首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) is a critical regulator of collagenase-1 production in rheumatoid arthritis (RA). The MAPKs are regulated by upstream kinases, including MAPK kinases (MAPKKs) and MAPK kinase kinases (MAP3Ks). The present study was designed to evaluate the expression and regulation of the JNK pathway by MAP3K in arthritis. RT-PCR studies of MAP3K gene expression in RA and osteoarthritis synovial tissue demonstrated mitogen-activated protein kinase/ERK kinase kinase (MEKK) 1, MEKK2, apoptosis-signal regulating kinase-1, TGF-beta activated kinase 1 (TAK1) gene expression while only trace amounts of MEKK3, MEKK4, and MLK3 mRNA were detected. Western blot analysis demonstrated immunoreactive MEKK2, TAK1, and trace amounts of MEKK3 but not MEKK1 or apoptosis-signal regulating kinase-1. Analysis of MAP3K mRNA in cultured fibroblast-like synoviocytes (FLS) showed that all of the MAP3Ks examined were expressed. Western blot analysis of FLS demonstrated that MEKK1, MEKK2, and TAK1 were readily detectable and were subsequently the focus of functional studies. In vitro kinase assays using MEKK2 immunoprecipitates demonstrated that IL-1 increased MEKK2-mediated phosphorylation of the key MAPKKs that activate JNK (MAPK kinase (MKK)4 and MKK7). Furthermore, MEKK2 immunoprecipitates activated c-Jun in an IL-1 dependent manner and this activity was inhibited by the selective JNK inhibitor SP600125. Of interest, MEKK1 immunoprecipitates from IL-1-stimulated FLS appeared to activate c-Jun through the JNK pathway and TAK1 activation of c-Jun was dependent on JNK, ERK, and p38. These data indicate that MEKK2 is a potent activator of the JNK pathway in FLS and that signal complexes including MEKK2, MKK4, MKK7, and/or JNK are potential therapeutic targets in RA.  相似文献   

2.
3.
4.
c-Jun N-terminal kinase (JNK) contributes to metalloproteinase (MMP) gene expression and joint destruction in inflammatory arthritis. It is phosphorylated by at least two upstream kinases, the mitogen-activated protein kinase kinases (MEK) MKK4 and MKK7, which are, in turn, phosphorylated by MEK kinases (MEKKs). However, the MEKKs that are most relevant to JNK activation in synoviocytes have not been determined. These studies were designed to assess the hierarchy of upstream MEKKs, MEKK1, MEKK2, MEKK3, and transforming growth factor-β activated kinase (TAK)1, in rheumatoid arthritis (RA). Using either small interfering RNA (siRNA) knockdown or knockout fibroblast-like synoviocytes (FLSs), MEKK1, MEKK2, or MEKK3 deficiency (either alone or in combination) had no effect on IL-1β-stimulated phospho-JNK (P-JNK) induction or MMP expression. However, TAK1 deficiency significantly decreased P-JNK, P-MKK4 and P-MKK7 induction compared with scrambled control. TAK1 knockdown did not affect p38 activation. Kinase assays showed that TAK1 siRNA significantly suppressed JNK kinase function. In addition, MKK4 and MKK7 kinase activity were significantly decreased in TAK1 deficient FLSs. Electrophoretic mobility shift assays demonstrated a significant decrease in IL-1β induced AP-1 activation due to TAK1 knockdown. Quantitative PCR showed that TAK1 deficiency significantly decreased IL-1β-induced MMP3 gene expression and IL-6 protein expression. These results show that TAK1 is a critical pathway for IL-1β-induced activation of JNK and JNK-regulated gene expression in FLSs. In contrast to other cell lineages, MEKK1, MEKK2, and MEKK3 did not contribute to JNK phosphorylation in FLSs. The data identify TAK1 as a pivotal upstream kinase and potential therapeutic target to modulate synoviocyte activation in RA.  相似文献   

