首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Aspirin (ASA) inhibits cycloxygenase-1 and modifies cycloxygenase-2 (COX2) by acetylation at Ser(530), leading to a shift from production of PGH(2), the precursor of prostaglandin, to 15-R-HETE which is converted by 5-lipoxygenase to 15-epi-lipoxin A(4) (15-epi-LXA4), a potent anti-inflammatory mediator. Both atorvastatin (ATV) and pioglitazone (PIO) increase COX2 expression. ATV activates COX2 by S-nitrosylation at Cys(526) to produce 15-epi-LXA4 and 6-keto-PGF(1alpha) (the stable metabolite of PGI(2)). We assessed the effect of ASA on the myocardial production of 15-epi-LXA4 and PGI(2) after induction by lipopolysaccharide (LPS) or PIO+ATV. Sprague-Dawley rats were pretreated with: control; ASA 10 mg/kg; ASA 50 mg/kg; LPS alone; LPS+ASA 10 mg/kg; LPS+ASA 50 mg/kg; LPS+ASA 200 mg/kg; PIO (10 mg/kg/d)+ATV (10 mg/kg/d); PIO+ATV+ASA 10 mg/kg; PIO+ATV+ASA 50 mg/kg; PIO+ATV+ASA 50 mg/kg+1400 W, a specific iNOS inhibitor; or PIO+ATV+1400 W. ASA alone had no effect on myocardial 15-epi-LXA4. LPS increased 15-epi-LXA4 and 6-keto-PGF(1alpha) levels. ASA (50 mg/kg and 200 mg/kg, but not 10 mg/kg) augmented the LPS effect on 15-epi-LXA4 but attenuated the effect on 6-keto-PGF(1alpha). PIO+ATV increased 15-epi-LXA4 and 6-keto-PGF(1alpha) levels. ASA and 1400 W attenuated the effects of PIO+ATV on 15-epi-LXA4 and 6-keto-PGF(1alpha). However, when both ASA and 1400 W were administered with PIO+ATV, there was a marked increase in 15-epi-LXA4, whereas the production of 6-keto-PGF(1alpha) was attenuated. In conclusion, COX2 acetylation by ASA shifts enzyme from producing 6-keto-PGF(1alpha) to 15-epi-LXA4. In contrast, S-nitrosylation by PIO+ASA augments the production of both 15-epi-LXA4 and 6-keto-PGF(1alpha). However, when COX2 is both acetylated and S-nitrosylated, it is inactivated. We suggest potential adverse interactions among statins, thiazolidinediones, and high-dose ASA.  相似文献   

2.
Cytosolic phospholipase A(2)α (cPLA(2)α) up-regulation has been reported in human colorectal cancer cells, thus we aimed to elucidate its role in the proliferation of the human colorectal cancer cell line, HT-29. EGF caused a rapid activation of cPLA(2)α which coincided with a significant increase in cell proliferation. The inhibition of cPLA(2)α activity by pyrrophenone or by antisense oligonucleotide against cPLA(2)α (AS) or inhibition of prostaglandin E(2) (PGE(2)) production by indomethacin resulted with inhibition of cell proliferation, that was restored by addition of PGE(2). The secreted PGE(2) activated both protein kinase A (PKA) and PKB/Akt pathways via the EP2 and EP4 receptors. Either, the PKA inhibitor (H-89) or the PKB/Akt inhibitor (Ly294002) caused a partial inhibition of cell proliferation which was restored by PGE(2). But, inhibited proliferation in the presence of both inhibitors could not be restored by addition of PGE(2). AS or H-89, but not Ly294002, inhibited CREB activation, suggesting that CREB activation is mediated by PKA. AS or Ly294002, but not H-89, decreased PKB/Akt activation as well as the nuclear localization of β-catenin and cyclin D1 and increased the plasma membrane localization of β-catenin with E-cadherin, suggesting that these processes are regulated by the PKB pathway. Similarly, Caco-2 cells exhibited cPLA(2)α dependent proliferation via activation of both PKA and PKB/Akt pathways. In conclusion, our findings suggest that the regulation of HT-29 proliferation is mediated by cPLA(2)α-dependent PGE(2) production. PGE(2)via EP induces CREB phosphorylation by the PKA pathway and regulates β-catenin and cyclin D1 cellular localization by PKB/Akt pathway.  相似文献   

