共查询到16条相似文献,搜索用时 0 毫秒
1.
Birnbaum Y Ye Y Lin Y Freeberg SY Huang MH Perez-Polo JR Uretsky BF 《Prostaglandins & other lipid mediators》2007,83(1-2):89-98
Aspirin (ASA) inhibits cycloxygenase-1 and modifies cycloxygenase-2 (COX2) by acetylation at Ser(530), leading to a shift from production of PGH(2), the precursor of prostaglandin, to 15-R-HETE which is converted by 5-lipoxygenase to 15-epi-lipoxin A(4) (15-epi-LXA4), a potent anti-inflammatory mediator. Both atorvastatin (ATV) and pioglitazone (PIO) increase COX2 expression. ATV activates COX2 by S-nitrosylation at Cys(526) to produce 15-epi-LXA4 and 6-keto-PGF(1alpha) (the stable metabolite of PGI(2)). We assessed the effect of ASA on the myocardial production of 15-epi-LXA4 and PGI(2) after induction by lipopolysaccharide (LPS) or PIO+ATV. Sprague-Dawley rats were pretreated with: control; ASA 10 mg/kg; ASA 50 mg/kg; LPS alone; LPS+ASA 10 mg/kg; LPS+ASA 50 mg/kg; LPS+ASA 200 mg/kg; PIO (10 mg/kg/d)+ATV (10 mg/kg/d); PIO+ATV+ASA 10 mg/kg; PIO+ATV+ASA 50 mg/kg; PIO+ATV+ASA 50 mg/kg+1400 W, a specific iNOS inhibitor; or PIO+ATV+1400 W. ASA alone had no effect on myocardial 15-epi-LXA4. LPS increased 15-epi-LXA4 and 6-keto-PGF(1alpha) levels. ASA (50 mg/kg and 200 mg/kg, but not 10 mg/kg) augmented the LPS effect on 15-epi-LXA4 but attenuated the effect on 6-keto-PGF(1alpha). PIO+ATV increased 15-epi-LXA4 and 6-keto-PGF(1alpha) levels. ASA and 1400 W attenuated the effects of PIO+ATV on 15-epi-LXA4 and 6-keto-PGF(1alpha). However, when both ASA and 1400 W were administered with PIO+ATV, there was a marked increase in 15-epi-LXA4, whereas the production of 6-keto-PGF(1alpha) was attenuated. In conclusion, COX2 acetylation by ASA shifts enzyme from producing 6-keto-PGF(1alpha) to 15-epi-LXA4. In contrast, S-nitrosylation by PIO+ASA augments the production of both 15-epi-LXA4 and 6-keto-PGF(1alpha). However, when COX2 is both acetylated and S-nitrosylated, it is inactivated. We suggest potential adverse interactions among statins, thiazolidinediones, and high-dose ASA. 相似文献
2.
Luo M Jones SM Phare SM Coffey MJ Peters-Golden M Brock TG 《The Journal of biological chemistry》2004,279(40):41512-41520
Leukotrienes (LTs) are lipid messengers generated by leukocytes that drive inflammation and modulate neighboring cell function. The synthesis of LTs from arachidonic acid is initiated by the enzyme 5-lipoxygenase (5-LO). We report for the first time that LT synthesis is inhibited by the direct action of protein kinase A (PKA) on 5-LO. The catalytic subunit of PKA directly phosphorylated 5-LO in vivo and in vitro and inhibited activity in intact cells and in vitro. Mutation of Ser-523 on human 5-LO prevented phosphorylation by PKA and restored LT synthesis. Treatment with PKA activators inhibited LTB(4) synthesis in 3T3 cells expressing wild type 5-LO but not in cells expressing the S523A mutant of 5-LO. The mechanism of inhibition of LTB(4) synthesis did not involve either reduced membrane association of activated 5-LO or redistribution of 5-LO from the nucleus to the cytoplasm. Instead, PKA phosphorylation of recombinant 5-LO inhibited in vitro activity, as did co-transfection of cells with 5-LO plus the catalytic subunit of PKA. Also, substitution of Ser-523 with glutamic acid, mimicking phosphorylation, resulted in the total loss of 5-LO activity. These results indicate that PKA phosphorylates 5-LO on Ser-523, which inhibits the catalytic activity of 5-LO and reduces cellular LT generation. Thus, PKA activation, as can occur in response to adenosine, prostaglandin E(2), beta-adrenergic agonists, and other mediators, is a means of directly reducing 5-LO activity and LT synthesis that may be important in limiting inflammation and maintaining homeostasis. 相似文献
3.
