首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G Dighiero  J L Binet 《Blood cells》1987,12(2):385-397
Most CLL cases correspond to proliferation of a B-cell clone characterized by (1) low amounts of SmIg, (2) the presence of receptors for mouse red blood cells, (3) the presence of a 67-kd antigenic determinant recognized by CD5 monoclonal antibodies, also present in normal T cells, (4) the ability of these cells to differentiate in vitro, and (5) the ability at least for some clones to differentiate and secrete immunoglobulins in vivo. The normal counterpart to this B-cell clone corresponds to a small subpopulation of lymphocytes, present at the edge of the germinal center in human lymph nodes. Interestingly, this subpopulation appears to constitute a substantial part of the B-cell population in 20-week-old fetal lymph nodes and spleen. These results have induced most authors to assume that the CLL B lymphocyte corresponds to proliferation of an immature B-cell clone, arrested at an intermediate stage between pre-B cells and mature B cells. However, this hypothesis does not explain the high frequency with which hypogammaglobulinemia and autoimmune hemolytic anemia are found in B CLL. In this work, we discuss the possibility that the CLL B lymphocyte corresponds to proliferation of a B-cell line, whose counterpart in the mouse is the Ly1 B, Lyb5+ subpopulation.  相似文献   

2.
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of leukemic B cells concomitant with immunological abnormalities and depressed immune responses. The T cell abnormalities found in CLL patients are thought to increase the risk of infection and hamper immune recognition and elimination of leukemic cells. We evaluated whether providing signals through CD3 and CD28 would correct some of these T cell defects. PBMC were incubated with anti-CD3 and anti-CD28 mAbs conjugated to superparamagnetic beads for 12-14 days. This resulted in a 1400-fold increase in T cell numbers. Activated T cells expressed high levels of CD25, CD54, CD137, and CD154, and produced IFN-gamma, TNF-alpha, and GM-CSF. The mean T cell composition of cultures increased from approximately 6% to >90% and leukemic B cells decreased from a mean of approximately 85% to 0.1% or less. Leukemic B cells up-regulated expression of CD54, CD80, CD86, and CD95. Receptor up-regulation required direct cell contact with the activated T cells and could be blocked with anti-CD154 mAb, suggesting that the CD40-CD40L pathway helped mediate these effects. Poor T cell responses to allostimulation were corrected by the activation and expansion process. The skewing in the TCR repertoire returned to normal, or near normal following the culture process in eight of nine patients with abnormal TCR repertoires. Activated T cells had potent in vitro antileukemic effects in contrast to nonactivated T cells. Based upon these findings, a clinical trial has been initiated to test the potential therapeutic effects of T cells activated using this approach in patients with CLL.  相似文献   

3.
Although it is established that failure of regulatory mechanisms underlies many autoimmune diseases, the stimuli that activate autoreactive lymphocytes remain poorly understood. Defining these stimuli will lead to therapeutic strategies for autoimmune diseases. IL-2-deficient mice develop spontaneous autoimmunity, because of a deficiency of regulatory T cells, and on the BALB/c background, they rapidly die from autoimmune hemolytic anemia. To define the importance of costimulatory pathways in various components of this autoimmune disorder, we first intercrossed IL-2-deficient mice with mice lacking CD28 or CD40L. Elimination of CD28 reduced the activation of autoreactive T cells and lymphoproliferation as well as production of autoantibodies, whereas elimination of CD40L reduced autoantibody production without affecting T cell expansion and accumulation. To examine the role of IL-7, we blocked IL-7R signaling with neutralizing Abs. This treatment inhibited the production of autoantibodies and the development of autoimmune hemolytic anemia. Together, these data indicate that specific costimulatory and cytokine signals are critical for the spontaneous autoantibody-mediated disease that develops in IL-2-deficient mice.  相似文献   

