首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Diffuse large B-cell lymphoma (DLBCL) is a common and often fatal malignancy. Immunochemotherapy, a combination of rituximab to standard chemotherapy, has resulted in improved survival. However a substantial proportion of patients still fail to reach sustained remission. We have previously demonstrated that autocrine brain-derived neurotrophic factor (BDNF) production plays a function in human B cell survival, at least partly via sortilin expression. As neurotrophin receptor (Trks) signaling involved activation of survival pathways that are inhibited by rituximab, we speculated that neurotrophins may provide additional support for tumour cell survival and therapeutic resistance in DLBCL.

Methodology/Principal Findings

In the present study, we used two DLBCL cell lines, SUDHL4 and SUDHL6, known to be respectively less and more sensitive to rituximab. We found by RT-PCR, western blotting, cytometry and confocal microscopy that both cell lines expressed, in normal culture conditions, BDNF and to a lesser extent NGF, as well as truncated TrkB and p75NTR/sortilin death neurotrophin receptors. Furthermore, BDNF secretion was detected in cell supernatants. NGF and BDNF production and Trk receptor expression, including TrkA, are regulated by apoptotic conditions (serum deprivation or rituximab exposure). Indeed, we show for the first time that rituximab exposure of DLBCL cell lines induces NGF secretion and that differences in rituximab sensitivity are associated with differential expression patterns of neurotrophins and their receptors (TrkA). Finally, these cells are sensitive to the Trk-inhibitor, K252a, as shown by the induction of apoptosis. Furthermore, K252a exhibits additive cytotoxic effects with rituximab.

Conclusions/Significance

Collectively, these data strongly suggest that a neurotrophin axis, such NGF/TrkA pathway, may contribute to malignant cell survival and rituximab resistance in DLBCL.  相似文献   

2.
3.
Trypanosome trans-sialidase (TS) is a sialic acid-transferring enzyme and a novel ligand of tyrosine kinase (TrkA) receptors but not of neurotrophin receptor p75NTR. Here, we show that TS targets TrkB receptors on TrkB-expressing pheochromocytoma PC12 cells and colocalizes with TrkB receptor internalization and phosphorylation (pTrkB). Wild-type TS but not the catalytically inactive mutant TSDeltaAsp98-Glu induces pTrkB and mediates cell survival responses against death caused by oxidative stress in TrkA- and TrkB-expressing cells like those seen with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). These same effects are not observed in Trk deficient PC12(nnr5) cells, but are re-established in PC12(nnr5) cells stably transfected with TrkA or TrkB, are partially blocked by inhibitors of tyrosine kinase (K-252a), mitogen-activated protein/mitogen-activated kinase (PD98059) and completely blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Both TrkA- and TrkB-expressing cells pretreated with TS or their natural ligands are protected against cell death caused by serum/glucose deprivation or from hypoxia-induced neurite retraction. The cell survival effects of NGF and BDNF against oxidative stress are significantly inhibited by the neuraminidase inhibitor, Tamiflu. Together, these observations suggest that trypanosome TS mimics neurotrophic factors in cell survival responses against oxidative stress, hypoxia-induced neurite retraction and serum/glucose deprivation.  相似文献   

4.
5.
6.
Neurotrophic factors play a key role in ontogenetic changes of the nervous system’s functioning. The nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were most completely characterized over six decades of active studies of neurotrophin family protein structure and functions. A complex coordination of synthesis, transport, secretion, and interaction of proneurotrophins and mature neurotrophins, as well as their receptors (Trk tyrosine kinase and p75NTR receptor family proteins), cause a wide spectrum of their biological activity. In embryogenesis, neurotrophic factors are involved in the nervous system formation regulating both division, differentiation, survival, migration, and growth of neurons and their neurites and apoptosis activation. In the mature brain, neurotrophins are involved in the maintenance of the functional state of neurons and glial cells and synaptic plasticity regulation. It is natural that the development of processes typical for aging and neurodegenerative diseases is closely associated with a change in the brain neurotrophic supply caused both by a damage in neurotrophin metabolism and modification of their availability due to a change in the neuron microenvironment. The restoration of neurotrophic factor balance in the brain is considered as a promising approach to the therapy of neurodegenerative disorders.  相似文献   