3.
4.
Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Several other proteins, including cPLA2a (cytosolic phospholipase A2a) and FLAP (5-LO-activating protein) also assemble at the perinuclear region before production of LTA4. LTC4 synthase is an integral membrane protein that is present at the nuclear envelope; however, LTA4 hydrolase remains cytosolic. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by b-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that forms a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a g-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease.  相似文献   

5.
Previous studies have suggested that enhancement of mediator release from human basophils by IL-3 occurs in at least two phases, and the current studies further characterize the signaling changes that accompany these two phases of the basophil in response to IL-3. The test stimulus for these studies was anaphylatoxin split product of C component (C5a), which does not induce leukotriene C4 release without prior IL-3 treatment. Functionally, IL-3 priming occurs after 5 min, disappears by 2 h, and returns by 18 h. In contrast, the kinetics of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK1/2) phosphorylation, induced by IL-3, do not show the second rise by 18 h. The kinetics of cPLA2 and ERK1/2 phosphorylation following stimulation with C5a are the same for cells that were not treated with IL-3 as for those treated for 18 h, i.e., a lag in phosphorylation of cPLA2 and ERK1/2 lasting 30 s before its eventual rise. Previous studies showed that a 5-min treatment with IL-3 induced little change in the C5a-induced cytosolic calcium response, while 24 h of treatment resulted in a marked and sustained cytosolic calcium elevation during the C5a-induced response. The first phase of the IL-3 priming effect (5-15 min of treatment) was unaffected by cycloheximide, while the second phase (18 h) was inhibited. These data suggest that early IL-3 priming results from preconditioning cPLA2, i.e., causing its phosphorylation, while late priming results from a qualitative change in the cytosolic calcium response.  相似文献   

6.
Titanium (Ti) particle is one of the prosthetic materials commonly used in implantation and has frequently been implicated in pathogenesis such as periprosthetic osteolysis. In the present study, we undertook to understand the intracellular signalling pathway stimulated by exogenous Ti at Rat-2 fibroblasts. By reporter gene analysis following transient transfections, exogenous Ti was shown to stimulate c-fos serum response element (SRE)-dependent luciferase activities in a dose-dependent manner. In addition, Ti-induced SRE activation was shown to be dramatically repressed by RacN17, a dominant negative mutant of Rac1, suggesting that Rac GTPase is essential for the signalling of Ti to c-fos SRE. Furthermore, pretreatment with MAFP, an inhibitor of cytosolic phospholipase A(2) (cPLA(2)), MK886, an inhibitor of 5-lipoxygenase (5-LO), or indomethacin, a general inhibitor of cyclooxygenase (COX), also significantly repressed Ti-induced SRE activation, suggesting mediatory roles of cPLA(2) and subsequent arachidonic acid (AA) metabolisms to leukotrienes (LTs) and prostaglandins (PGs) in the Ti signalling to c-fos SRE. Consistent with these results, intracellular levels of leukotriene B(4) (LTB(4)) and prostaglandin E(2) (PGE(2)) were Rac-dependently elevated in cells exposed to Ti particles.  相似文献   