4.
Chronic lymphocytic leukemia (CLL) is an indolent malignancy of CD5+ B lymphocytes. CLL cells express CD40, a key regulator of B cell proliferation, differentiation, and survival. In nonmalignant B cells, CD40 ligation results in nuclear translocation and activation of NF-kappaB proteins. Based on observations that in some CLL cases, the tumor cells express both CD40 and its ligand, CD154 (CD40 ligand), we proposed a model for CLL pathogenesis due to CD40 ligation within the tumor. To evaluate this issue, we used freshly isolated CLL B cells to examine constitutive and inducible NF-kappaB activity by electrophoretic mobility shift assay. We consistently observed high levels of nuclear NF-kappaB-binding activity in unstimulated CLL B cells relative to that detected in nonmalignant human B cells. In each case examined, CD40 ligation further augmented NF-kappaB activity and prolonged CLL cell survival in vitro. The principle NF-kappaB proteins in stimulated CLL cells appear to be quite similar to those in nonmalignant human B cells and include p50, p65, and c-Rel. In a CD154-positive case, blocking CD154 engagement by mAb to CD154 resulted in inhibition of NF-kappaB activity in the CLL cells. The addition of anti-CD154 mAb resulted in accelerated CLL cell death to a similar degree as was observed in cells exposed to dexamethasone. These data indicate that CD40 engagement has a profound influence on NF-kappaB activity and survival in CLL B cells, and are consistent with a role for CD154-expressing T and B cells in CLL pathogenesis. The data support the development of novel therapies based on blocking the CD154-CD40 interaction in CLL.  相似文献   

5.
Rheumatoid arthritis develops in association with a defect in peripheral CD4(+) T cell homeostasis. T cell lymphopenia has also been shown to be a barrier to CD4(+) T cell clonal anergy induction. We therefore explored the relationship between clonal anergy induction and the avoidance of autoimmune arthritis by tracking the fate of glucose-6-phosphate isomerase (GPI)-reactive CD4(+) T cells in the setting of selective T cell lymphopenia. CD4(+) T cell recognition of self-GPI peptide/MHC class II complexes in normal murine hosts did not lead to arthritis and instead caused those T cells to develop a Folate receptor 4(hi)CD73(hi) anergic phenotype. In contrast, hosts selectively depleted of polyclonal Foxp3(+)CD4(+) regulatory T cells could not make GPI-specific CD4(+) T cells anergic and failed to control arthritis. This suggests that autoimmune arthritis develops in the setting of lymphopenia when Foxp3(+)CD4(+) regulatory T cells are insufficient to functionally inactivate all autoreactive CD4(+) T cells that encounter self-Ag.  相似文献   

6.
IL-2-deficient mice develop a lymphoproliferative and autoimmune disease characterized by autoimmune hemolytic anemia (AHA) and inflammatory bowel disease. We have previously reported that IL-2 is necessary for optimal up-regulation of CTLA-4, an inducible negative regulator of T cell activation. In this study, we have tested the hypothesis that reduced expression of CTLA-4 in IL-2-deficient T cells contributes to the pathogenesis of disease in IL-2-deficient mice. Expression of CTLA-4 as a transgene completely prevented lymphoaccumulation and AHA in IL-2-deficient mice. The normalization of T cell numbers was due to inhibition of expansion of conventional CD4+CD25- T cells rather than to rescue of the numbers or function of CD4+CD25+ regulatory T cells, suggesting that CTLA-4 expression on conventional T cells plays a role in maintaining normal T cell homeostasis. In addition, the inhibitory effect of the CTLA-4 transgene on T cell expansion was at least in part independent of CD28 expression. Our results suggest that deficient CTLA-4 expression on conventional T cells contributes to the pathophysiology of the lymphoproliferative disease and AHA in IL-2-deficient mice. Thus, restoring CTLA-4 expression in T cells may be an attractive strategy to control clinical autoimmune diseases in which CTLA-4 expression is reduced.  相似文献   