7.
p75 neurotrophin receptor (p75NTR) belongs to the TNF-receptor superfamily and signals apoptosis in many cell settings. In human epidermis, p75NTR is mostly confined to the transit-amplifying (TA) sub-population of basal keratinocytes. Brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4), which signals through p75NTR, induces keratinocyte apoptosis, whereas β-amyloid, a ligand for p75NTR, triggers caspase-3 activation to a greater extent in p75NTR transfected cells. Moreover, p75NTR co-immunoprecipitates with NRAGE, induces the phosphorylation of c-Jun N-terminal kinase (JNK) and reduces nuclear factor kappa B (NF-κB) DNA-binding activity. p75NTR also mediates pro-NGF-induced keratinocyte apoptosis through its co-receptor sortilin. Furthermore, BDNF or β-amyloid cause cell death in TA, but not in keratinocyte stem cells (KSCs) or in p75NTR silenced TA cells. p75NTR is absent in lesional psoriatic skin and p75NTR levels are significantly lower in psoriatic than in normal TA keratinocytes. The rate of apoptosis in psoriatic TA cells is significantly lower than in normal TA cells. BDNF or β-amyloid fail to induce apoptosis in psoriatic TA cells, and p75NTR retroviral infection restores BDNF- or β-amyloid-induced apoptosis in psoriatic keratinocytes. These results demonstrate that p75NTR has a pro-apoptotic role in keratinocytes and is involved in the maintenance of epidermal homeostasis.  相似文献   

8.
Li C  Li C  Zhu X  Wang C  Liu Z  Li W  Lu C  Zhou X 《Theriogenology》2012,77(3):636-643
The neurotrophin family of proteins promote the survival and differentiation of nerve cells and are thought to play an important role in development of reproductive tissues. The objective of the present study was to detect the presence of Brain-derived neurotrophic factor (BDNF) and its receptor TrkB in bovine sperm, and explore the potential role of BDNF in sperm function. We demonstrated that both the neorotrophin BDNF and the tyrosine kinase receptor protein TrkB were expressed in ejaculated bovine sperm. Furthermore, BDNF per se was secreted by sperm. Insulin and leptin secretion by bovine sperm were increased (P < 0.01) when cells were exposed to exogenous BDNF, whereas insulin was decreased by K252a. Therefore, we inferred that BDNF could be a regulator of sperm secretion of insulin and leptin through the TrkB receptor. Sperm viability and mitochondrial activity were both decreased (P < 0.05) when the BDNF/TrkB signaling pathway was blocked with K252a. Furthermore, BDNF promoted apoptosis of bovine sperm through TrkB binding (P < 0.05). In conclusion, these observations provided evidence that BDNF secreted by bovine sperm was important in regulation of insulin and leptin secretion in ejaculated bovine sperm. Furthermore, BDNF may affect sperm mitochondrial activity and apoptosis, as well as their viability.  相似文献   

9.
Recent studies have shown that GABA(B) receptors play more than a classical inhibitory role and can function as an important synaptic maturation signal early in life. In a previous study, we reported that GABA(B) receptor activation triggers secretion of brain-derived neurotrophic factor (BDNF) and promotes the functional maturation of GABAergic synapses in the developing rat hippocampus. To identify the signalling pathway linking GABA(B) receptor activation to BDNF secretion in these cells, we have now used the phosphorylated form of the cAMP response element-binding protein as a biological sensor for endogenous BDNF release. In the present study, we show that GABA(B) receptor-induced secretion of BDNF relies on the activation of phospholipase C, followed by the formation of diacylglycerol, activation of protein kinase C, and the opening of L-type voltage-dependent Ca(2+) channels. We further show that once released by GABA(B) receptor activation, BDNF increases the membrane expression of β(2/3) -containing GABA(A) receptors in neuronal cultures. These results reveal a novel function of GABA(B) receptors in regulating the expression of GABA(A) receptor through BDNF-tropomyosin-related kinase B receptor dependent signalling pathway.  相似文献   