5.
The c-Jun N-terminal kinases (JNKs) are activated in response to stress, DNA damage, and cytokines by MKK4 and MKK7. We recently demonstrated that PKC can augment the degree of JNK activation by phosphorylating JNK, which requires the adaptor protein RACK1. Here we report on the conditions required for PKC-dependent JNK activation. In vitro kinase assays reveal that PKC phosphorylation of JNK is not sufficient for its activation but rather augments JNK activation by canonical JNK upstream kinases MKK4 or MKK7 alone or in combination. Further, to enhance JNK activity, PKC phosphorylation of JNK should precede its phosphorylation by MKK4/7. Inhibition of PKC phosphorylation of JNK affects both early and late phases of JNK activation following UV-irradiation and reduces the apoptotic response mediated by JNK. These data provide important insight into the requirements for PKC activation of JNK signaling.  相似文献   

6.
Docking interactions in the c-Jun N-terminal kinase pathway   总被引:7,自引:0,他引:7  
The c-Jun N-terminal kinase (JNK) signaling pathway is a major mediator of stress responses in cells. Similar to other mitogen-activated protein kinases (MAPKs), JNK activity is controlled by a cascade of protein kinases and by protein phosphatases, including dual-specificity MAPK phosphatases. Components of the JNK pathway associate with scaffold proteins that modulate their activities and cellular localization. The JNK-interacting protein-1 (JIP-1) scaffold protein specifically binds JNK, MAPK kinase 7 (MKK7), and members of the mixed lineage kinase (MLK) family, and regulates JNK activation in neurons. In this study we demonstrate that distinct regions within the N termini of MKK7 and the MLK family member dual leucine zipper kinase (DLK) mediate their binding to JIP-1. We have also identified amino acids in JNK required for: (a) binding to JIP-1 and for JIP-1-mediated JNK activation, (b) docking to MAPK kinase 4 (MKK4) and efficient phosphorylation by MKK4, and (c) docking to its substrate c-Jun and efficient c-Jun phosphorylation. None of the amino acids identified were essential for JNK docking to MKK7 or the dual-specificity phosphatase MAPK phosphatase 7 (MKP7). These findings uncover molecular determinants of JIP-1 scaffold complex assembly and demonstrate that there are overlapping, but also distinct, binding determinants within JNK that mediate interactions with scaffold proteins, activators, phosphatases, and substrates.  相似文献   

7.
8.
9.

Introduction

The c-Jun N-terminal kinase (JNK) is a key regulator of matrix metalloproteinase (MMP) and cytokine production in rheumatoid arthritis (RA) and JNK deficiency markedly protects mice in animal models of arthritis. Cytokine-induced JNK activation is strictly dependent on the mitogen-activated protein kinase kinase 7 (MKK7) in fibroblast-like synoviocytes (FLS). Therefore, we evaluated whether targeting MKK7 using anti-sense oligonucleotides (ASO) would decrease JNK activation and severity in K/BxN serum transfer arthritis.

Methods

Three 2''-O-methoxyethyl chimeric ASOs for MKK7 and control ASO were injected intravenously in normal C57BL/6 mice. PBS, control ASO or MKK7 ASO was injected from Day -8 to Day 10 in the passive K/BxN model. Ankle histology was evaluated using a semi-quantitative scoring system. Expression of MKK7 and JNK pathways was evaluated by quantitative PCR and Western blot analysis.

Results

MKK7 ASO decreased MKK7 mRNA and protein levels in ankles by about 40% in normal mice within three days. There was no effect of control ASO on MKK7 expression and MKK7 ASO did not affect MKK3, MKK4 or MKK6. Mice injected with MKK7 ASO had significantly less severe arthritis compared with control ASO (P < 0.01). Histologic evidence of synovial inflammation, bone erosion and cartilage damage was reduced in MKK7 ASO-treated mice (P < 0.01). MKK7 deficiency decreased phospho-JNK and phospho-c-Jun in ankle extracts (P < 0.05), but not phospho-MKK4. Interleukin-1beta (IL-1β), MMP3 and MMP13 gene expression in ankle joints were decreased by MKK7 ASO (P < 0.01).

