in [Ca2+]i. The signal for such responses has not been identified. Using confocal microscopy to track fluorescent proteins fused to cPLA2alpha or cPLA2alpha's C2 domain, we find that AA mimics Ca2+ ionophores in stimulating cPLA(2)alpha translocations to the perinuclear ER and to a novel site, the lipid body. Unlike the ionophores, AA acted independently of [Ca2+](i) rises and did not translocate the proteins to the Golgi. AA's action did not involve its metabolism to eicosanoids or acylation into cellular lipids. Receptor agonists also stimulated translocations targeting lipid bodies. We propose that AA is a signal for Ca2+-independent cPLA2alpha translocation and that lipid bodies are common targets of cPLA2alpha and contributors to stimulus-induced lipid mediator synthesis.  相似文献   

2.
Phospholipase A2   总被引:7,自引:0,他引:7  
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (AA), a precursor of eicosanoids including prostaglandins (PGs) and leukotrienes (LTs). The same reaction also produces lysophosholipids, which represent another class of lipid mediators. So far, at least 19 enzymes that possess PLA2 activity have been identified in mammals. The secretory PLA2 (sPLA2) family, in which 10 isozymes have been identified, consists of low-molecular-weight, Ca2+-requiring, secretory enzymes that have been implicated in a number of biological processes, such as modification of eicosanoid generation, inflammation, host defense, and atherosclerosis. The cytosolic PLA2 (cPLA2) family consists of 3 enzymes, among which cPLA2alpha plays an essential role in the initiation of AA metabolism. Intracellular activation of cPLA2alpha is tightly regulated by Ca2+ and phosphorylation. The Ca2+-independent PLA2 (iPLA2) family contains 2 enzymes and may play a major role in membrane phospholipid remodeling. The platelet-activating factor (PAF) acetylhydrolase (PAF-AH) family represents a unique group of PLA2 that contains 4 enzymes exhibiting unusual substrate specificity toward PAF and/or oxidized phospholipids. In this review, we will overview current understanding of the properties and functions of each enzyme belonging to the sPLA2, cPLA2, and iPLA2 families, which have been implicated in signal transduction.  相似文献   

3.
Cytosolic phospholipase A(2) alpha (cPLA(2)alpha) is the only PLA(2) that exhibits specificity for sn-2 arachidonic acid consistent with its primary role in mediating the agonist-induced release of arachidonic acid for eicosanoid production. It is subject to complex mechanisms of regulation that ensure that levels of free arachidonic acid are tightly controlled. The calcium-induced translocation of cPLA(2)alpha from the cytosol to membrane regulates its interaction with phospholipid substrate. cPLA(2)alpha is additionally regulated by phosphorylation on sites in the catalytic domain. Because of its central position as the upstream regulatory enzyme for initiating production of several classes of bioactive lipid mediators (leukotrienes, prostaglandins and platelet-activating factor), it is a potentially important pharmacological target for the control of inflammatory diseases.  相似文献   

4.
Eicosanoid production by macrophages is an early response to microbial infection that promotes acute inflammation. The intracellular pathogen Listeria monocytogenes stimulates arachidonic acid release and eicosanoid production from resident mouse peritoneal macrophages through activation of group IVA cytosolic phospholipase A2 (cPLA2alpha). The ability of wild type L. monocytogenes (WTLM) to stimulate arachidonic acid release is partially dependent on the virulence factor listeriolysin O; however, WTLM and L. monocytogenes lacking listeriolysin O (DeltahlyLM) induce similar levels of cyclooxygenase 2. Arachidonic acid release requires activation of MAPKs by WTLM and DeltahlyLM. The attenuated release of arachidonic acid that is observed in TLR2-/- and MyD88-/- macrophages infected with WTLM and DeltahlyLM correlates with diminished MAPK activation. WTLM but not DeltahlyLM increases intracellular calcium, which is implicated in regulation of cPLA2alpha. Prostaglandin E2, prostaglandin I2, and leukotriene C4 are produced by cPLA2alpha+/+ but not cPLA2alpha-/- macrophages in response to WTLM and DeltahlyLM. Tumor necrosis factor (TNF)-alpha production is significantly lower in cPLA2alpha+/+ than in cPLA2alpha-/- macrophages infected with WTLM and DeltahlyLM. Treatment of infected cPLA2alpha+/+ macrophages with the cyclooxygenase inhibitor indomethacin increases TNFalpha production to the level produced by cPLA2alpha-/- macrophages implicating prostaglandins in TNFalpha down-regulation. Therefore activation of cPLA2alpha in macrophages may impact immune responses to L. monocytogenes.  相似文献   