Luo M Jones SM Flamand N Aronoff DM Peters-Golden M Brock TG 《The Journal of biological chemistry》2005,280(49):40609-40616
The enzyme 5-lipoxygenase initiates the synthesis of leukotrienes from arachidonic acid. Protein kinase A phosphorylates 5-lipoxygenase on Ser(523), and this reduces its activity. We report here that phosphorylation of Ser(523) also shifts the subcellular distribution of 5-lipoxygenase from the nucleus to the cytoplasm. Phosphorylation and redistribution of 5-lipoxygenase could be produced by overexpression of the protein kinase A catalytic subunit alpha, by pharmacological activators of protein kinase A, and by prostaglandin E(2). Mimicking phosphorylation by replacing Ser(523) with glutamic acid caused cytoplasmic localization; replacement of Ser(523) with alanine prevented phosphorylation and redistribution in response to protein kinase A activation. Because Ser(523) is positioned within the nuclear localization sequence-518 of 5-lipoxygenase, the ability of protein kinase A to phosphorylate and alter the localization of green fluorescent protein fused to the nuclear localization sequence-518 peptide was also tested. Site-directed replacement of Ser(523) with glutamic acid within the peptide impaired nuclear accumulation; overexpression of the protein kinase A catalytic subunit alpha and pharmacological activation of protein kinase caused phosphorylation of the fusion protein at Ser(523), and the phosphorylated protein was found chiefly in the cytoplasm. Taken together, these results indicate that phosphorylation of Ser(523) inhibits the nuclear import function of a nuclear localization sequence, resulting in the accumulation of 5-lipoxygenase enzyme in the cytoplasm. As cytoplasmic localization can be associated with reduced leukotriene synthetic capacity, phosphorylation of Ser(523) serves to inhibit leukotriene production by both impairing catalytic activity and by placing the enzyme in a site that is unfavorable for action. 相似文献
4.
5.
Phosphorylation of eIF-4F by protein kinase C or multipotential S6 kinase stimulates protein synthesis at initiation 总被引:7,自引:0,他引:7
S J Morley T E Dever D Etchison J A Traugh 《The Journal of biological chemistry》1991,266(8):4669-4672
Eukaryotic initiation factor (eIF) 4F, a multiprotein cap binding complex, has been shown to be phosphorylated in vivo in response to phorbol 12-myristate 13-acetate and insulin (Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 264, 2401-2404; Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 265, 10611-10616). The effect of phosphorylation on the activity of purified eIF-4F, utilizing both protein kinase C and a multifunctional S6 kinase, previously identified as protease activated kinase II, has been examined; these protein kinases modify eIF-4F p25 and p220 and eIF-4F p220, respectively. Studies with an eIF-4F-dependent protein synthesis system showed that phosphorylation of eIF-4F with either protein kinase resulted in a 3-5-fold stimulation of translation relative to the nonphosphorylated control. Chemical cross-linking of eIF-4F to cap-labeled mRNA, showed that phosphorylation increased the interaction of both the p25 and p220 subunits of eIF-4F with the 5' end of mRNA. This effect was manifested by a stimulation of initiation complex formation as measured by an increase in the association of labeled mRNA with 40 S ribosomal subunits in the translation system. Thus, phosphorylation of eIF-4F enhances binding to mRNA, resulting in a stimulation of protein synthesis at initiation. 相似文献
6.
