首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Mast cells are critical for allergic reactions, but also for innate or acquired immunity and inflammatory conditions that worsen by stress. Corticotropin-releasing hormone (CRH), which activates the hypothalamic-pituitary-adrenal axis under stress, also has proinflammatory peripheral effects possibly through mast cells. We investigated the expression of CRH receptors and the effects of CRH in the human leukemic mast cell (HMC-1) line and human umbilical cord blood-derived mast cells. We detected mRNA for CRH-R1alpha, 1beta, 1c, 1e, 1f isoforms, as well as CRH-R1 protein in both cell types. CRH-R2alpha (but not R2beta or R2gamma) mRNA and protein were present only in human cord blood-derived mast cells. CRH increased cAMP and induced secretion of vascular endothelial growth factor (VEGF) without tryptase, histamine, IL-6, IL-8, or TNF-alpha release. The effects were blocked by the CRH-R1 antagonist antalarmin, but not the CRH-R2 antagonist astressin 2B. CRH-stimulated VEGF production was mediated through activation of adenylate cyclase and increased cAMP, as evidenced by the fact that the effect of CRH was mimicked by the direct adenylate cyclase activator forskolin and the cell-permeable cAMP analog 8-bromo-cAMP, whereas it was abolished by the adenylate cyclase inhibitor SQ22536. This is the first evidence that mast cells express functional CRH receptors and that CRH can induce VEGF secretion selectively. CRH-induced mast cell-derived VEGF could, therefore, be involved in chronic inflammatory conditions associated with increased VEGF, such as arthritis or psoriasis, both of which worsen by stress.  相似文献   

3.
Activation of CRH receptors type 1 (CRH-R1) by CRH or urocortin (UCN) leads to stimulation of multiple G proteins with consequent effects on diverse signaling cascades in a tissue-specific manner. In human myometrium and human embryonic kidney (HEK)293 cells, binding of UCN to CRH-R1alpha receptors activates both the Gs and Gq, leading to activation of the adenylyl cyclase/protein kinase A (PKA) and the phospholipase C/protein kinase C and ERK1/2 signaling pathways, respectively. The overall result of these signals is often unpredictable, as these two signaling pathways can interact in many cellular systems, with either potentiation or inhibition of ERK1/2 activity. In the present studies we investigated potential signaling interactions after stimulation of CRH-R1alpha receptors in human cultured pregnant myometrial cells or HEK293 cells overexpressing recombinant CRH-R1alpha receptors. We found that the adenylyl cyclase/PKA pathway has the capacity to markedly decrease UCN-induced ERK1/2 activation, and that these effects were due in part to the ability of PKA to phosphorylate the CRH-R1alpha at position Ser(301) in the third intracellular loop. Mutant CRH-R1alpha receptors with substitutions at position Ser(301), which is the only potential PKA phosphorylation site, were resistant to PKA-dependent phosphorylation and showed altered signaling characteristics, which were dependent upon the amino acid substitution at this position.We conclude that Ser(301), which is located in the third intracellular loop of CRH-R1alpha, is critical for efficient coupling of the receptor to G proteins and to second messenger generation. Phosphorylation by PKA prevents maximal coupling of the CRH-R1alpha to Gq-protein, and thereby reduces activation of ERK 1/2.  相似文献   

4.
Zhang LM  Wang YK  Hui N  Sha JY  Chen X  Guan R  Dai L  Gao L  Yuan WJ  Ni X 《Life sciences》2008,83(17-18):620-624
AIMS: Corticotropin-releasing hormone (CRH) has been implicated in the mechanisms controlling human parturition. The aims of the present study were to explore effects of CRH on contractility of human term myometrium and compare these effects in labouring and non-labouring myometrial strips. MAIN METHODS: The cumulative effects of CRH (10(-10) to 10(-7) mol/l) on the spontaneous contractility of labouring and non-labouring myometrial samples were evaluated using isometric tension recordings. KEY FINDINGS: CRH exhibited a concentration-dependent relaxant effect on spontaneous contractions in non-labouring term myometrium. This effect was mediated principally via a reduction in the amplitude rather than any changes in the frequency of contractions. The CRH-induced inhibitory effect on contractility could be blocked by pre-treatment with a CRH-R1 antagonist antalarmin, but not by pre-treatment with the CRH-R2 antagonist astressin 2B. CRH had no effect on spontaneous contractions in the labouring myometrium, as no change in either the amplitude or the frequency was observed. SIGNIFICANCE: Our findings indicate that CRH acts on CRH-R1 to inhibit spontaneous contractions in term myometrium from women who were not undergoing labour, but not those who were undergoing labour, supporting the hypothesis that CRH exerts dual effect on myometrium during pregnancy.  相似文献   