10.
Intracerebral inoculation with mouse hepatitis virus strain A59 results in viral replication in the CNS and liver. To investigate whether B cells are important for controlling mouse hepatitis virus strain A59 infection, we infected muMT mice who lack membrane-bound IgM and therefore mature B lymphocytes. Infectious virus peaked and was cleared from the livers of muMT and wild-type mice. However, while virus was cleared from the CNS of wild-type mice, virus persisted in the CNS of muMT mice. To determine how B cells mediate viral clearance, we first assessed CD4(+) T cell activation in the absence of B cells as APC. CD4(+) T cells express wild-type levels of CD69 after infection in muMT mice. IFN-gamma production in response to viral Ag in muMT mice was also normal during acute infection, but was decreased 31 days postinfection compared with that in wild-type mice. The role of Ab in viral clearance was also assessed. In wild-type mice plasma cells appeared in the CNS around the time that virus is cleared. The muMT mice that received A59-specific Ab had decreased virus, while mice with B cells deficient in Ab secretion did not clear virus from the CNS. Viral persistence was not detected in FcR or complement knockout mice. These data suggest that clearance of infectious mouse hepatitis virus strain A59 from the CNS requires Ab production and perhaps B cell support of T cells; however, virus is cleared from the liver without the involvement of Abs or B cells.  相似文献   

11.
Growing evidences have revealed that the proforms of several neurotrophins including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT3), by binding to p75 neurotrophin receptor and sortilin, could induce neuronal apoptosis and are implicated in the pathogenesis of various neurodegenerative diseases. The glial cell line-derived neurotrophic factor (GDNF), one of the most potent useful neurotrophic factors for the treatment of Parkinson’s disease (PD), is firstly synthesized as the proform (proGDNF) like other neurotrophin NGF, BDNF, and NT3. However, little is known about proGDNF expression and secretion under physiological as well as pathological states in vivo or in vitro. In this study, we investigated the expression profile and dynamic changes of proGDNF in brains of aging and PD animal models, with the interesting finding that proGDNF was a predominant form of GDNF with molecular weight of about 36 kDa by reducing and nonreducing immunoblots in adult brains and was unregulated in the aging, lipopolysaccharide (LPS), and 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) insult. We further provided direct evidence that accompanied activation of primary astrocytes as well as C6 cell line induced by LPS stimulation, proGDNF was increasingly synthesized and released as the uncleaved form in cell culture. Taken together, our results strongly suggest that proGDNF may be a biologically active protein and has specific effects on the cells close to its secreting site, and a potentially important role of proGDNF signaling in the brains, in the glia–neuronal interaction or in the pathogenesis of PD, should merit further investigation.  相似文献   

12.
Insulin-like growth factor-1 (IGF-1) and brain-derived neurotrophic factor (BDNF) are trophic factors required for the viability and normal functions of various neuronal cells. However, the detailed intracellular mechanism(s) involved in these effects in neuronal cells remains to be fully elucidated. In present study, the respective intracellular signaling pathway induced by IGF-1 and BDNF and their possible role in neuronal survival were investigated. Both IGF-1 and BDNF protected hippocampal neurons from serum deprivation-induced death with IGF-1 apparently being more potent. Western blot analyses showed that both IGF-1 and BDNF induced the activation of the phosphatidylinositide 3 kinase (PI3)/Akt (protein kinase B) kinase and the mitogen-activated protein kinase (MAPK) pathways. The phosphorylation of Akt and its downstream target, FKHRL1, induced by IGF-1 was rapid and sustained while that of MAPK was transient. The reverse situation was observed for BDNF. Moreover, IGF-1 potently induced the tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and its association with PI3 kinase while BDNF was weak in these assays. In contrast, the tyrosine phosphorylation of Shc proteins was dramatically stimulated by BDNF, with IGF-1 having only a minimal effect. Most interestingly, only the inhibitor of the PI3K/Akt pathway, LY294002, was able to block the survival effects of both IGF-1 and BDNF; an inhibitor of the MAPK pathway inhibitor, PD98059, being ineffective. Taken together, these data reveal that the survival properties of both IGF-1 and BDNF against serum deprivation are mediated by the activation of the PI3K/Akt, but not the MAPK, pathway in hippocampal neurons.  相似文献   