MacKenzie KF Wallace DA Hill EV Anthony DF Henderson DJ Houslay DM Arthur JS Baillie GS Houslay MD 《The Biochemical journal》2011,435(3):755-769
cAMP-specific PDE (phosphodiesterase) 4 isoforms underpin compartmentalized cAMP signalling in mammalian cells through targeting to specific signalling complexes. Their importance is apparent as PDE4 selective inhibitors exert profound anti-inflammatory effects and act as cognitive enhancers. The p38 MAPK (mitogen-activated protein kinase) signalling cascade is a key signal transduction pathway involved in the control of cellular immune, inflammatory and stress responses. In the present study, we show that PDE4A5 is phosphorylated at Ser147, within the regulatory UCR1 (ultraconserved region 1) domain conserved among PDE4 long isoforms, by MK2 (MAPK-activated protein kinase 2, also called MAPKAPK2). Phosphorylation by MK2, although not altering PDE4A5 activity, markedly attenuates PDE4A5 activation through phosphorylation by protein kinase A. This modification confers the amplification of intracellular cAMP accumulation in response to adenylate cyclase activation by attenuating a major desensitization system to cAMP. Such reprogramming of cAMP accumulation is recapitulated in wild-type primary macrophages, but not MK2/3-null macrophages. Phosphorylation by MK2 also triggers a conformational change in PDE4A5 that attenuates PDE4A5 interaction with proteins whose binding involves UCR2, such as DISC1 (disrupted in schizophrenia 1) and AIP (aryl hydrocarbon receptor-interacting protein), but not the UCR2-independent interacting scaffold protein β-arrestin. Long PDE4 isoforms thus provide a novel node for cross-talk between the cAMP and p38 MAPK signalling systems at the level of MK2. 相似文献
7.
Turkey gizzard smooth muscle myosin light chain kinase is a calmodulin-dependent enzyme containing 2 serine residues that can be phosphorylated by cAMP-dependent protein kinase. One of these sites can be phosphorylated only when calmodulin is not bound to the enzyme; the amino acid sequence around this site has been reported recently (Lukas, T. J., Burgess, W. H., Prendergast, F. G., Lau, W., and Watterson, D. M. (1986) Biochemistry 25, 1458-1464). Here we report the sequence around the site that is phosphorylated by cAMP-dependent protein kinase whether or not calmodulin is bound: Lys-Ala-Ser(P)-Gly-Ser-Ser-Pro-Thr-Ser-Pro-Ile-Asn-Ala-Asp-Lys-Val-Glu-A sn-Glu- . This sequence conforms to the previously defined criteria for substrates of cAMP-dependent protein kinase. 相似文献
8.
W C Liles K E Meier W R Henderson 《Journal of immunology (Baltimore, Md. : 1950)》1987,138(10):3396-3402
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils. 相似文献
9.
Phosphorylation by guanosine 3':5'-monophosphate-dependent protein kinase of synthetic peptide analogs of a site phosphorylated in histone H2B 总被引:4,自引:0,他引:4
Analogs of a synthetic heptapeptide substrate corresponding to the sequence around a phosphorylation site in histone H2B were used to assess the substrate specificity of cGMP-dependent protein kinase. cGMP-dependent kinase phosphorylated the oligopeptide Arg-Lys-Arg-Ser32-Arg-Lys-Glu with favorable kinetic parameters as compared to those for cAMP-dependent kinase (Glass, D. B., and Krebs, E. G. (1979) J. Biol. Chem. 254, 9728-9738). The contribution of each amino acid to the ability of the peptide to be phosphorylated by cGMP-dependent or cAMP-dependent kinase was studied by replacement of individual residues and evaluation of the kinetic constants of the substituted peptides. Peptides containing acetylated lysine residues or nitroarginine residues were poor substrates for both kinases. Substitution of either arginine 29 or lysine 30 with alanine increased the Km values and decreased the Vmax values for both kinases. Substitution of lysine 34 with alanine increased the Vmax values for both kinases but did not affect the Km values for either enzyme. Substitution of the phosphorylatable serine with a threonine residue greatly depressed the Vmax for both kinases. Peptides in which arginine 31 or arginine 33 were replaced by an alanine residue revealed several apparent differences in the specificity requirements between cGMP-dependent and cAMP-dependent kinases. 相似文献
10.
