首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
In this study, we examined the possible role of TNF-alpha and lymphotoxin (TNF-beta) as cofactors of macrophage activation. The results demonstrate that both TNF were capable of enhancing the cytostatic and cytolytic activity of murine peritoneal macrophages against Eb lymphoma cells. The potentiation of tumor cytotoxicity became apparent when macrophages from DBA/2 mice were suboptimally activated by either a T cell clone-derived macrophage-activating factor or by IFN-gamma plus LPS. Neither TNF-alpha nor TNF-beta could induce tumor cytotoxicity in IFN-gamma-primed macrophages, indicating that TNF cannot replace LPS as a triggering signal of activation. In LPS-resistant C3H/HeJ macrophages, which were unresponsive to IFN-gamma plus LPS, a supplementation with TNF fully restored activation to tumor cytotoxicity. Furthermore, TNF-alpha potentiated a variety of other functions in low-level activated macrophages such as a lactate production and release of cytotoxic factors. At the same time, TNF-alpha produced a further down-regulation of pinocytosis, tumor cell binding and RNA synthesis observed in activated macrophages. These data demonstrate new activities for both TNF-alpha and TNF-beta as helper factors that facilitate macrophage activation. In particular, the macrophage product TNF-alpha may serve as an autocrine signal to potentiate those macrophage functions that were insufficiently activated by lymphokines.  相似文献   

6.
Melioidosis is caused by the facultative intracellular bacterium, Burkholderia pseudomallei. Using C57BL/6 mice, we investigated the role of macrophages, TNF-alpha, TNF receptor-1 (TNFR1) and TNF receptor-2 (TNFR2) in host defense against B. pseudomallei using an experimental model of melioidosis. This study has demonstrated that in vivo depletion of macrophages renders C57BL/6 mice highly susceptible to intranasal infection with B. pseudomallei, with significant mortality occurring within 5 days of infection. Using knockout mice, we have also shown that TNF-alpha and both TNFR1 and TNFR2 are required for optimal control of B. pseudomallei infection. Compared with control mice, increased bacterial loads were demonstrated in spleen and liver of knockout mice at day 2 postinfection, correlating with increased inflammatory infiltrates comprised predominantly of neutrophils and widespread necrosis. Following infection with B. pseudomallei, mortality rates of 85.7%, 70% and 91.7% were observed for mice deficient in TNF-alpha, TNFR1 and TNFR2, respectively. Comparison of survival, bacterial loads and histology indicate that macrophages, TNF-alpha, TNFR1 or TNFR2 play a role in controlling rapid dissemination of B. pseudomallei.  相似文献   

7.
8.
9.
Acute ethanol (EtOH) intoxication has been identified as a risk factor for infectious complications in trauma and burn victims. However, the mechanism of this immune dysfunction has yet to be elucidated. The monocyte/macrophage production of cytokines, in particular IL-8 and TNF-alpha, is critical in the regulation of the acute inflammatory response to infectious challenge. IL-8 is a potent chemoattractant and activator of neutrophils. TNF-alpha, a proinflammatory cytokine, initiates expression of endothelial cell surface adhesion molecules and neutrophil migration. p38, a member of the mitogen-activated protein kinases, plays an important role in mediating intracellular signal transduction in endotoxin-induced inflammatory responses. We examined the effects of LPS and ethanol on p38 activation and the corresponding IL-8 and TNF-alpha production in human mononuclear cells. LPS-induced IL-8 and TNF-alpha production was inhibited in a similar pattern by pretreatment with either EtOH or SB202190 (1 microM), a specific inhibitor of p38 kinase. Western blot analysis, using a dual phospho-specific p38 mitogen-activated protein kinase Ab, demonstrated that EtOH pretreatment inhibited LPS-induced p38 activation. These results demonstrate that alcohol suppresses the normal host immune inflammatory response to LPS. This dysregulation appears to be mediated in part via inhibition of p38 activation. Inhibition of IL-8 and TNF-alpha production by acute EtOH intoxication may inhibit inflammatory focused neutrophil migration and activation and may be a mechanism explaining the increased risk of trauma- and burn-related infections.  相似文献   

10.
11.
12.
13.
Activation of Kupffer cells (KCs) by gut-derived lipopolysaccharide (LPS) and Toll-Like Receptors 4 (TLR4)-LPS-mediated increase in TNFα production has a central role in the pathogenesis of alcoholic liver disease. Micro-RNA (miR)-125b, miR-146a, and miR-155 can regulate inflammatory responses to LPS. Here we evaluated the involvement of miRs in alcohol-induced macrophage activation. Chronic alcohol treatment in vitro resulted in a time-dependent increase in miR-155 but not miR-125b or miR-146a levels in RAW 264.7 macrophages. Furthermore, alcohol pretreatment augmented LPS-induced miR-155 expression in macrophages. We found a linear correlation between alcohol-induced increase in miR-155 and TNFα induction. In a mouse model of alcoholic liver disease, we found a significant increase in both miR-155 levels and TNFα production in isolated KCs when compared with pair-fed controls. The mechanistic role of miR-155 in TNFα regulation was indicated by decreased TNFα levels in alcohol-treated macrophages after inhibition of miR-155 and by increased TNFα production after miR-155 overexpression, respectively. We found that miR-155 affected TNFα mRNA stability because miR-155 inhibition decreased whereas miR-155 overexpression increased TNFα mRNA half-life. Using the NF-κB inhibitors, MG-132 or Bay11-7082, we demonstrated that NF-κB activation mediated the up-regulation of miR-155 by alcohol in KCs. In conclusion, our novel data demonstrate that chronic alcohol consumption increases miR-155 in macrophages via NF-κB and the increased miR-155 contributes to alcohol-induced elevation in TNFα production via increased mRNA stability.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号