13.
As a member of neurotrophin family, brain derived neurotrophic factor (BDNF) plays critical roles in neuronal development, differentiation, synaptogenesis, and neural protection from the harmful stimuli. There have been reported that adenosine A2(A) receptor subtype is widely distributed in the brain regions, such as hippocampus, striatum, and cortex. Adenosine A2(A) receptor is colocalized with BDNF in brain regions and the functional interaction between A2(A) receptor stimulation and BDNF action has been suggested. In this study, we investigated the possibility that the activation of A2(A) receptor modulates BDNF production in rat primary cortical neuron. CGS21680, an adenosine A2(A) receptor agonist, induced BDNF expression and release. An antagonist against A2(A) receptor, ZM241385, prevented CGS21680-induced increase in BDNF production. A2(A) receptor stimulation induced the activation of Akt-GSK-3β signaling pathway and the blockade of the signaling pathway with specific inhibitors abolished the increase in BDNF production, possibly via modulation of ERK1/2-CREB pathway. The physiological roles of A2(A) receptor-induced BDNF production was demonstrated by the protection of neurons from the excitotoxicity and increased neurite extension as well as synapse formation from immature and mature neurons. Taken together, activation of A2(A) receptor regulates BDNF production in rat cortical neuron, which provides neuro-protective action.  相似文献   

14.
Brain derived neurotrophic factor, BDNF, is a neurotrophin best characterized for its survival and differentiative effects on neurons expressing the trk B receptor tyrosine kinase. Although many of these neurons are lost in the BDNF(-)(/)(- )mouse, the early postnatal lethality of these animals suggests a wider function for this growth factor. Here, we demonstrate that deficient expression of BDNF impairs the survival of endothelial cells in intramyocardial arteries and capillaries in the early postnatal period, although the embryonic vasculature can remodel into arteries, capillaries and veins. BDNF deficiency results in a reduction in endothelial cell-cell contacts and in endothelial cell apoptosis, leading to intraventricular wall hemorrhage, depressed cardiac contractility and early postnatal death. Vascular hemorrhage is restricted to cardiac vessels, reflecting the localized expression of BDNF and trk B by capillaries and arterioles in this vascular bed. Conversely, ectopic BDNF overexpression in midgestational mouse hearts results in an increase in capillary density. Moreover, BDNF activation of endogenous trk B receptors supports the survival of cardiac microvascular endothelial cells cultured from neonatal mice. These results establish an essential role for BDNF in maintaining vessel stability in the heart through direct angiogenic actions on endothelial cells.  相似文献   

15.
BAL17 B lymphoma cells, representing mature B lymphocytes, were used to analyze the role of tyrosine kinase in B cell activation. Anti-IgM-induced tyrosine phosphorylation was inhibited by preincubation of cells with tyrosine kinase inhibitor herbimycin A. Enzymatic activity of lyn protein was also inhibited by this drug, accompanied by down-regulation of p53lyn and p56lyn. However, a protein kinase C-mediated event was intact in the herbimycin A-pretreated cells, suggesting that the inhibitor acts selectively on tyrosine kinase. Anti-IgM failed to stimulate herbimycin A-pretreated cells to induce increases in inositol phospholipid metabolism or increased [Ca2+]i, whereas aluminum fluoride-induced metabolism was not altered. Moreover, membrane IgM density as revealed by flow cytometry was not changed by herbimycin A. These results indicate that tyrosine kinase(s) participates in the coupling of an Ag receptor cross-linkage to phospholipase C activation through a phosphorylation event in B lymphoma cells.  相似文献   