5.
Macrophages produce various kinds of lipid mediators including eicosanoids and platelet-activating factor. Since they are produced from common precursors, arachidonic acid-containing phospholipids, regulations of metabolic pathways underlie the patterning of lipid mediator production. Here, we report a pathway-oriented profiling strategy of lipid mediators by a newly developed multiplex quantification system. We profiled mouse peritoneal macrophages in different activation states. The analysis of kinetics revealed the differences in the production time course of various lipid mediators, which also differed by the macrophage types. Scatterplot matrix analysis of the inhibitor study revealed correlations of lipid mediator species. The changes of these correlations provided estimates on the effects of lipopolysaccharide priming. We also found a highly linked production of 11-hydroxyeicosatetraenoic acid and prostaglandin E2, implying the in vivo property of cyclooxygenase-mediated 11-hydroxyeicosatetraenoic acid production. The present approach will serve as a strategy for understanding the regulatory mechanism of lipid mediator production.  相似文献   

6.
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) is the rate-limiting key enzyme that cleaves arachidonic acid (AA) from membrane phospholipids for the biosynthesis of eicosanoids, including prostaglandin E(2) (PGE(2)), a key lipid mediator involved in inflammation and carcinogenesis. Here we show that cPLA(2)alpha protein is S-nitrosylated, and its activity is enhanced by nitric oxide (NO). Forced expression of inducible nitric-oxide synthase (iNOS) in human epithelial cells induced cPLA(2)alpha S-nitrosylation, enhanced its catalytic activity, and increased AA release. The iNOS-induced cPLA(2)alpha activation is blocked by the specific iNOS inhibitor, 1400W. The addition of the NO donor, S-nitrosoglutathione, to isolated cell lysates or purified recombinant human cPLA(2)alpha protein induced S-nitrosylation of cPLA(2)alpha in vitro. Incubation of cultured cells with the iNOS substrate L-arginine and NO donor significantly increased cPLA(2)alpha activity and AA release. These findings demonstrate that iNOS-derived NO S-nitrosylates and activates cPLA(2)alpha in human cells. Site-directed mutagenesis revealed that Cys-152 of cPLA(2)alpha is critical for S-nitrosylation. Furthermore, COX-2 induction or expression markedly enhanced iNOS-induced cPLA(2)alpha S-nitrosylation and activation, leading to 9-, 23-, and 20-fold increase of AA release and 100-, 38-, and 88-fold of PGE(2) production in A549, SG231, and HEK293 cells, respectively, whereas COX-2 alone leads to less than 2-fold change. These results indicate that COX-2 has the ability to enhance iNOS-induced cPLA(2)alpha S-nitrosylation and that maximal PG synthesis is achieved by the synergistic interaction among iNOS, cPLA(2)alpha, and COX-2. Since COX-2 enhances the formation of cPLA(2)alpha-iNOS binding complex, it appears that COX-2-induced augmentation of cPLA(2)alpha S-nitrosylation is mediated at least in part through increased association between iNOS and cPLA(2)alpha. These findings disclose a novel link among cPLA(2)alpha, iNOS, and COX-2, which form a multiprotein complex leading to cPLA(2)alpha S-nitrosylation and activation. Therefore, therapy aimed at disrupting this interplay may represent a promising strategy to effectively inhibit PGE(2) production and prevent inflammation and carcinogenesis.  相似文献   