7.
IL-5 is implicated in the pathogenesis of asthma and is predominantly released from T lymphocytes of the Th2 phenotype. In anti-CD3 plus anti-CD28-stimulated PBMC, albuterol, isoproterenol, rolipram, PGE2, forskolin, cholera toxin, and the cAMP analog, 8-bromoadenosine cAMP (8-Br-cAMP) all inhibited the release of IL-5 and lymphocyte proliferation. Although all of the above compounds share the ability to increase intracellular cAMP levels and activate protein kinase (PK) A, the PKA inhibitor H-89 failed to ablate the inhibition of IL-5 production mediated by 8-Br-cAMP, rolipram, forskolin, or PGE2. Similarly, H-89 had no effect on the cAMP-mediated inhibition of lymphocyte proliferation. Significantly, these observations occurred at a concentration of H-89 (3 microM) that inhibited both PKA activity and CREB phosphorylation in intact cells. Additional studies showed that the PKA inhibitors H-8, 8-(4-chlorophenylthio) adenosine-3',5'-cyclic monophosphorothioate Rp isomer, and a myristolated PKA inhibitor peptide also failed to block the 8-Br-cAMP-mediated inhibition of IL-5 release from PBMC. Likewise, a role for PKG was considered unlikely because both activators and inhibitors of this enzyme had no effect on IL-5 release. Western blotting identified Rap1, a downstream target of the cAMP-binding proteins, exchange protein directly activated by cAMP/cAMP-guanine nucleotide exchange factors 1 and 2, in PBMC. However, Rap1 activation assays revealed that this pathway is also unlikely to be involved in the cAMP-mediated inhibition of IL-5. Taken together, these results indicate that cAMP-elevating agents inhibit IL-5 release from PBMC by a novel cAMP-dependent mechanism that does not involve the activation of PKA.  相似文献   

8.
Human basophils secrete histamine and leukotriene C4 (LTC4) in response to various stimuli, such as Ag and the bacterial product, FMLP. IgE-mediated stimulation also results in IL-4 secretion. However, the mechanisms of these three classes of secretion are unknown in human basophils. The activation of extracellular signal-regulated kinases (ERKs; ERK-1 and ERK-2) during IgE- and FMLP-mediated stimulation of human basophils was examined. Following FMLP stimulation, histamine release preceded phosphorylation of ERKs, whereas phosphorylation of cytosolic phospholipase A2 (cPLA2), and arachidonic acid (AA) and LTC4 release followed phosphorylation of ERKs. The phosphorylation of ERKs was transient, decreasing to baseline levels after 15 min. PD98059 (MEK inhibitor) inhibited the phosphorylation of ERKs and cPLA2 without inhibition of several other tyrosine phosphorylation events, including phosphorylation of p38 MAPK. PD98059 also inhibited LTC4 generation (IC50 = approximately 2 microM), but not histamine release. Stimulation with anti-IgE Ab resulted in the phosphorylation of ERKs, which was kinetically similar to both histamine and LTC4 release and decreased toward resting levels by 30 min. Similar to FMLP, PD98059 inhibited anti-IgE-mediated LTC4 release (IC50, approximately 2 microM), with only a modest effect on histamine release and IL-4 production at higher concentrations. Taken together, these results suggest that ERKs might selectively regulate the pathway leading to LTC4 generation by phosphorylating cPLA2, but not histamine release or IL-4 production, in human basophils.  相似文献   

9.
Pioglitazone is a novel oral anti-diabetic agent belonging to the thiazolidinedione class. Pioglitazone has been shown to be effective and well tolerated in the treatment of patients with type 2 diabetes, as it reduces insulin resistance and improves glycaemic control and abnormal lipid profiles. This double-blind, randomised, placebo-controlled study was conducted for further evaluation of the efficacy and tolerability of once-daily administration of pioglitazone monotherapy alongside dietary measures in patients with type 2 diabetes. Following a 10-week washout period, 251 patients received one of three treatment regimens for 26 weeks: placebo + diet (n = 84), pioglitazone 15 mg once-daily + diet (n = 89), or pioglitazone 30 mg once-daily + diet (n = 78). Pioglitazone, both 15 and 30 mg/day, in addition to dietary control, was associated with significant reductions (vs. placebo) in mean levels of both glycosylated haemoglobin (HbA 1C ) and fasting blood glucose (FBG). HbA 1C was reduced by 0.92 % and 1.05 %, respectively, and FBG was reduced by 34.3 and 36.0 mg/dl, respectively, compared with the control group. Pioglitazone at 15 and 30 mg/day significantly reduced postprandial blood glucose levels at all visits (- 163 and - 165 mg/dl/hour, respectively) compared with an increase of 47.7 mg/dl/hour on placebo. The profile and frequency of adverse events were similar in all treatment groups. These results indicate that pioglitazone monotherapy together with dietary control is both effective and safe in patients with type 2 diabetes.  相似文献   