As an initial approach toward the characterization of the phosphorylation of cumene hydroperoxide (CuOOH)-inactivated cytochrome P450 (CYP3A4, the major human liver drug-metabolizing enzyme) and its role in the degradation of the inactivated protein, we have identified one of the major participating cytosolic kinase(s) as rat liver cytosolic protein kinase C (PKC) with the use of specific and general kinase inhibitors. Accordingly, we employed a model phosphorylation system consisting of purified PKC, gamma-S-[(32)P]ATP, and either native or CuOOH-inactivated purified recombinant His(6)-tagged CYP3A4. Lysylendoprotease (Lys)-C digestion of the phosphorylated CuOOH-inactivated CYP3A4(His)(6) followed by HPLC-peptide mapping and mass spectrometric (LC/MS/MS) analyses led to the isolation and the unambiguous identification of two PKC-phosphorylated CYP3A4 peptides: E(258)SRLEDT(p)QK(266) and F(414)LPERFS(p)K(421). Similar analyses of the PKC-phosphorylated native enzyme predominantly yielded E(258)SRLEDT(p)QK(266) as the phosphorylated peptide. Studies are currently in progress to determine whether phosphorylation of any or both of these peptides is required for the Ub-dependent 26S proteasomal degradation of CuOOH-inactivated CYP3A4. 相似文献
11.
Sunahori K Yamamura M Yamana J Takasugi K Kawashima M Yamamoto H Chazin WJ Nakatani Y Yui S Makino H 《Arthritis research & therapy》2006,8(3):R69-12
S100A8 and S100A9, two Ca2+-binding proteins of the S100 family, are secreted as a heterodimeric complex (S100A8/A9) from neutrophils and monocytes/macrophages.
Serum and synovial fluid levels of S100A8, S100A9, and S100A8/A9 were all higher in patients with rheumatoid arthritis (RA)
than in patients with osteoarthritis (OA), with the S100A8/A9 heterodimer being prevalent. By two-color immunofluorescence
labeling, S100A8/A9 antigens were found to be expressed mainly by infiltrating CD68+ macrophages in RA synovial tissue (ST). Isolated ST cells from patients with RA spontaneously released larger amounts of
S100A8/A9 protein than did the cells from patients with OA. S100A8/A9 complexes, as well as S100A9 homodimers, stimulated
the production of proinflammatory cytokines, such as tumor necrosis factor alpha, by purified monocytes and in vitro-differentiated macrophages. S100A8/A9-mediated cytokine production was suppressed significantly by p38 mitogen-activated
protein kinase (MAPK) inhibitors and almost completely by nuclear factor kappa B (NF-κB) inhibitors. NF-κB activation was
induced in S100A8/A9-stimulated monocytes, but this activity was not inhibited by p38 MAPK inhibitors. These results indicate
that the S100A8/A9 heterodimer, secreted extracellularly from activated tissue macrophages, may amplify proinflammatory cytokine
responses through activation of NF-κB and p38 MAPK pathways in RA. 相似文献
12.