7.
In this study, we examine how infection of murine and human fibroblasts by adenovirus (Ad) serotype 5 (Ad5) affects the expression and activity of cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and production of PGs. Our experiments showed that infection with Ad5 is accompanied by the rapid activation of cPLA2 and the cPLA2-dependent release of [3H]arachidonic acid ([3H]AA). Increased expression of COX-2 was also observed after Ad infection, as was production of PGE2 and PGI2. Later, however, as the infection progressed, release of [3H]AA and production of PGs stopped. Late-stage Ad5-infected cells also did not release [3H]AA or PGs following treatment with a panel of biologically diverse agents. Experiments with UV-inactivated virus confirmed that Ad infection is accompanied by the activation of a host-dependent response that is later inhibited by the virus. Investigations of the mechanism of suppression of the PG pathway by Ad5 did not reveal major effects on the expression or activity of cPLA2 or COX-2. We did note a change in the intracellular position of cPLA2 and found that cPLA2 did not translocate normally in infected cells, raising the possibility that Ad5 interferes with the PG pathway by interfering with the intracellular movement of cPLA2. Taken together, these data reveal dynamic interactions between Ad5 and the lipid mediator pathways of the host and highlight a novel mechanism by which Ad5 evades the host immune response. In addition, our results offer insight into the inflammatory response induced by many Ad vectors lacking early region gene products.  相似文献   

8.
Inflammatory lipid mediators such as prostaglandins and leukotrienes play crucial roles in the pathogenesis of bacterial lipopolysaccharide (LPS)-induced inflammation. Cytosolic phospholipase A(2) (cPLA(2)) is a key enzyme in the generation of pro-inflammatory lipid mediators. Here, we found that Toll-like receptor 4 (TLR4) is essential for LPS-induced cPLA(2) activation and lipid release. Inhibition of TLR4 protein expression by TLR4 small interfering RNA or neutralization of TLR4 by the specific antibody against TLR4/MD2 blocked cPLA(2) phosphorylation and cPLA(2)-hydrolyzed arachidonic acid release. Furthermore, activation of the TLR4 signaling pathway by LPS regulated cPLA(2) activation and lipid release. cPLA(2) phosphorylation and cPLA(2)-hydrolyzed lipid release were significantly impaired when TLR4 adaptor protein, either MyD88 or TRIF, was knocked down in LPS-stimulated macrophages. Similarly, LPS-induced arachidonate release was inhibited in cells transfected with a dominant-negative MyD88 or TRIF construct. Subsequently, cPLA(2) activation could be suppressed by inhibition of the TLR4 adaptor protein-directed p38 and ERK MAPK pathways. These findings suggest that, in LPS-induced inflammation, the TLR4-mediated MyD88- and TRIF-dependent MAPK pathways result in cPLA(2) activation and production of pro-inflammatory lipid mediators.  相似文献   

9.
Phospholipase A(2) (PLA(2)) (EC 3.1.1.4) catalyzes hydrolysis of the sn-2 ester bond of glycerophospholipids. The enzyme is essential for the production of two classes of lipid mediators, fatty acid metabolites and lysophospholipid-related lipids, as well as being involved in the remodeling of membrane phospholipids. Among many mammalian PLA(2)s, cytosolic PLA(2)alpha (cPLA(2)alpha) plays a critical role in various physiological and pathophysiological conditions through generating lipid mediators. Here, we summarize the in vivo significance of cPLA(2)alpha, revealed from the phenotypes of cPLA(2)alpha-null mice, and properties of newly discovered cPLA(2) family enzymes. We also briefly introduce a quantitative lipidomics strategy using liquid chromatography-mass spectrometry, a powerful tool for the comprehensive analysis of lipid mediators.  相似文献   

10.
dsRNA is a by-product of viral replication capable of inducing an inflammatory response when recognized by phagocyte cells. In this study, we identify group IVA cytosolic phospholipase A2 (cPLA2alpha) as an effector of the antiviral response. Treatment of RAW 264.7 murine macrophage-like cells with the dsRNA analog polyinosinic:polycytidylic acid (poly-IC) promotes the release of free arachidonic acid that is subsequently converted into PGE2 by the de novo-synthesized cyclooxygenase-2 (COX-2) enzyme. These processes are blocked by the selective cPLA2alpha inhibitor pyrrophenone, pointing out to cPLA2alpha as the effector involved. In keeping with this observation, the cPLA2alpha phosphorylation state increases after cellular treatment with poly-IC. Inhibition of cPLA2alpha expression and activity by either small interfering RNA (siRNA) or pyrrophenone leads to inhibition of the expression of the inducible NO synthase (iNOS) gene. Moreover, COX-2-derived PGE2 production appears to participate in iNOS expression, because siRNA inhibition of COX-2 also leads to inhibition of iNOS, the latter of which is restored by exogenous addition of PGE2. Finally, cellular depletion of TLR3 by siRNA inhibits COX-2 expression, PGE2 generation, and iNOS induction by poly-IC. Collectively, these findings suggest a model for macrophage activation in response to dsRNA, whereby engagement of TLR3 leads to cPLA2alpha-mediated arachidonic acid mobilization and COX-2-mediated PGE2 production, which cooperate to induce the expression of iNOS.  相似文献   