10.
Lipoxins (LX) are bioactive eicosanoids that can be formed during cell to cell interactions in human tissues to self limit key responses in host defense and promote resolution. Aspirin treatment initiates biosynthesis of carbon 15 epimeric LXs, and both series of epimers (LX and aspirin-triggered 15-epi-LX) display counter-regulatory actions with neutrophils. In this study, we report that synthetic lipoxin A(4) (LXA(4)) and 15-epi-LXA(4) (i.e., 15(R)-LXA(4) or aspirin-triggered LXA(4)) are essentially equipotent in inhibiting human polymorphonuclear leukocytes (PMN) in vitro chemotaxis in response to leukotriene B(4), with the maximum inhibition ( approximately 50% reduction) obtained at 1 nM LXA(4). At higher concentrations, 15-epi-LXA(4) proved more potent than LXA(4) as its corresponding carboxyl methyl ester. Also, exposure of PMN to LXA(4) and 15-epi-LXA(4) markedly decreased PMN transmigration across both human microvessel endothelial and epithelial cells, where 15-epi-LXA(4) was more active than LXA(4) at "stopping" migration across epithelial cells. Differences in potency existed between LXA(4) and 15-epi-LXA(4) as their carboxyl methyl esters appear to arise from cell type-specific conversion of their respective carboxyl methyl esters to their corresponding carboxylates as monitored by liquid chromatography tandem mass spectrometry. Both synthetic LXA(4) and 15-epi-LXA(4) as free acids activate recombinant human LXA(4) receptor (ALXR) to regulate gene expression, whereas the corresponding methyl ester of LXA(4) proved to be a partial ALXR antagonist and did not effectively regulate gene expression. These results demonstrate the potent stereospecific actions shared by LXA(4) and 15-epi-LXA(4) for activating human ALXR-regulated gene expression and their ability to inhibit human PMN migration during PMN vascular as well as mucosal cell to cell interactions.  相似文献   

11.
Syk, a 72-kDa tyrosine kinase, is involved in development, differentiation, and signal transduction of hematopoietic and some non-hematopoietic cells. This study determined if Syk is expressed in vascular smooth muscle cells (VSMC) and contributes to angiotensin II (Ang II) signaling and protein synthesis. Syk was found in VSMC and was phosphorylated by Ang II through AT1 receptor. Ang II-induced Syk phosphorylation was inhibited by piceatannol and dominant negative but not wild type Syk mutant. Syk phosphorylation by Ang II was attenuated by cytosolic phospholipase A(2) (cPLA(2)) inhibitor pyrrolidine-1 and retrovirus carrying small interfering RNAs (shRNAs) of this enzyme. Arachidonic acid (AA) increased Syk phosphorylation, and AA- and Ang II-induced phosphorylation was diminished by inhibitors of AA metabolism (5,8,11,14-eicosatetraynoic acid) and lipoxygenase (LO; baicalein) but not cyclooxygenase (indomethacin). AA metabolites formed via LO, 5(S)-, 12(S)-, and 15(S)-hydroxyeicosatetraenoic acids, which activate p38 MAPK, increased Syk phosphorylation. p38 MAPK inhibitor SB202190, and dominant negative p38 MAPK mutant attenuated Ang II- and AA-induced Syk phosphorylation. Adenovirus dominant negative c-Src mutant abolished Ang II - and AA-induced Syk phosphorylation and SB202190, and dominant negative p38 MAPK mutant inhibited Ang II-induced c-Src phosphorylation. Syk dominant negative mutant but not epidermal growth factor receptor blocker AG1478 also inhibited Ang II-induced VSMC protein synthesis. These data suggest that Syk expressed in VSMC is activated by Ang II through p38 MAPK-activated c-Src subsequent to cytosolic phospholipase A(2) and generation of AA metabolites via LO, and it mediates Ang II-induced protein synthesis independent of epidermal growth factor receptor transactivation (Ang II --> cPLA(2) --> AA metabolites of LO --> p38 MAPK --> c-Src --> Syk --> protein synthesis).  相似文献   