Conclusions

MKK7 plays a critical regulatory role in the JNK pathway in a murine model of arthritis. Targeting MKK7 rather than JNK could provide site and event specificity when treating synovitis.  相似文献   

10.
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) family, plays an important role in a stress-induced signaling cascade. SAPK/JNK activation requires the phosphorylation of Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 (MKK4) and MKK7 (SEK2) have been identified as the upstream MAPK kinases. Here we examined the activation and phosphorylation sites of SAPK/JNK and differentiated the contribution of SEK1 and MKK7alpha1, -gamma1, and -gamma2 isoforms to the MAPK activation. In SEK1-deficient mouse embryonic stem cells, stress-induced SAPK/JNK activation was markedly impaired, and this defect was accompanied with a decreased level of the Tyr phosphorylation. Analysis in HeLa cells co-transfected with the two MAPK kinases revealed that the Thr and Tyr of SAPK/JNK were independently phosphorylated in response to heat shock by MKK7gamma1 and SEK1, respectively. However, MKK7alpha1 failed to phosphorylate the Thr of SAPK/JNK unless its Tyr residue was phosphorylated by SEK1. In contrast, MKK7gamma2 had the ability to phosphorylate both Thr and Tyr residues. In all cases, the dual phosphorylation of the Thr and Tyr residues was essentially required for the full activation of SAPK/JNK. These data provide the first evidence that synergistic activation of SAPK/JNK requires both phosphorylation at the Thr and Tyr residues in living cells and that the preference for the Thr and Tyr phosphorylation was different among the members of MAPK kinases.  相似文献   

11.
Non-visual arrestins scaffold mitogen-activated protein kinase (MAPK) cascades. The c-Jun N-terminal kinases (JNKs) are members of MAPK family. Arrestin-3 has been shown to enhance the activation of JNK3, which is expressed mainly in neurons, heart, and testes, in contrast to ubiquitous JNK1 and JNK2. Although all JNKs are activated by MKK4 and MKK7, both of which bind arrestin-3, the ability of arrestin-3 to facilitate the activation of JNK1 and JNK2 has never been reported. Using purified proteins we found that arrestin-3 directly binds JNK1α1 and JNK2α2, interacting with the latter comparably to JNK3α2. Phosphorylation of purified JNK1α1 and JNK2α2 by MKK4 or MKK7 is increased by arrestin-3. Endogenous arrestin-3 interacted with endogenous JNK1/2 in different cell types. Arrestin-3 also enhanced phosphorylation of endogenous JNK1/2 in intact cells upon expression of upstream kinases ASK1, MKK4, or MKK7. We observed a biphasic effect of arrestin-3 concentrations on phosphorylation of JNK1α1 and JNK2α2 both in vitro and in vivo. Thus, arrestin-3 acts as a scaffold, facilitating JNK1α1 and JNK2α2 phosphorylation by MKK4 and MKK7 via bringing JNKs and their activators together. The data suggest that arrestin-3 modulates the activity of ubiquitous JNK1 and JNK2 in non-neuronal cells, impacting the signaling pathway that regulates their proliferation and survival.  相似文献   