11.
The eicosanoids are centrally involved in the onset and resolution of inflammatory processes. A key enzyme in eicosanoid biosynthesis during inflammation is group IVA phospholipase A2 (also known as cytosolic phospholipase A2alpha, cPLA2alpha). This enzyme is responsible for generating free arachidonic acid from membrane phospholipids. cPLA2alpha translocates to perinuclear membranes shortly after cell activation, in a process that is governed by the increased availability of intracellular Ca2+. However, cPLA2alpha also catalyzes membrane phospholipid hydrolysis in response to agonists that do not mobilize intracellular Ca2+. How cPLA2alpha interacts with membranes under these conditions is a major, still unresolved issue. Here, we report that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] promotes translocation of cPLA2alpha to perinuclear membranes of intact cells in a manner that is independent of rises in the intracellular Ca2+ concentration. PtdIns(4,5)P2 anchors the enzyme to perinuclear membranes and allows for a proper interaction with its phospholipid substrate to release arachidonic acid.  相似文献   

12.
Fyn kinase is a key contributor in coupling FcepsilonRI to mast cell degranulation. A limited macroarray analysis of FcepsilonRI-induced gene expression suggested potential defects in lipid metabolism, eicosanoid and glutathione metabolism, and cytokine production. Biochemical analysis of these responses revealed that Fyn-deficient mast cells failed to secrete the inflammatory eicosanoid products leukotrienes B4 and C4, the cytokines IL-6 and TNF, and chemokines CCL2 (MCP-1) and CCL4 (MIP-1beta). FcepsilonRI-induced generation of arachidonic acid and normal induction of cytokine mRNA were defective. Defects in JNK and p38 MAPK activation were observed, whereas ERK1/2 and cytosolic phospholipase A2 (S505) phosphorylation was normal. Pharmacological studies revealed that JNK activity was associated with generation of arachidonic acid. FcepsilonRI-mediated activation of IkappaB kinase beta and IkappaBalpha phosphorylation and degradation was defective resulting in a marked decrease of the nuclear NF-kappaB DNA binding activity that drives IL-6 and TNF production in mast cells. However, not all cytokine were affected, as IL-13 production and secretion was enhanced. These studies reveal a major positive role for Fyn kinase in multiple mast cell inflammatory responses and demonstrate a selective negative regulatory role for certain cytokines.  相似文献   

13.
Inflammation in the tumor microenvironment is now recognized as one of the hallmarks of cancer. Endogenously produced lipid autacoids, locally acting small molecule lipid mediators, play a central role in inflammation and tissue homeostasis, and have recently been implicated in cancer. A well-studied group of autacoid mediators that are the products of arachidonic acid metabolism include: the prostaglandins, leukotrienes, lipoxins and cytochrome P450 (CYP) derived bioactive products. These lipid mediators are collectively referred to as eicosanoids and are generated by distinct enzymatic systems initiated by cyclooxygenases (COX 1 and 2), lipoxygenases (5-LOX, 12-LOX, 15-LOXa, 15-LOXb), and cytochrome P450s, respectively. These pathways are the target of approved drugs for the treatment of inflammation, pain, asthma, allergies, and cardiovascular disorders. Beyond their potent anti-inflammatory and anti-cancer effects, non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 specific inhibitors have been evaluated in both preclinical tumor models and clinical trials. Eicosanoid biosynthesis and actions can also be directly influenced by nutrients in the diet, as evidenced by the emerging role of omega-3 fatty acids in cancer prevention and treatment. Most research dedicated to using eicosanoids to inhibit tumor-associated inflammation has focused on the COX and LOX pathways. Novel experimental approaches that demonstrate the anti-tumor effects of inhibiting cancer-associated inflammation currently include: eicosanoid receptor antagonism, overexpression of eicosanoid metabolizing enzymes, and the use of endogenous anti-inflammatory lipid mediators. Here we review the actions of eicosanoids on inflammation in the context of tumorigenesis. Eicosanoids may represent a missing link between inflammation and cancer and thus could serve as therapeutic target(s) for inhibiting tumor growth.  相似文献   