12.
Endothelial nitric oxide synthase (eNOS) activation with subsequent inducible NOS (iNOS), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase-2 (COX2) activation is essential to statin inhibition of myocardial infarct size (IS). In the rat, the peroxisome proliferator-activated receptor-gamma agonist pioglitazone (Pio) limits IS, upregulates and activates cPLA2 and COX2, and increases myocardial 6-keto-PGF1alpha levels without activating eNOS and iNOS. We asked whether Pio also limits IS in eNOS-/- and iNOS-/- mice. Male C57BL/6 wild-type (WT), eNOS-/-, and iNOS-/- mice received 10 mg.kg(-1).day(-1) Pio (Pio+) or water alone (Pio-) for 3 days. Mice underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts were harvested and subjected to ELISA and immunoblotting. As a result, Pio reduced IS in the WT (15.4+/-1.4% vs. 39.0+/-1.1%; P<0.001), as well as in the eNOS-/- (32.0+/-1.6% vs. 44.2+/-1.9%; P<0.001) and iNOS-/- (18.0+/-1.2% vs. 45.5+/-2.3%; P<0.001) mice. The protective effect of Pio in eNOS-/- mice was smaller than in the WT (P<0.001) and iNOS-/- (P<0.001) mice. Pio increased myocardial Ser633 and Ser1177 phosphorylated eNOS levels in the WT and iNOS-/- mice. iNOS was undetectable in all six groups. Pio increased cPLA2, COX2, and PGI2 synthase levels in the WT, as well as in the eNOS-/- and iNOS-/-, mice. Pio increased the myocardial 6-keto-PGF1alpha levels and cPLA2 and COX2 activity in the WT, eNOS-/-, and iNOS-/- mice. In conclusion, the myocardial protective effect of Pio is iNOS independent and may be only partially dependent on eNOS. Because eNOS activity decreases with age, diabetes, and advanced atherosclerosis, this effect may be relevant in a clinical setting and should be further characterized.  相似文献   

13.
The objective of this investigation was to determine the role of secretory and cytosolic isoforms of phospholipase A(2) (PLA(2)) in the induction of arachidonic acid (AA) and leukotriene synthesis in human eosinophils and the mechanism of PLA(2) activation by mitogen-activated protein kinase (MAPK) isoforms in this process. Pharmacological activation of eosinophils with fMLP caused increased AA release in a concentration (EC(50) = 8.5 nM)- and time-dependent (t(1/2) = 3.5 min) manner. Both fMLP-induced AA release and leukotriene C(4) (LTC(4)) secretion were inhibited concentration dependently by arachidonic trifluoromethyl ketone, a cytosolic PLA(2) (cPLA(2)) inhibitor; however, inhibition of neither the 14-kDa secretory phospholipase A(2) by 3-(3-acetamide-1-benzyl-2-ethylindolyl-5-oxy)propanephosphonic acid nor cytosolic Ca(2+)-independent phospholipase A(2) inhibition by bromoenol lactone blocked hydrolysis of AA or subsequent leukotriene synthesis. Pretreatment of eosinophils with a mitogen-activated protein/extracellular signal-regulated protein kinase (ERK) kinase inhibitor, U0126, or a p38 MAPK inhibitor, SB203580, suppressed both AA production and LTC(4) release. fMLP induced phosphorylation of MAPK isoforms, ERK1/2 and p38, which were evident after 30 s, maximal at 1-5 min, and declined thereafter. fMLP stimulation also increased cPLA(2) activity in eosinophils, which was inhibited completely by 30 microM arachidonic trifluoromethyl ketone. Preincubation of eosinophils with U0126 or SB203580 blocked fMLP-enhanced cPLA(2) activity. Furthermore, inhibition of Ras, an upstream GTP-binding protein of ERK, also suppressed fMLP-stimulated AA release. These findings demonstrate that cPLA(2) activation causes AA hydrolysis and LTC(4) secretion. We also find that cPLA(2) activation caused by fMLP occurs subsequent to and is dependent upon ERK1/2 and p38 MAPK activation. Other PLA(2) isoforms native to human eosinophils possess no significant activity in the stimulated production of AA or LTC(4).  相似文献   