Chen BC Liao CC Hsu MJ Liao YT Lin CC Sheu JR Lin CH 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(1):681-693
In this study, we investigated the signaling pathway involved in IL-6 production caused by peptidoglycan (PGN), a cell wall component of the Gram-positive bacterium, Staphylococcus aureus, in RAW 264.7 macrophages. PGN caused concentration- and time-dependent increases in IL-6, PGE(2), and cAMP production. PGN-mediated IL-6 production was inhibited by a nonselective cyclooxygenase (COX) inhibitor (indomethacin), a selective COX-2 inhibitor (NS398), a PGE(2) (EP2) antagonist (AH6809), a PGE(4) (EP4) antagonist (AH23848), and a protein kinase A (PKA) inhibitor (KT5720), but not by a nonselective NO synthase inhibitor (N(G)-nitro-l-arginine methyl ester). Furthermore, PGE(2), an EP2 agonist (butaprost), an EP2/PGE(3) (EP3)/EP4 agonist (misoprostol), and misoprostol in the presence of AH6809 all induced IL-6 production, whereas an EP1/EP3 agonist (sulprostone) did not. PGN caused time-dependent activations of IkappaB kinase alphabeta (IKKdbeta) and p65 phosphorylation at Ser(276), and these effects were inhibited by NS398 and KT5720. Both PGE(2) and 8-bromo-cAMP also caused IKKdbeta kinase alphabeta phosphorylation. PGN resulted in two waves of the formation of NF-kappaB-specific DNA-protein complexes. The first wave of NF-kappaB activation occurred at 10-60 min of treatment, whereas the later wave occurred at 2-12 h of treatment. The PGN-induced increase in kappaB luciferase activity was inhibited by NS398, AH6809, AH23848, KT5720, a protein kinase C inhibitor (Ro31-8220), and a p38 MAPK inhibitor (SB203580). These results suggest that PGN-induced IL-6 production involves COX-2-generated PGE(2), activation of the EP2 and EP4 receptors, cAMP formation, and the activation of PKA, protein kinase C, p38 MAPK, IKKdbeta, kinase alphabeta, p65 phosphorylation, and NF-kappaB. However, PGN-induced NO release is not involved in the signaling pathway of PGN-induced IL-6 production. 相似文献
13.
Threonyl-tRNA synthetase has been shown to be phosphorylated in reticulocytes (Dang, C. V., Tan, E. M., and Traugh, J. A., (1988) FASEB J. 2, 2376-2379). Upon incubation of reticulocytes with 8-bromo-cAMP, phosphorylation of threonyl-tRNA synthetase is stimulated approximately 2-fold, an increase similar to that observed with ribosomal protein S6. To analyze the effects of phosphorylation on activity, threonyl-tRNA synthetase has been purified to apparent homogeneity from rabbit reticulocytes utilizing a four-step purification procedure with the simultaneous purification of seryl-tRNA synthetase. Both synthetases are phosphorylated in vitro by the cAMP-dependent protein kinase. Prior to phosphorylation, the two synthetases produce significant amounts of P1, P4-bis(5'-adenosyl)-tetraphosphate (Ap4A) in the presence of the cognate amino acid and ATP, with activities comparable to that of lysyl-tRNA synthetase. Phosphorylation has no effect on aminoacylation, but an increase in Ap4A synthesis of up to 6-fold is observed with threonyl-tRNA synthetase and 2-fold with seryl-tRNA synthetase. Thus, cAMP-mediated phosphorylation of specific aminoacyl-tRNA synthetases appears to be a potential mode of regulation of Ap4A synthesis in mammals. 相似文献
14.
P van Vlasselaer H Gascan R de Waal Malefyt J E de Vries 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(6):1674-1684
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells. 相似文献
15.
16.
Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase
下载免费PDF全文

In Saccharomyces cerevisiae, replication origins are activated with characteristic timing during S phase. S-phase cyclin-dependent kinases (S-CDKs) and Cdc7p-Dbf4p kinase are required for origin activation throughout S phase. The activation of S-CDKs leads to association of Cdc45p with chromatin, raising the possibility that Cdc45p defines the assembly of a new complex at each origin. Here we show that both Cdc45p and replication protein A (RPA) bind to Mcm2p at the G(1)-S transition in an S-CDK-dependent manner. During S phase, Cdc45p associates with different replication origins at specific times. The origin associations of Cdc45p and RPA are mutually dependent, and both S-CDKs and Cdc7p-Dbf4p are required for efficient binding of Cdc45p to origins. These findings suggest that S-CDKs and Cdc7p-Dbf4p promote loading of Cdc45p and RPA onto a preformed prereplication complex at each origin with preprogrammed timing. The ARS1 association of Mcm2p, but not that of the origin recognition complex, is diminished by disruption of the B2 element of ARS1, a potential origin DNA-unwinding element. Cdc45p is required for recruiting DNA polymerase alpha onto chromatin, and it associates with Mcm2p, RPA, and DNA polymerase epsilon only during S phase. These results suggest that the complex containing Cdc45p, RPA, and MCMs is involved in origin unwinding and assembly of replication forks at each origin. 相似文献