14.
The products of arachidonic acid metabolism are key mediators of inflammatory responses in the central nervous system, and yet we do not know the mechanisms of their regulation. The phospholipase A(2) enzymes are sources of cellular arachidonic acid, and the enzymes cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) are essential for the synthesis of inflammatory PGE(2) in the brain. These studies seek to determine the function of cytosolic phospholipase A(2)alpha (cPLA(2)alpha) in inflammatory PGE(2) production in the brain. We wondered whether cPLA(2)alpha functions in inflammation to produce arachidonic acid or to modulate levels of COX-2 or mPGES-1. We investigated these questions in the brains of wild-type mice and mice deficient in cPLA(2)alpha (cPLA(2)alpha(-/-)) after systemic administration of LPS. cPLA(2)alpha(-/-) mice had significantly less brain COX-2 mRNA and protein expression in response to LPS than wild-type mice. The reduction in COX-2 was most apparent in the cells of the cerebral blood vessels and the leptomeninges. The brain PGE(2) concentration of untreated cPLA(2)alpha(-/-) mice was equal to their wild-type littermates. After LPS treatment, however, the brain concentration of PGE(2) was significantly less in cPLA(2)alpha(-/-) than in cPLA(2)alpha(+/+) mice (24.4 +/- 3.8 vs. 49.3 +/- 11.6 ng/g). In contrast to COX-2, mPGES-1 RNA levels increased equally in both mouse genotypes, and mPGES-1 protein was unaltered 6 h after LPS. We conclude that cPLA(2)alpha regulates COX-2 levels and modulates inflammatory PGE(2) levels. These results indicate that cPLA(2)alpha inhibition is a novel anti-inflammatory strategy that modulates, but does not completely prevent, eicosanoid responses.  相似文献   

15.
A major part of the proinflammatory activity of tumor necrosis factor (TNF) is brought about by cytosolic phospholipase A(2) (cPLA(2)) that generates arachidonic acid, the precursor for the production of leukotrienes and prostaglandins. The activation of cPLA(2) and induction of proinflammatory lipid mediators is in striking contrast to the teleologic meaning of apoptosis, which is to avoid an inflammatory reaction. In this review we highlight the evidence for a caspase-mediated cleavage and inactivation of cPLA(2), which seems to be an important mechanism by which TNF downregulates cPLA(2) activity in cells undergoing apoptosis.  相似文献   

16.
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) is a rate-limiting key enzyme that releases arachidonic acid (AA) from membrane phospholipid for the production of biologically active lipid mediators including prostaglandins, leukotrienes and platelet-activating factor. cPLA(2)alpha is translocated to nuclear envelope in response to intracellular calcium increase and the enzyme is also present inside the cell nucleus; however, the biological function of cPLA(2)alpha in the nucleus remains unknown. Here we show a novel role of cPLA(2)alpha for activation of peroxisome proliferator-activated receptor-delta (PPARdelta) and beta-catenin in the nuclei. Overexpression of cPLA(2)alpha in human cholangiocarcinoma cells induced the binding of PPARdelta to beta-catenin and increased their association with the TCF/LEF response element. These effects are inhibited by the cPLA(2)alpha siRNA and inhibitors as well as by siRNA knockdown of PPARdelta. Overexpression of PPARdelta or treatment with the selective PPARdelta ligand, GW501516, also increased beta-catenin binding to TCF/LEF response element and increased its reporter activity. Addition of AA and GW501516 to nuclear extracts induced a comparable degree of beta-catenin binding to TCF/LEF response element. Furthermore, cPLA(2)alpha protein is present in the PPARdelta and beta-catenin binding complex. Thus the close proximity between cPLA(2)alpha and PPARdelta provides a unique advantage for their efficient functional coupling in the nucleus, where AA produced by cPLA(2)alpha becomes immediately available for PPARdelta binding and subsequent beta-catenin activation. These results depict a novel interaction linking cPLA(2)alpha, PPARdelta and Wnt/beta-catenin signaling pathways and provide insight for further understanding the roles of these key molecules in human cells and diseases.  相似文献   