14.
Mechanical ventilation is the primary supportive treatment for infants and adults suffering from severe respiratory failure. Adverse mechanical ventilation (overdistension of the lung) triggers a proinflammatory response. Along with cytokines, inflammatory mediators such as bioactive lipids are involved in the regulation of the inflammatory response. The arachidonic acid pathway is a key source of bioactive lipid mediators, including prostanoids. Although ventilation has been shown to influence the production of prostanoids in the lung, the mechanotransduction pathways are unknown. Herein, we established that cyclic stretch of fetal lung epithelial cells, but not fibroblasts, can evoke an extremely sensitive, rapid alteration in eicosanoid metabolism through a cyclooxygenase (COX)-2 dependent mechanism. Cyclic stretch significantly increased PGI(2), PGF(2alpha), PGD(2), PGE(2), and thromboxane B(2) levels in the media of epithelial cells, but did not alter leukotriene B(4) or 12-hydroxyeicosatetraenoic acid levels. Inhibition of COX-2, but not COX-1, attenuated the cyclic stretch-induced PG increase in the media, suggesting that cyclic stretch primarily affected PG synthesis. Substrate (free arachidonic acid) availability for PG generation was increased because of a cyclic stretch-induced activation of cytosolic phospholipase A(2) (cPLA(2)) via an influx of extracellular calcium and phosphorylation by mitogen-activated protein kinase, p44/42MAPK. The data are compatible with cPLA(2) and COX-2 being intimately involved in regulating the injury response to adverse mechanical ventilation.  相似文献   

15.
Eicosanoid production by macrophages is an early response to microbial infection that promotes acute inflammation. The intracellular pathogen Listeria monocytogenes stimulates arachidonic acid release and eicosanoid production from resident mouse peritoneal macrophages through activation of group IVA cytosolic phospholipase A2 (cPLA2alpha). The ability of wild type L. monocytogenes (WTLM) to stimulate arachidonic acid release is partially dependent on the virulence factor listeriolysin O; however, WTLM and L. monocytogenes lacking listeriolysin O (DeltahlyLM) induce similar levels of cyclooxygenase 2. Arachidonic acid release requires activation of MAPKs by WTLM and DeltahlyLM. The attenuated release of arachidonic acid that is observed in TLR2-/- and MyD88-/- macrophages infected with WTLM and DeltahlyLM correlates with diminished MAPK activation. WTLM but not DeltahlyLM increases intracellular calcium, which is implicated in regulation of cPLA2alpha. Prostaglandin E2, prostaglandin I2, and leukotriene C4 are produced by cPLA2alpha+/+ but not cPLA2alpha-/- macrophages in response to WTLM and DeltahlyLM. Tumor necrosis factor (TNF)-alpha production is significantly lower in cPLA2alpha+/+ than in cPLA2alpha-/- macrophages infected with WTLM and DeltahlyLM. Treatment of infected cPLA2alpha+/+ macrophages with the cyclooxygenase inhibitor indomethacin increases TNFalpha production to the level produced by cPLA2alpha-/- macrophages implicating prostaglandins in TNFalpha down-regulation. Therefore activation of cPLA2alpha in macrophages may impact immune responses to L. monocytogenes.  相似文献   