7.
In this study, we investigated the role of the naturally occurring B cell-mediated T cell costimulation in the antitumor efficacy of the bispecific Ab BIS20x3. BIS20x3 has a dual specificity for both CD20 and CD3 and has previously been shown to effectively direct the lytic potential of cytolytic T cells toward malignant, CD20(+) B cells. BIS20x3 instigated T cell-B cell interaction caused a dose-dependent activation of T cells that was 30 times stronger when compared with T cell activation induced by monovalent anti-CD3 Abs. The activation of T cells by BIS20x3 and B cells appeared functional and resulted in the rapid induction of high lytic potential in freshly isolated peripheral T cells. BIS20x3-mediated T cell-B cell interaction resulted in a significant up-regulation of ICAM-1 on B cells and the activation of T cells was found to be dependent on the interaction of ICAM-1 with LFA-1 and trans-activation by the NF-kappaB pathway. Also, the lytic potential of freshly isolated T cells activated via BIS20x3 appeared to be dependent on NF-kappaB signaling in the target B cells. Interestingly, the costimulatory signaling effects described in this study appeared specifically related to the targeting against CD20 because targeting against CD19, by a CD3xCD19-directed bispecific Ab, was significantly less effective in inducing T cell activation and T cell-mediated B cell lysis. Together these results demonstrate that the malignant B cells actively contribute to their own demise upon CD20-directed bispecific Ab-mediated T cell targeting.  相似文献   

8.
CD98 H chain (4F2 Ag, Slc3a2) was discovered as a lymphocyte-activation Ag. Deletion of CD98 H chain in B cells leads to complete failure of B cell proliferation, plasma cell formation, and Ab secretion. In this study, we examined the role of T cell CD98 in cell-mediated immunity and autoimmune disease pathogenesis by specifically deleting it in murine T cells. Deletion of T cell CD98 prevented experimental autoimmune diabetes associated with dramatically reduced T cell clonal expansion. Nevertheless, initial T cell homing to pancreatic islets was unimpaired. In sharp contrast to B cells, CD98-null T cells showed only modestly impaired Ag-driven proliferation and nearly normal homeostatic proliferation. Furthermore, these cells were activated by Ag, leading to cytokine production (CD4) and efficient cytolytic killing of targets (CD8). The integrin-binding domain of CD98 was necessary and sufficient for full clonal expansion, pointing to a role for adhesive signaling in T cell proliferation and autoimmune disease. When we expanded CD98-null T cells in vitro, they adoptively transferred diabetes, establishing that impaired clonal expansion was responsible for protection from disease. Thus, the integrin-binding domain of CD98 is required for Ag-driven T cell clonal expansion in the pathogenesis of an autoimmune disease and may represent a useful therapeutic target.  相似文献   

9.
Bone marrow (BM)-derived dendritic cells (DC) are potent stimulators of naive CD4+ T cell activation. Because DC are efficient at Ag processing and could potentially present self Ags, we investigated the role of DC in the presentation of an encephalitogenic peptide from myelin basic protein (Ac1-11) in the induction of experimental autoimmune encephalomyelitis (EAE). To determine if DC could prime for EAE, we transferred DC pulsed with Ac1-11 or with medium alone into irradiated mice in combination with CD4+ T cells isolated from a mouse transgenic for a TCR specific for Ac1-11 + I-Au. Mice transferred with Ac1-11-pulsed DC developed EAE 7-10 days later, whereas mice receiving medium-pulsed DC did not. By day 15, all mice given peptide-loaded DC had signs of tail and hind limb paralysis, and by day 20 infiltration of Ac1-11-specific CD4+ T cells was detected in the brain parenchyma. We also demonstrated interactions between Ac1-11-pulsed DC and Ac1-11-specific T cells in the lymph nodes 24 h following adoptive transfer of both cell populations. These data show that DC can efficiently present the self Ag myelin basic protein Ac1-11 to Ag-specific T cells in the periphery of mice to induce EAE.  相似文献   

10.
Rosette-formation with auto- and allogeneic red blood cells was applied to detection of human leucocyte subpopulations interacting with Sendai virus (V-rosettes). It was shown that the majority of V-rosette-forming cells appeared to be monocytes. T lymphocytes did not take part in V-rosette-formation since selective elimination of T cells from the mononuclear cells population did not lead to reduction of but increased the number of V-rosettes. Enrichment of cell suspension with B lymphocytes was followed by a rise in the number of V-rosettes thereby allowing the attribution of B lymphocytes along with monocytes to the cell population interacting with virus. The results suggest that ability of virus-exposed immunocompetent cells to react with their own red blood cells may lie at the basis of the development of autoimmune hemolytic anemia and other autoimmune diseases.  相似文献   