17.
The regulated generation of prostaglandins from endothelial cells is critical to vascular function. Here we identify a novel mechanism for the regulation of endothelial cell prostaglandin generation. Cytosolic phospholipase A(2)-alpha (cPLA(2)alpha) cleaves phospholipids in a Ca(2+)-dependent manner to yield free arachidonic acid and lysophospholipid. Arachidonic acid is then converted into prostaglandins by the action of cyclooxygenase enzymes and downstream synthases. By previously undefined mechanisms, nonconfluent endothelial cells generate greater levels of prostaglandins than confluent cells. Here we demonstrate that Ca(2+)-independent association of cPLA(2)alpha with the Golgi apparatus of confluent endothelial cells correlates with decreased prostaglandin synthesis. Golgi association blocks arachidonic acid release and prevents functional coupling between cPLA(2)alpha and COX-mediated prostaglandin synthesis. When inactivated at the Golgi apparatus of confluent endothelial cells, cPLA(2)alpha is associated with the phospholipid-binding protein annexin A1. Furthermore, the siRNA-mediated knockdown of endogenous annexin A1 significantly reverses the inhibitory effect of confluence on endothelial cell prostaglandin generation. Thus the confluence-dependent interaction of cPLA(2)alpha and annexin A1 at the Golgi acts as a novel molecular switch controlling cPLA(2)alpha activity and endothelial cell prostaglandin generation.  相似文献   

18.
Considerable progress has been made in characterizing the individual participant enzymes and their relative contributions in the generation of eicosanoids, lipid mediators derived from arachidonic acid, such as prostaglandins and leukotrienes. However, the role of individual phospholipase (PL) A(2) enzymes in providing arachidonic acid to the downstream enzymes for eicosanoid generation in biologic processes has not been fully elucidated. In this review, we will provide an overview of the classification of the families of PLA(2) enzymes, their putative mechanisms of action, and their role(s) in eicosanoid generation and inflammation.  相似文献   

19.
Autophagy delivers cytoplasmic constituents to autophagosomes and is involved in innate and adaptive immunity. Cytosolic phospholipase (cPLA(2))-initiated proinflammatory lipid mediator pathways play a critical role in host defense and inflammation. The crosstalk between the two pathways remains unclear. In this study, we report that cPLA(2) and its metabolite lipid mediators induced autophagy in the RAW246.7 macrophage cell line and in primary monocytes. IFN-γ-triggered autophagy involves activation of cPLA(2). Cysteinyl leukotrienes D(4) and E(4) and PGD(2) also induced these effects. The autophagy is independent of changes in mTOR or autophagic flux. cPLA(2) and lipid mediator-induced autophagy is ATG5 dependent. These data suggest that lipid mediators play a role in the regulation of autophagy, demonstrating a connection between the two seemingly separate innate immune responses, induction of autophagy and lipid mediator generation.  相似文献   

20.
Phospholipase A2(s) (PLA2(s)) are a family of enzymes that is present in a variety of mammalian and nonmammalian sources. Phagocytic cells contain cytosolic PLA2 (cPLA2) as well as several types of secreted PLA2, all of which have the potential to produce proinflammatory lipid mediators. The role of the predominant form of cPLA2 present in neutrophils is cPLA2alpha was studied by many groups. By modulating its expression in a variety of phagocytes it was found that it plays a major role in formation of eicosanoids. In addition, it was reported that cPLA2alpha also regulates the NADPH oxidase activation. The specificity of its effect on the NADPH oxidase is evident by results demonstrating that the differentiation process as well as other phagocytic functions are normal in cPLA2alpha-deficient PLB cell model. The novel dual subcellular localization of cPLA2alpha in different compartments, in the plasma membranes and in the nucleus, provides a molecular mechanism for the participation of cPLA2alpha in different processes (stimulation of NADPH oxidase and formation of eicosanoids) in the same cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号