16.
Phospholipases A2 (PLA2) and cyclooxygenases (COX) are important enzymes responsible for production of potent lipid mediators, including prostaglandins (PG) and thromboxane A2. We investigated coupling between PLA2 and COX isoforms by using transient transfection in COS-1 cells. Untransfected cells, incubated with or without phorbol ester + the Ca2+ ionophore ionomycin, generated trivial amounts of PGE2. In cells co-transfected with cytosolic PLA2 (cPLA2) and COX-1 or COX-2, phorbol ester + ionomycin markedly stimulated PGE2 production. There was no preferential coupling of cPLA2 to either of the COX isoforms. In contrast, group IIA secretory PLA2 (sPLA2) co-transfected with COX-1 or COX-2 did not lead to an increase in PGE2 production, despite high levels of sPLA2 enzymatic activity. Transfection of cPLA2 did not affect basal free arachidonic acid (AA) levels. Phorbol ester + ionomycin stimulated release of AA in cPLA2-transfected COS-1 cells, but not in untransfected cells, whereas sPLA2 transfection (without stimulation) led to high basal free AA. Thus, AA released by cPLA2 is accessible to both COX isoforms for metabolism to PG, whereas AA released by sPLA2 is not metabolized by COX.  相似文献   

17.
The objective of the study was to demonstrate the effect of pioglitazone and pioglitazone in combination with statin on East Indian patients with hyperinsulinemia and hyperlipidemia. It was a randomized, placebo-controlled, double-blind study with a parallel-group design comprising 83 patients. Patients of either sex with cardiac complications, including hyperlipidemia and (or) diabetes mellitus with or without hyperinsulinemia, were enrolled. Patients over 70 years of age, with renal or hepatic failure, or with severe diabetes mellitus (total glucose >400 mg/dL) were excluded from the study. Enrolled patients were randomly assigned to 4 groups that received placebo, pioglitazone, atorvastatin, or both. Blood samples were collected before and after treatment for analysis of serum glucose, insulin, lipid profile, apolipoprotein (apo) A1, apo B, and fibrinogen. Data were compared with that of patients with normal insulin or hyperinsulinemia. The patients with hyperinsulinemia receiving only pioglitazone showed a significant decrease in insulin levels compared with those with normal insulin levels. These patients also showed a significant increase in HDL levels. However, no significant change was observed in patients treated with both atorvastatin and pioglitazone. Pioglitazone was also found to increase significantly the apo A1 levels in patients with hyperinsulinemia, but there was no significant increase in patients given both atorvastatin and pioglitazone. Our data suggests that pioglitazone should be given preferably to the patients with hyperinsulinemia and statin should not be coadministered.  相似文献   

18.
Kaposi''s sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi''s sarcoma (KS) and primary effusion lymphoma (PEL). KS lesions are characterized by endothelial cells with multiple copies of the latent KSHV episomal genome, lytic replication in a low percentage of infiltrating monocytes, and inflammatory cytokines plus growth factors. We demonstrated that KSHV utilizes inflammatory cyclooxygenase 2/prostaglandin E2 to establish and maintain latency (Sharma-Walia, N., A. G. Paul, V. Bottero, S. Sadagopan, M. V. Veettil, N. Kerur, and B. Chandran, PLoS Pathog 6:e1000777, 2010 [doi:10.1371/journal.ppat.1000777]). Here, we evaluated the role of 5-lipoxygenase (5LO) and its chemotactic metabolite leukotriene B4 (LTB4) in KSHV biology. Abundant staining of 5LO was detected in human KS tissue sections. We observed elevated levels of 5LO and high levels of secretion of LTB4 during primary KSHV infection of endothelial cells and in PEL B cells (BCBL-1 and BC-3 cells). Blocking the 5LO/LTB4 cascade inhibited viral latent ORF73, immunomodulatory K5, viral macrophage inflammatory protein 1 (MIP-1), and viral MIP-2 gene expression, without much effect on lytic switch ORF50, immediate early lytic K8, and viral interferon-regulatory factor 2 gene expression. 5LO inhibition significantly downregulated latent viral Cyclin and latency-associated nuclear antigen 2 levels in PEL cells. 5LO/LTB4 inhibition downregulated TH2-related cytokine secretion, elevated TH1-related cytokine secretion, and reduced human monocyte recruitment, adhesion, and transendothelial migration. 5LO/LTB4 inhibition reduced fatty acid synthase (FASN) promoter activity and its expression. Since FASN, a key enzyme required in lipogenesis, is important in KSHV latency, these findings collectively suggest that 5LO/LTB4 play important roles in KSHV biology and that effective inhibition of the 5LO/LTB4 pathway could potentially be used in treatment to control KS/PEL.  相似文献   