11.
We investigated the relationship between the increased cell diameter of Lyt-2+ T cells and the development of autoimmune disease in aging NZB and NZB X NZW F1 hybrid (BW) mice. Individual animals were analyzed for Lyt-2+ T cell size (by narrow-angle forward light scatter), anti-erythrocyte autoantibodies, anemia, proteinuria, and splenomegaly. The peak light scatter of the Lyt-2+ T cells correlated with the level of anti-erythrocyte autoantibodies and severity of hemolytic anemia, but not with proteinuria or splenomegaly. The cell size of this T cell subset did not increase in old BW or in NZB mice homozygous for the xid gene (NZB.xid). The in vivo administration of bacterial lipopolysaccharide to young NZB mice did not stimulate the enlargement of Lyt-2+ T cells. Ly-2+ T cells from old NZB mice could be stimulated by concanavalin A (Con A) to express interleukin 2 (IL 2) receptors and to synthesize DNA in vitro. However, in vivo administration of Con A to old NZB mice did not induce the expression of IL 2 receptors on Lyt-2+ T cells. Further, in vivo T suppressor function was impaired in old NZB mice with enlarged Lyt-2+ T cells. Thus, the enlargement of Lyt-2+ T cells in old NZB mice appears related to impaired T cell function in vivo and is associated with the development of anti-erythrocyte autoantibodies and autoimmune hemolytic anemia.  相似文献   

12.
Yang P  Li B  Lv P  Zhang Y  Gao XM 《Cell research》2007,17(6):556-564
Systemic lupus erythematosus (SLE) is a typical autoimmune disease involving multiple systems and organs. Ample evidence suggests that autoreactive T cells play a pivotal role in the development of this autoimmune disorder. This study was undertaken to investigate the mechanisms of interaction between antigen presenting cells (APCs) and an autoreactive T cell (ATLI) clone obtained from lupus-prone BXSB mice. ATLI cells, either before or after 7-ray irradiation, were able to activate naive B cells, as determined by B cell proliferation assays. Macrophages from BXSB mice were able to stimulate the proliferation of resting ATL 1 cells at a responder/stimulator (R/S) ratio of 1/2.5. Dendritic cells (DCs) were much more powerful stimulators for ATLI cells on a per cell basis. The T cell stimulating ability ofmacrophages and B cells, but not DCs, was sensitive to T-ray irradiation. Monoclonal antibodies against mouse MHC-Ⅱ and CD4 were able to block DC-mediated stimulation of ATL 1 proliferation, indicating cognate recognition between ATL 1 and APCs. Our data suggest that positive feedback loops involving macrophages, B cells and autoreactive T cells may play a pivotal role in keeping the momentum of autoimmune responses leading to autoimmune diseases.  相似文献   

13.
Activated T cells from patients with chronic lymphocytic leukemia (CLL) provide survival and proliferative signals to the leukemic clone within lymphoid tissues. Recruitment of both, CLL cells and T lymphocytes, to this supportive microenvironment greatly depends on CXCL12 production by stromal and myeloid cells. CXCL12 also supplies survival stimuli to leukemic B cells, but whether it exerts stimulatory effects on T lymphocytes from CLL patients is unknown. In order to evaluate the capacity of CXCL12 to increase CD4+ T cell activation and proliferation in CLL patients, peripheral blood mononuclear cells were cultured with or without recombinant human CXCL12 or autologous nurse-like cells, and then T cell activation was induced by anti-CD3 mAb. CXCL12 increases the proliferation and the expression of CD25, CD69, CD154, and IFNγ on CD3-stimulated CD4+ T cells from CLL patients, similarly in T cells from ZAP-70+ to ZAP-70? patients. Autologous nurse-like cells establish a close contact with CD4+ T cells and increase their activation and proliferation partially through a CXCR4-dependent mechanism. In addition, we found that activated T cells in the presence of CXCL12 enhance the activation and proliferation of the leukemic clone. In conclusion, CXCL12 production by lymphoid tissue microenvironment in CLL patients might play a key dual role on T cell physiology, functioning not only as a chemoattractant but also as a costimulatory factor for activated T cells.  相似文献   