16.
Sepsis causes a marked apoptosis-induced depletion of lymphocytes. The degree of lymphocyte apoptosis during sepsis strongly correlates with survival. CD40, a member of the TNFR family, is expressed on APCs and has potent antiapoptotic activity. In this study we determined whether an agonistic Ab against CD40 could protect lymphocytes from sepsis-induced apoptosis. Secondly, we examined potential antiapoptotic mechanisms of the putative protection. Lastly, we aimed to determine whether anti-CD40 treatment could improve survival in sepsis. CD1 mice were made septic by the cecal ligation and puncture method and treated postoperatively with anti-CD40 Ab. Treatment with anti-CD40 completely abrogated sepsis-induced splenic B cell death and, surprisingly, decreased splenic and thymic T cell death as well (p < 0.001). To investigate the mechanism of protection of anti-CD40 therapy on T cells, CD40 receptor expression was examined. As anticipated, the CD40 receptor was constitutively expressed on B cells, but, unexpectedly, splenic and thymic T cells were found to express CD40 receptor during sepsis. Furthermore, CD4+CD8- T cells were the predominant subtype of T cells expressing CD40 receptor during sepsis. Additionally, the antiapoptotic protein Bcl-x(L) was found to be markedly increased in splenic B and T cells as well as in thymic T cells after treatment with anti-CD40 Ab (p < 0.0025). Lastly, mice that were made septic in a double injury model of sepsis had improved survival after treatment with anti-CD40 as compared with controls (p = 0.05). In conclusion, anti-CD40 treatment increases Bcl-x(L), provides nearly complete protection against sepsis-induced lymphocyte apoptosis, and improves survival in sepsis.  相似文献   

17.
Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity.  相似文献   

18.
19.
Epstein Barr virus (EBV) causes a highly prevalent and lifelong infection contributing to the development of some malignancies. In addition to the key role played by T cells in controlling this pathogen, NK cells mediate cytotoxicity and IFNγ production in response to EBV-infected B cells in lytic cycle, both directly and through antibody (Ab)-dependent activation. We recently described that EBV-specific Ab-dependent NK cell interaction with viral particles (VP) bound to B cells triggered degranulation and TNFα secretion but not B cell lysis nor IFNγ production. In this report we show that NK cell activation under these conditions reduced B cell transformation by EBV. NK cells eliminated VP from the surface of B cells through a specific and active process which required tyrosine kinase activation, actin polymerization and Ca2+, being independent of proteolysis and perforin. VP were displayed at the NK cell surface before being internalized and partially shuttled to early endosomes and lysosomes. VP transfer was encompassed by a trogocytosis process including the EBV receptor CD21, together with CD19 and CD20. Our study reveals a novel facet of the antibody-dependent NK cell mediated response to this viral infection.  相似文献   

20.
The neurotrophins mediate their effects through binding to two classes of receptors, a tyrosine kinase receptor, member of the Trk family, and the low-affinity neurotrophin receptor, p75LNGFR, of as yet undefined signalling capacity. The need for a two-component receptor system in neurotrophin signalling is still not understood. Using site-directed mutagenesis, we have identified positively charged surfaces in BDNF, NT-3 and NT-4 that mediate binding to p75LNGFR. Arg31 and His33 in NT-3, and Arg34 and Arg36 in NT-4, located in an exposed hairpin loop, were found to be essential for binding to p75LNGFR. In BDNF, however, positively charged residues critical for p75LNGFR binding (Lys95, Lys96 and Arg97) were found in a spatially close but distinct loop region. Models of each neurotrophin were built using the coordinates of NGF. Analysis of their respective electrostatic surface potentials revealed similar clusters of positively charged residues in each neurotrophin but with differences in their precise spatial locations. Disruption of this positively charged interface abolished binding to p75LNGFR but not activation of cognate Trk receptors or biological activity in Trk-expressing fibroblasts. Unexpectedly, loss of low-affinity binding in NT-4, but not in BDNF or NT-3, affected receptor activation and biological activity in neuronal cells co-expressing p75LNGFR and TrkB, suggesting a role for p75LNGFR in regulating biological responsiveness to NT-4. These findings reveal a possible mechanism of ligand discrimination by p75LNGFR and suggest this receptor may selectively modulate the biological actions of specific neurotrophin family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号