19.
cAMP has largely inhibitory effects on components of macrophage activation, yet downstream mechanisms involved in these effects remain incompletely defined. Elevation of cAMP in alveolar macrophages (AMs) suppresses FcgammaR-mediated phagocytosis. We now report that protein kinase A (PKA) inhibitors (H-89, KT-5720, and myristoylated PKA inhibitory peptide 14-22) failed to prevent this suppression in rat AMs. We identified the expression of the alternative cAMP target, exchange protein directly activated by cAMP-1 (Epac-1), in human and rat AMs. Using cAMP analogs that are highly specific for PKA (N6-benzoyladenosine-3',5'-cAMP) or Epac-1 (8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cAMP), we found that activation of Epac-1, but not PKA, dose-dependently suppressed phagocytosis. By contrast, activation of PKA, but not Epac-1, suppressed AM production of leukotriene B(4) and TNF-alpha, whereas stimulation of either PKA or Epac-1 inhibited AM bactericidal activity and H(2)O(2) production. These experiments now identify Epac-1 in primary macrophages, and define differential roles of Epac-1 vs PKA in the inhibitory effects of cAMP.  相似文献   

20.
We assessed 1) whether pretreatment before ischemia with pioglitazone (Pio) limits infarct size (IS) and whether this protective effect is due to nitric oxide synthase (NOS) and/or prostaglandin production, as has been shown for atorvastatin (ATV); and 2) whether Pio and ATV have synergistic effects on myocardial protection. Sprague-Dawley rats received oral ATV (10 mg.kg-1.day-1), Pio (10 mg.kg-1.day-1), their combination (Pio+ATV), or water alone for 3 days. Additional rats received Pio (10 mg.kg-1.day-1) for 3 days and intravenous SC-58125 [a cyclooxygenase-2 (COX-2) inhibitor] or SC-560 (a COX-1 inhibitor) 15 min before ischemia. Rats underwent 30 min of myocardial ischemia and 4 h of reperfusion, or hearts were harvested for analysis. IS in the Pio and in the ATV groups was significantly smaller than in the sham-treated group. IS in the Pio+ATV group was smaller than in all other groups (P<0.001 vs. each group). The protective effect of Pio was abrogated by SC-58125 but not by SC-560. Pio, ATV, and Pio + ATV increased the expression and activity of cytosolic phospholipase A2 (cPLA2) and COX-2. ATV increased phosphorylated-Akt, phosphorylated-endothelial NOS (P-eNOS), inducible NOS, and COX-2 levels. In contrast, Pio caused an insignificant increase in myocardial levels of phosphorylated-Akt but did not change P-eNOS and iNOS expression. In conclusion, the IS-limiting effects of Pio and ATV involve COX-2. However, the upstream steps differ. ATV induced eNOS phosphorylation and iNOS, cPLA2, and COX-2 expression, whereas Pio induced mainly the expression and activity of cPLA2. The effects of Pio and ATV were additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号