14.
目的:本研究旨在探讨慢性淋巴细胞白血病(CLL)的实验室检查特点及特征性临床表现。方法:利用血细胞分析仪、流式细胞术、骨髓形态分析及R显带技术等对我院2002年4月.2012年4月收治的54例慢性淋巴细胞白血病患者的相关临床资料如血细胞计数、骨髓形态、染色体及免疫表型等进行检测并对结果进行回顾性分析。结果:CLL多发于老年患者,男性多见,中位年龄65岁(45.82岁)。大部分患者初诊时可出现典型的临床表现,37例(68%)患者初诊时淋巴结大,49例(91%)初诊时白细胞≥10×109、L,淋巴细胞绝对值≥5×109/L。13例(24%)初诊时肝脾或者脾大,17例(31%)初诊时乏力、消瘦。34(63%)例患者可见典型的CLL免疫表型,CD5、CDl9.CD23、CD20的阳性率分别为90%、87%、72%、67%。32例患者染色体检测结果表明:13q-2例,17p.2例,11q-1例,+12有1例,6q-1例,t(14,16)1例。2例患者发生了自身免疫性溶血性贫血(AIHA)。1例患者发生了Richter转化,肿大淋巴结活检显示部分区域为弥漫性大B细胞淋巴瘤,其高表达CD20、CDl9、CD22。结论:慢性淋巴细胞白血病具有其典型的临床表现、免疫表型及遗传学改变,并且对诊断及治疗有重要意义。  相似文献   

15.
CD4+CD25+ T cells represent a unique population of "professional" suppressor T cells that prevent induction of organ-specific autoimmune disease. In vitro, CD4+CD25+ cells were anergic to simulation via the TCR and when cultured with CD4+CD25- cells, markedly suppressed polyclonal T cell proliferation by specifically inhibiting the production of IL-2. Suppression was cytokine independent, cell contact dependent, and required activation of the suppressors via their TCR. Further characterization of the CD4+CD25+ population demonstrated that they do not contain memory or activated T cells and that they act through an APC-independent mechanism. CD4+CD25+ T cells isolated from TCR transgenic (Tg) mice inhibited responses of CD4+CD25- Tg T cells to the same Ag, but also inhibited the Ag-specific responses of Tg cells specific for a distinct Ag. Suppression required that both peptide/MHC complexes be present in the same culture, but the Ags could be presented by two distinct populations of APC. When CD4+CD25+ T cells were cultured with anti-CD3 and IL-2, they expanded, remained anergic, and in the absence of restimulation via their TCR, suppressed Ag-specific responses of CD4+CD25- T cells from multiple TCR transgenics. Collectively, these data demonstrate that CD4+CD25+ T cells require activation via their TCR to become suppressive, but once activated, their suppressor effector function is completely nonspecific. The cell surface molecules involved in this T-T interaction remain to be characterized.  相似文献   

16.
17.
T cell responses to myelin basic protein (MBP) are potentially involved in the pathogenesis of multiple sclerosis (MS). Immunization with irradiated MBP-reactive T cells (T cell vaccination) induces anti-idiotypic T cell responses that suppress circulating MBP-reactive T cells. This T cell-T cell interaction is thought to involve the recognition of TCR expressed on target T cells. The study was undertaken to define the idiotypic determinants responsible for triggering CD8+ cytotoxic anti-idiotypic T cell responses by T cell vaccination in patients with MS. A panel of 9-mer synthetic TCR peptides corresponding to complementarity-determining region 2 (CDR2) and CDR3 of the immunizing MBP-reactive T cell clones were used to isolate anti-idiotypic T cell lines from immunized MS patients. The resulting TCR-specific T cell lines expressed exclusively the CD8 phenotype and recognized preferentially the CDR3 peptides. CDR3-specific T cell lines were found to lyze specifically autologous immunizing MBP-reactive T cell clones. The findings suggest that CDR3-specific T cells represented anti-idiotypic T cell population induced by T cell vaccination. In contrast, the CDR2 peptides were less immunogenic and contained cryptic determinants as the CDR2-specific T cell lines did not recognize autologous immunizing T cell clones from which the peptide sequence was derived. The study has important implications in our understanding of in vivo idiotypic regulation of autoimmune T cells and the regulatory mechanism underlying T cell vaccination.  相似文献   