5.
Immunocytes from the mollusc Mytilus galloprovincialis express corticotropin-releasing hormone (CRH) receptor subtype (CRH-R1 and CRH-R2)-like mRNAs. Using computer-assisted microscopic image analysis, we have found that exogenous CRH provokes changes in the cellular shape of immunocytes, and that this response is extracellular Ca(2+)-dependent. The various inhibitors of transduction signaling pathways, i.e. suramin sodium, 2', 5'-dideoxyadenosine, neomycin sulfate, calphostin C, H-89, and wortmannin, completely or partially inhibit these changes. The present findings demonstrate that PKA, PKC, and PKB/Akt are involved in CRH-induced cell shape changes in immunocytes, and that the cellular effect of CRH needs the synergistic action of the two second messengers, cAMP and IP(3).  相似文献   

6.
7.
8.
We have previously demonstrated that corticotropin-releasing hormone (CRH) receptor 1 (CRH-R1) is functionally expressed in rat microglia. In the present study, we show that CRH, acting on CRH-R1, promoted cell proliferation and tumour necrosis factor-alpha (TNF-alpha) release in cultured rat microglia. Exogenous CRH resulted in an increase in BrdU incorporation compared with control cells, which was observed in a range of concentrations of CRH between 10 and 500 nm, with a maximal response at 50 nm. The effect of CRH on BrdU incorporation was inhibited by a CRH antagonist astressin but not by a cAMP-dependent protein kinase inhibitor H89. Exposure of microglial cells to CRH resulted in a transient and rapid increase in TNF-alpha release in a dose-dependent manner. In the presence of astressin, the effects of CRH on TNF-alpha release were attenuated. CRH effects on TNF-alpha release were also inhibited by specific inhibitors of MEK, the upstream kinase of the extracellular signal-regulated protein kinase (ERK) (PD98059) or p38 mitogen-activated protein kinase (SB203580), but not by H89. Furthermore, CRH induced rapid phosphorylation of ERK and p38 kinases. Astressin, PD98059, and SB230580 were able to inhibit CRH-induced kinase phosphorylation. These results suggest that CRH induces cell proliferation and TNF-alpha release in cultured microglia via MAP kinase signalling pathways, thereby providing insight into the interactions between CRH and inflammatory mediators.  相似文献   

9.
10.
11.
12.

Background  

Preterm birth is still the leading cause of neonatal morbidity and mortality. The level of corticotropin-releasing hormone (CRH) is known to be significantly elevated in the maternal plasma at preterm birth. Although, CRH, CRH-binding protein (CRH-BP), CRH-receptor 1 (CRH-R1) and CRH-R2 have been identified both at mRNA and protein level in human placenta, deciduas, fetal membranes, endometrium and myometrium, no corresponding information is yet available on cervix. Thus, the aim of this study was to compare the levels of the mRNA species coding for CRH, CRH-BP, CRH-R1 and CRH-R2 in human cervical tissue and myometrium at preterm and term labor and not in labor as well as in the non-pregnant state, and to localize the corresponding proteins employing immunohistochemical analysis.  相似文献   

13.
14.
15.
The type 1 CRH receptor (CRH-R1) plays a fundamental role in homeostatic adaptation to stressful stimuli. CRH-R1 gene activity is regulated through alternative splicing and generation of various CRH-R1 mRNA variants. One such variant is the CRH-R1d, which has 14 amino acids missing from the putative seventh transmembrane domain due to exon 13 deletion, a splicing event common to other members of the B1 family of G protein-coupled receptors. In this study, using overexpression of recombinant receptors in human embryonic kidney 293 and myometrial cells, we showed by confocal microscopy that in contrast to CRH-R1alpha, the R1d variant is primarily retained in the cytoplasm, although some cell membrane expression is also evident. Use of antibodies against the CRH-R1 C terminus in nonpermeabilized cells showed that membrane-expressed CRH-R1d contains an extracellular C terminus. Interestingly, treatment of CRH-R1d-expressing cells with CRH (100 nM) for 45-60 min elicited functional responses associated with a significant reduction of plasma membrane receptor expression, redistribution of intracellular receptors, and increased receptor degradation. Site-directed mutagenesis studies identified the cassette G356-F358 within transmembrane domain 7 as crucial for CRH-R1alpha stability to the plasma membrane because deletion of this cassette caused substantial intracellular localization of CRH-R1 alpha. Most importantly, coexpression studies between CRH-R1d and CRH-R2beta demonstrated that the CRH-R2beta could partially rescue CRH-R1d membrane expression, and this was associated with a significant attenuation of urocotrin II-induced cAMP production and ERK1/2 and p38MAPK activation, suggesting that CRH-R1d might specifically induce heterologous impairment of CRH-R2 signaling responses. This mechanism appears to involve accelerated CRH-R2beta endocytosis.  相似文献   