12.
Toll-like receptors (TLRs) recognise specific molecular signatures of pathogens and trigger antimicrobial defence responses. Thereby, two independent signalling pathways can be distinguished: The inflammatory signalling pathway acting via the adapter molecule MyD88, leading to the activation of nuclear factor-κB (NF-κB) and mitogen activated protein kinases (MAPK) such as SAPK/JNK and p38 MAPK and the interferon (IFN) dependent pathway that signals via TRIF and results in the production of IFN-α/β. Several evolutionarily conserved molecular patterns are expressed by pathogens, leading to the question if concerted targeting of different TLRs may induce exaggerated immune responses by signalling via both TLR pathways. Here we report that monocyte-derived dendritic cells (MoDCs) combine and integrate signals received via the IFN-dependent pathway by engagement of TLR3 (poly I:C) and activation of TRIF with the MyD88-dependent pathway by ligation of TLR2 (PGN), TLR2/TLR6 (zymosan) and TLR5 (flagellin). The generally low IL-12p70 inducers resulted in combination of both pathways in cytokine levels similar to LPS, which acts via TLR4 and induces recruitment of MyD88/Tirap and TRIF/TRAM adapter proteins. The combination of TLR3 (poly I:C) or TLR4 (LPS) engagement with TLR8 (R848) ligation induced synergistic effects on cytokine production with a boost especially in IL-12p70 secretion. SB203580, a specific p38 MAPK inhibitor, completely blocked TLR ligand mediated IL-12p70 secretion, whereby specific inhibitors for SAPK/JNK (SP600125) and NF-κB (PDTC) only repressed partially the IL-12p70 secretion. Enhanced phosphorylation in poly I:C and R848 activated MoDCs revealed the critical contribution of p38 MAPK in synergistically induced IL-12p70 induction. Further investigation of primary and recall CD8+ T cell responses to the MUC12-20 M1.2 peptide LLLLTVLTV and the influenza A virus matrix58-66 peptide GILGFVFTL proved that synergistically activated MoDCs were superior compared with LPS or R848 alone. The results indicate that dendritic cells process, combine and integrate signals delivered by pathogens to launch effective adaptive immune responses.  相似文献   

13.
The mechanisms by which lipopolysaccharide (LPS) is recognized, and how such recognition leads to innate immune responses, are poorly understood. Stimulation with LPS induces the activation of a variety of proteins, including mitogen-activated protein kinases (MAPKs) and NF-B. Activation of protein tyrosine kinases (PTKs) is also necessary for a number of biological responses to LPS. We used a murine macrophage-like cell line, RAW264.7, to demonstrate that Janus kinase (JAK)2 is tyrosine phosphorylated immediately after LPS stimulation. Anti-Toll-like receptor (TLR)4 neutralization antibody inhibits the phosphorylation of JAK2 and the c-Jun NH2-terminal protein kinase (JNK). Both the JAK inhibitor AG490 and the kinase-deficient JAK2 protein reduce the phosphorylation of JNK and phosphatidylinositol 3-kinase (PI3K) via LPS stimulation. Pharmacological inhibition of the kinase activity of PI3K with LY-294002 decreases the phosphorylation of JNK. Finally, we show that JAK2 is involved in the production of IL-1 and IL-6. PI3K and JNK are also important for the production of IL-1. These results suggest that LPS induces tyrosine phosphorylation of JAK2 via TLR4 and that JAK2 regulates phosphorylation of JNK mainly through activation of PI3K. Phosphorylation of JAK2 via LPS stimulation is important for the production of IL-1 via the PI3K/JNK cascade. Thus JAK2 plays a pivotal role in LPS-induced signaling in macrophages. cytokine; toll-like receptor-4; c-Jun NH2-terminal kinase  相似文献   

14.
c-Jun NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase (MAPK) involved in the regulation of numerous physiological processes during development and in response to stress. Its activity is increased upon phosphorylation by the MAPK kinases, MKK4 and MKK7. Similar to the early embryonic death of mice caused by the targeted deletion of the jnk genes, mice lacking mkk4 or mkk7 die before birth. The inability of MKK4 and MKK7 to compensate for each other's functions in vivo is consistent with their synergistic effect in mediating JNK activation. However, the phenotypic analysis of the mutant mouse embryos indicates that MKK4 and MKK7 have specific roles that may be due to their selective regulation by extracellular stimuli and their distinct tissue distribution. MKK4 and MKK7 also have different biochemical properties. For example, whereas MKK4 can activate p38 MAPK, MKK7 functions as a specific activator of JNK. Here we summarize the studies that have shed light on the mechanism of activation of MKK4 and MKK7 and on their physiological functions.  相似文献   