18.
In chronic lymphocytic leukemia (CLL), malignant B cells and nonmalignant T cells exhibit dysfunction. We previously demonstrated that infection of CLL cells with modified vaccinia Ankara (MVA) expressing the costimulatory molecules B7-1, ICAM-1, and LFA-3 (designated TRICOM) increased expression of these costimulatory molecules on the surface of CLL cells and thus augmented their antigen-presenting capability. Here, we evaluate the effect of MVA-TRICOM-modified CLL cells on T cells. Following incubation with irradiated MVA-TRICOM-modified CLL cells, allogeneic and autologous CD4+ and CD8+ T cells expressed significantly higher levels of B7-1, ICAM-1, and LFA-3. We show that this increase was the result of physical acquisition from the antigen-presenting cells (APCs), and that purified T cells that acquired costimulatory molecules from MVA-TRICOM-modified CLL cells were able to stimulate the proliferation of untreated T cells. These results demonstrate for the first time that T cells from CLL patients can acquire multiple costimulatory molecules from autologous CLL cells and can then act as APCs themselves. Given the immunodeficiencies characteristic of CLL, enhancing the antigen-presenting function of CLL cells and T cells simultaneously could be a distinct advantage in the effort to elicit antitumor immune responses. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
B cell-deficient nonobese diabetic (NOD) mice are protected from the development of spontaneous autoimmune diabetes, suggesting a requisite role for Ag presentation by B lymphocytes for the activation of a diabetogenic T cell repertoire. This study specifically examines the importance of B cell-mediated MHC class II Ag presentation as a regulator of peripheral T cell tolerance to islet beta cells. We describe the construction of NOD mice with an I-Ag7 deficiency confined to the B cell compartment. Analysis of these mice, termed NOD BCIID, revealed the presence of functionally competent non-B cell APCs (macrophages/dendritic cells) with normal I-Ag7 expression and capable of activating Ag-reactive T cells. In addition, the secondary lymphoid organs of these mice harbored phenotypically normal CD4+ and CD8+ T cell compartments. Interestingly, whereas control NOD mice harboring I-Ag7-sufficient B cells developed diabetes spontaneously, NOD BCIID mice were resistant to the development of autoimmune diabetes. Despite their diabetes resistance, histologic examination of pancreata from NOD BCIID mice revealed foci of noninvasive peri-insulitis that could be intentionally converted into a destructive process upon treatment with cyclophosphamide. We conclude that I-Ag7-mediated Ag presentation by B cells serves to overcome a checkpoint in T cell tolerance to islet beta cells after their initial targeting has occurred. Overall, this work indicates that the full expression of the autoimmune potential of anti-islet T cells in NOD mice is intimately regulated by B cell-mediated MHC class II Ag presentation.  相似文献   

20.
We have used T cells bearing TCRs that are closely related in sequence as probes to detect conformational variants of peptide-MHC complexes in murine experimental autoimmune encephalomyelitis in H-2(u) mice. The N-terminal epitope of myelin basic protein (MBP) is immunodominant in this model. Our studies have primarily focused on T cell recognition of a position 4 analog of this peptide (MBP1-9[4Y]) complexed with I-A(u). Using site-directed mutagenesis, we have mapped the functionally important complementarity determining region residues of the 1934.4 TCR Valpha domain. One of the resulting mutants (Tyr(95) to alanine in CDR3alpha, Y95A) has interesting properties: relative to the parent wild-type TCR, this mutant poorly recognizes Ag complexes generated by pulsing professional APCs (PL-8 cells) with MBP1-9[4Y] while retaining recognition of MBP1-9[4Y]-pulsed unconventional APCs or insect cell-expressed complexes of I-A(u) containing tethered MBP1-9[4Y]. Insect cell expression of recombinant I-A(u) with covalently tethered class II-associated invariant chain peptide or other peptides which bind relatively weakly, followed by proteolytic cleavage of the peptide linker and replacement by MBP1-9[4Y] in vitro, results in complexes that resemble peptide-pulsed PL-8 cells. Therefore, the distinct conformers can be produced in recombinant form. T cells that can distinguish these two conformers can also be generated by the immunization of H-2(u) mice, indicating that differential recognition of the conformers is observed for responding T cells in vivo. These studies have relevance to understanding the molecular details of T cell recognition in murine experimental autoimmune encephalomyelitis. They are also of particular importance for the effective use of multimeric peptide-MHC complexes to characterize the properties of Ag-specific T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号