16.
Previous study has shown that there is a functional link between the transient receptor potential vanilloid type 1 (TRPV1) receptor and protease-activated receptor-4 (PAR4) in modulation of inflammation and pain. Capsaicin activation of TRPV1 is involved in enhancement of the expression of TRPV1 in mRNA and protein in dorsal root ganglion (DRG) in vivo. Whether capsaicin could influence expression of PAR4 in primary sensory neurons remains unknown. In the present study, expression of PAR4 in cultured rat DRG neurons was observed using immunofluorescence, real-time PCR and Western blots to examine whether increases in PAR4 mRNA and protein levels are induced by capsaicin treatment with or without pre-treatment of forskolin, a cyclic AMP/protein kinase A (cAMP/PKA) activator or PKA inhibitor fragment 14-22 (PKI14-22), a PKA inhibitor. Capsaicin treatment of cultured DRG neurons significantly increased the expression of PAR4 in mRNA and protein levels. The percentage of PAR4-, TRPV1-immunoreactive neurons and their co-localization in cultured DRG neurons increased significantly in the presence of capsaicin as compared with that in the absence of capsaicin. Compared with capsaicin-only group, pre-incubation with forskolin strongly enhanced the capsaicin-induced increase of PAR4 in mRNA and protein levels. Consistent with the involvement of PKA in the modulation of PAR4 expression, this evoked expression both at mRNA and protein levels was significantly inhibited after PKA was inhibited by pre-incubation with PKI14-22. Taken together, these results provide evidence that TRPV1 activation significantly increases the expression of PAR4 mRNA and protein levels in primary cultures of DRG neurons after capsaicin incubation. Effects of capsaicin on PAR4 expression appear to be mediated by cAMP/PKA signal pathways in DRG neurons.  相似文献   

17.
In most target tissues, the adenylyl cyclase/cAMP/PKA, the extracellular signal regulated kinase and the protein kinase B/Akt are the main pathways employed by the type 2 corticotropin-releasing hormone receptor to mediate the biological actions of urocortins (Ucns) and CRH. To decipher the molecular determinants of CRH-R2 signaling, we studied the signaling pathways in HEK293 cells overexpressing recombinant human CRH-R2β receptors. Use of specific kinase inhibitors showed that the CRH-R2β cognate agonist, Ucn 2, activated extracellular signal regulated kinase in a phosphoinositide 3-kinase and cyclic adenosine monophosphate/PKA-dependent manner with contribution from Epac activation. Ucn 2 also induced PKA-dependent association between AKAP250 and CRH-R2β that appeared to be necessary for extracellular signal regulated kinase activation. PKB/Akt activation was also mediated via pertussis toxin-sensitive G-proteins and PI3-K activation but did not require cAMP/PKA, Epac or protein kinase C for optimal activation. Potential feedback mechanisms that target the CRH-R2β itself and modulate receptor trafficking and endocytosis were also investigated. Indeed, our results suggested that inhibition of either PKA or extracellular signal regulated kinase pathway accelerates CRH-R2β endocytosis. Furthermore, Ucn 2-activated extracellular signal regulated kinase appeared to target β-arrestin1 and modulate, through phosphorylation at Ser412, β-arrestin1 translocation to the plasma membrane and CRH-R2β internalization kinetics. Loss of this “negative feedback” mechanism through inhibition of the extracellular signal regulated kinase activity resulted in significant attenuation of Ucn 2-induced cAMP response, whereas Akt phosphorylation was not affected by altered receptor endocytosis. These findings reveal a complex interplay between the signaling molecules that allow “fine-tuning” of CRH-R2β functional responses and regulate signal integration.  相似文献   