15.
The functions of mitogen-activated protein kinases (MKKs) 4 and 7 are typically associated with the c-Jun N-terminal kinase (JNK) signaling pathway. Both MKKs synergistically phosphorylate different JNK isoforms and are therefore involved in numerous physiological (e.g. differentiation and proliferation) and pathological (e.g. apoptosis and tumorigenesis) processes. MKK4 and MKK7 share similar molecular characteristics as well as several upstream activators and scaffold proteins. However, their functions are non-redundant and determined by different stimuli, biochemical interactions and differential tissue distribution. The central question is how two MKKs regulate or affect the multiple actions of their JNK substrates. Similar to JNKs, MKK4 and MKK7 can simultaneously exert divergent functions in different cellular compartments and signalosomes. It is also important to realize that the MKK effects are splice variant-specific. The present review not only summarizes the various modes of MKK4 and MKK7 activation and activity, but also their functions. We also extensively describe their impact on JNK signaling, their molecular interactions resulting in the formation of context-specific signalosomes and the functional consequences of JNK deficiency.  相似文献   

16.
17.
c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is involved in the regulation of various cellular functions including cell cycle, proliferation, apoptosis. However, whether JNK/SAPK directly regulates the angiogenesis of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor A (VEGFA) has not yet been fully elucidated. Our present study firstly demonstrated VEGFA-induced angiogenic responses including the increase of cell viability, migration, and tube formation with a concentration-dependent manner in HUVECs. Further results showed that VEGFA induced the activation of JNK/SAPK, p38 kinase and extracellular signal-regulated kinases 1 and 2 (ERK1/2), while JNK/SAPK inhibitor SP600125 and specific siRNA both blocked all those angiogenic effects induced by VEGFA. Furthermore, VEGFA induced the phosphorylation of ASK1, SEK1/MKK4, MKK7, and c-Jun, which are upstream or downstream signals of JNK/SAPK. In addition, in vivo matrigel plug assay further showed that SP600125 inhibited VEGFA-induced angiogenesis. Further results showed that SP600125 and JNK/SAPK siRNA decreased VEGFA-induced VEGFR2 (Flk-1/KDR) sustained phosphorylation in HUVECs. Taken together, all these results demonstrate that JNK/SAPK regulates VEGFA-induced VEGFR2 sustained phosphorylation, which plays important roles in VEGFA-induced angiogenesis in HUVECs.  相似文献   

18.
The role of protein kinases p38 and CK2 (casein kinase II) in the response of RAW 264.7 macrophages to the lipopolysaccharide (LPS) from gram-negative bacteria was studied. Using specific p38 and CK2 inhibitors (p38 MAP kinase Inhibitor XI and casein kinase II Inhibitor III, respectively), we investigated the effects of these protein kinases on (i) LPS-induced activation of signaling pathways involving nuclear factor κB (NF-κB), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38, and interferon regulatory factor 3 (IRF3); (ii) expression of Toll-like receptor 4 (TLR4) and inducible heat-shock proteins HSP72 and HSP90; and (iii) production of interleukins IL-1α, IL-1β, IL-6, tumor necrosis factor α, and IL-10. Activation of the proapoptotic signaling in the macrophages was evaluated from the ratio between the active and inactive caspase-3 forms and p53 phosphorylation. Six hours after LPS addition (2.5 μg/ml) to RAW 264.7 cells, activation of the TLR4 signaling pathways was observed that was accompanied by a significant increase in phosphorylation of IκB kinase α/β, NF-κB (at both Ser536 and Ser276), p38, JNK, and IRF3. Other effects of macrophage incubation with LPS were an increase in the contents of TLR4, inducible heat-shock proteins (HSPs), and pro- and anti-inflammatory cytokines, as well as slight activation of the pro-apoptotic signaling in the cells. Using inhibitor analysis, we found that during the early response of macrophages to the LPS, both CK2 and p38 modulate activation of MAP kinase and NF-κB signaling pathways and p65 phosphorylation at Ser276/Ser536 and cause accumulation of HSP72, HSP90 and the LPS-recognizing receptor TLR4. Suppression of the p38 MAP kinase and CK2 activities by specific inhibitors (Inhibitor XI and Inhibitor III, respectively) resulted in the impairment of the macrophage effector function manifested as a decrease in the production of the early-response proinflammatory cytokines and disbalance between the pro- and anti-apoptotic signaling pathways leading presumably to apoptosis development. Taken together, our data indicate the inefficiency of therapeutic application of p38 and CK2 inhibitors during the early stages of inflammatory response.  相似文献   

19.
The c-Jun N-terminal kinases (JNKs) are encoded by three genes that yield 10 isoforms through alternative mRNA splicing. The roles of each JNK isoform in the many putative biological responses where the JNK pathway is activated are still unclear. To examine the cellular responses mediated by different JNK isoforms, gain-of-function JNK1 polypeptides were generated by fusing the upstream mitogen-activated protein kinase kinase, MKK7, with p46JNK1alpha or p46JNK1beta. The MKK7-JNK fusion proteins, which exhibited constitutive activity in 293T cells, were stably expressed in Swiss 3T3 fibroblasts using retrovirus-mediated gene transfer. Swiss 3T3 cells expressing either of the MKK7-JNK polypeptides were equally sensitized to induction of cell death following serum withdrawal. To search for other cellular responses that may be selectively regulated by the JNK1 isoforms, the gene expression profiles of Swiss 3T3 cells expressing MKK7-JNK1alpha or MKK7-JNK1beta were compared with empty vector-transfected control cells. Affymetrix Genechips identified 46 genes for which expression was increased in MKK7-JNK-expressing cells relative to vector control cells. Twenty genes including those for c-Jun, MKP-7, interluekin-1 receptor family member ST2L/ST2, and c-Jun-binding protein were induced similarly by MKK7-JNK1alpha and MKK7-JNK1beta proteins, whereas 13 genes were selectively increased by MKK7-JNK1alpha and 13 genes were selectively increased by MKK7-JNK1beta. The set of genes selectively induced by MKK7-JNK1beta included a number of known interferon-stimulated genes (ISG12, ISG15, IGTP, and GTPI). Consistent with these gene expression changes, Swiss 3T3 cells expressing MKK7-JNK1beta exhibited increased resistance to vesicular stomatitis virus-induced cell death. These findings reveal evidence for JNK isoform-selective gene regulation and support a role for distinct JNK isoforms in specific cellular responses.  相似文献   

20.
JNK3 alpha 1 is predominantly a neuronal specific MAP kinase that is believed to require, like all MAP kinases, both threonine and tyrosine phosphorylation for maximal enzyme activity. In this study we investigated the in vitro activation of JNK3 alpha 1 by MAP kinase kinase 4 (MKK4), MAP kinase kinase 7 (MKK7), and the combination of MKK4 + MKK7. Mass spectral analysis showed that MKK7 was capable of monophosphorylating JNK3 alpha 1 in vitro, whereas both MKK4 and MKK7 were required for bisphosphorylation and maximal enzyme activity. Measuring catalysis under Vmax conditions showed MKK4 + MKK7-activated JNK3 alpha 1 had Vmax 715-fold greater than nonactivated JNK3 alpha 1 and MKK7-activated JNK3 alpha 1 had Vmax 250-fold greater than nonactivated JNK3 alpha 1. In contrast, MKK4-activated JNK3 alpha 1 had no increase in Vmax compared to nonactivated levels and had no phosphorylation on the basis of mass spectrometry. These data suggest that MKK7 was largely responsible for JNK3 alpha 1 activation and that a single threonine phosphorylation may be all that is needed for JNK3 alpha 1 to be active. The steady-state rate constants kcat, Km(GST-ATF2++), and Km(ATP) for both monophosphorylated and bisphosphorylated JNK3 alpha 1 were within 2-fold between the two enzyme forms, suggesting the addition of tyrosine phosphorylation does not affect the binding of ATF2, ATP, or maximal turnover. Finally, the MAP kinase inhibitor, SB203580, had an IC50 value approximately 4-fold more potent on the monophosphorylated JNK3 alpha 1 compared to the bisphosphorylated JNK3 alpha 1, suggesting only a modest effect of tyrosine phosphorylation on inhibitor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号