18.
CRH exerts its actions via activation of specific G protein-coupled receptors, which exist in two types, CRH-R1 and CRH-R2, and arise from different genes with multiple spliced variants. RT-PCR amplification of CRH receptor sequences from human myometrium and fetal membranes yielded cDNAs that encode a novel CRH-R type 1 spliced variant. This variant (CRH-R1d) is present in the human pregnant myometrium at term only, which suggests a physiologically important role at the end of human pregnancy and labor. The amino acid sequence of CRH-R1d is identical to the CRH-R1alpha receptor except that it contains an exon deletion resulting in the absence of 14 amino acids in the predicted seventh transmembrane domain. Binding studies in HEK-293 cells stably expressing the CRH-R1d or CRH-R1alpha receptors revealed that the deletion does not change the binding characteristics of the variant receptor. In contrast, studies on the G protein activation demonstrated that CRH-R1d is not well coupled to the four subtypes of G proteins (G(s), G(i), G(o), G(q)) that CRH-R1alpha can activate. These data suggest that although the deleted segment is not important for CRH binding, it plays a crucial role in CRH receptor signal transduction. Second messenger studies of the variant receptor showed that CRH and CRH-like peptides can stimulate the adenylate cyclase system, with reduced sensitivity and potency by 10-fold compared with the CRH-R1alpha. Furthermore, CRH failed to stimulate inositol trisphosphate production. Coexpression studies between the CRH-R1d or CRH-R1alpha showed that this receptor does not play a role as a dominant negative receptor for CRH.  相似文献   

19.
Previously we documented that human epidermis exclusively expresses corticotropin releasing hormone receptor 1 (CRH-R1). To define the role of CRH in the epidermis, we investigated its effects on differentiation of normal human adult epidermal keratinocytes. Thus, CRH inhibited proliferation in a dose dependent fashion and significantly decreased Ki-67 antigen expression. This effect was independent of either the presence or the absence of growth factors in the medium. Flow cytometry analysis demonstrated that CRH inhibited the transition from G0/1 to S phase of the cell cycle, which was accompanied by an increased expression of cdk inhibitor p16 (Ink4a) protein. The antiproliferative effect was attenuated by protein kinase C inhibitor (GF109203X) but not by H89 (protein kinase A inhibitor), PD98059, or SB203580 (MAP kinase inhibitors). The cell cycle withdrawal was associated with the induction of keratinocyte differentiation. Thus, CRH stimulated the expression of cytokeratin 1 and involucrin, and inhibited cytokeratin 14 on both mRNA and protein levels. It also increased cell granularity and cell size. Furthermore, CRH induced signal transduction cascade that included stimulation of inositol 1,4,5-triphosphate, which was time and dose dependent. CRH also increased activator protein-1 DNA binding activity with JunD identified as the most important element. Thus, activation of CRH-R1 induces a non-random and sequential signal transduction cascade governing both keratinocyte differentiation and the inhibition of cell proliferation through G0/1 arrest. We propose that this program, triggered by CRH interaction with CRH-R1, includes induction of a transduction pathway involving the sequential activation of phospholipase C, protein kinase C, activator protein-1 (including Jun D), and p16.  相似文献   

20.
Mitsuma T  Matsumoto Y  Tomita Y 《Life sciences》2001,69(17):1991-1998
Corticotropin releasing hormone (CRH) is a potent mediator of stress responses and stress-induced disorders. Consistent with the broad range of roles proposed for CRH, high-affinity binding sites have been found in various peripheral sites. Recently two types of CRH specific receptor have been identified. Expression of CRH receptor 1 (CRH-R1) gene has been detected in human keratinocyte, but the effects of CRH to keratinocytes are still unknown. We tested whether CRH induced keratinocyte proliferation via interaction with CRH R1. Expression of CRH-R1 mRNA in the human keratinocyte and HSC-2, keratinocyte cell line, was analyzed by RT-PCR. The human keratinocyte and HSC-2 were recognized to have CRH-R1 expression ability. CRH signal is transduced into a cAMP-activated metabolic pathway via interaction with CRH-R1. Radioimmunoassay indicated that CRH binds to CRH receptor in HSC-2 cell when activating the metabolic pathway. Using thymidine incorporation assay, CRH had proliferative effect to HSC-2. This study suggests that CRH induces the proliferation of keratinocytes via interation with CRH receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号