首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Interferon-gamma and lipopolysaccharide (IFN-gamma/LPS) induce expression of inducible nitric oxide synthase (iNOS) protein both in cells in vitro and in the brain in vivo. In cultured cells, excessive production of nitric oxide (NO) induces neuronal cell death. However, it is still unclear whether IFN-gamma and LPS might induce neuronal cell death in vivo. In this study, we examined the neuronal cell death and induction of major histocompatibility complex (MHC) antigens after microinjection of IFN-gamma/LPS into the rat hippocampus. Although microglia appeared morphologically ramified in the normal and vehicle-injected hippocampus, microinjection of IFN-gamma/LPS immediately induced the ameboid type. From days 1-7, iNOS was expressed in ameboid microglia surrounding the site of the microinjection. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells appeared among the granular neurons of the dentate gyrus on day 3 and peaked about 7 days after microinjection. When the NOS inhibitor N(G)-nitro-L-arginine (L-NA) was intraperitoneally administered prior to the microinjection, the number of TUNEL-positive neurons decreased in a L-NA dose-dependent manner. These results suggest that IFN-gamma/LPS induces delayed neuronal apoptosis in the hippocampus in vivo, and it possibly involves excessive NO production by iNOS. Thus, this animal model may be one of neurodegenerative with extensive inflammatory activation in the hippocampus.  相似文献   

2.
3.
Recognition of conserved features of infectious agents by innate pathogen receptors plays an important role in initiating the adaptive immune response. We have investigated early changes occurring among T cells after injection of TLR agonists into mice. Widespread, transient phenotypic activation of both naive and memory T cells was observed rapidly after injection of molecules acting through TLR3, -4, -7, and -9, but not TLR2. T cell activation was shown to be mediated by a combination of IFN-alphabeta, secreted by dendritic cells (DCs), and IFN-gamma, secreted by NK cells; notably, IFN-gamma-secreting NK cells expressed CD11c and copurified with DCs. Production of IFN-gamma by NK cells could be stimulated by DCs from TLR agonist-injected mice, and although soluble factors secreted by LPS-stimulated DCs were sufficient to induce IFN-gamma, maximal IFN-gamma production required both direct contact of NK cells with DCs and DC-secreted cytokines. In vitro, IFN-alphabeta, IL-18, and IL-12 all contributed to DC stimulation of NK cell IFN-gamma, whereas IFN-alphabeta was shown to be important for induction of T cell bystander activation and NK cell IFN-gamma production in vivo. The results delineate a pathway involving innate immune mediators through which TLR agonists trigger bystander activation of T cells.  相似文献   

4.
Paradoxically, while peripheral self-tolerance exists for constitutively presented somatic self Ag, self-peptide recognized in the context of MHC class II has been shown to sensitize T cells for subsequent activation. We have shown that MHC class II(+)CD86(+)CD40(-) DC, which can be generated from bone marrow in the presence of an NF-kappa B inhibitor, and which constitutively populate peripheral tissues and lymphoid organs in naive animals, can induce Ag-specific tolerance. In this study, we show that CD40(-) human monocyte-derived dendritic cells (DC), generated in the presence of an NF-kappa B inhibitor, signal phosphorylation of TCR zeta, but little proliferation or IFN-gamma in vitro. Proliferation is arrested in the G(1)/G(0) phase of the cell cycle. Surprisingly, responding T cells are neither anergic nor regulatory, but are sensitized for subsequent IFN-gamma production. The data indicate that signaling through NF-kappa B determines the capacity of DC to stimulate T cell proliferation. Functionally, NF-kappa B(-)CD40(-)class II(+) DC may either tolerize or sensitize T cells. Thus, while CD40(-) DC appear to "prime" or prepare T cells, the data imply that signals derived from other cells drive the generation either of Ag-specific regulatory or effector cells in vivo.  相似文献   

5.
6.
Immunotherapy of malignant diseases mediated by dendritic cells (DC) pulsed with tumor antigens ex vivo is a promising new tool in the individual treatment of malignant diseases. The present study focuses on the problem of how to optimize in vitro culture conditions and induce the maturation of DC with the capacity to induce antitumor immunity toward leukemic cells. DC were generated from peripheral mononuclear cells by co-cultivation with granulocyte/macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). Tumor antigens were added for 2 h after 7 days in culture. Irradiated leukemic blasts, blast lysate, apoptotic cells from the Jurkat cell line (T ALL) and their lysate were used in various concentrations for antigen pulsing. Harvested DC were phenotyped by flow cytometry, and viability was assessed using trypan blue exclusion (Annexin test). After the cells had been pulsed with tumor antigens and co-cultured with autologous lymphocytes, the production of interferon-gamma (IFN-gamma) and IL-12 was analyzed, and lymphocyte proliferative response and cytotoxicity against the target tumor cell line were assessed. The cultivation of monocytes under the described conditions led to the expression of surface markers typical of DC (i.e. CD83, CD86, HLA-DR, CD11c and CD40). Pulsation by antigens from leukemic cells further increased the cell populations expressing these markers. Antigen pulsation decreased the viability of generated DC depending on the increase in concentration of tumor antigens. Pulsed DC-lymphocyte interaction increased the proliferative response of lymphocytes and IFN-gamma production depending on the type of tumor antigens used for pulsation. The highest proliferative response was detected with DC pulsed with Jurkat cell-line lysate. Similarly to the proliferation assay, cytotoxic testing showed the highest efficiency of DC pulsed with Jurkat cell-line lysate in killing the target malignant cells. Our results show that an appropriate antigen concentration used for DC pulsing is one of the crucial factors in an effective treatment strategy, as high concentrations of tumor antigens induce apoptosis of DC, thereby rendering them non-functional. Under optimal conditions, pulsation by lysate from leukemic blasts induced the maturation of DC and led to an increase in the proliferation of autologous lymphocytes, to the production of Th1-cytokines and to the induction of cytotoxicity toward the leukemic cell line. These results are encouraging for the possible application of pulsed DC in the therapy of acute lymphoblastic leukemia.  相似文献   

7.
The induction and role of nitric oxide (NO) during antigen presentation by macrophages to T helper (Th) cell subsets was examined. When cultured with Th1 clones, macrophage APC produced NO only in the presence of cognate Ag, which in turn suppressed T cell proliferation. IFN-gamma production by the activated Th1 cells was essential for the induction of NO. Th2 cells presented with the same cognate Ag did not induce NO production and proliferated uninhibited. Coactivation of Th1 and Th2 cells specific for the same Ag indicated that Th2 cells did not inhibit NO production, but were sensitive to NO induced by stimulated Th1 cells. Antigenic activation of Th2 cells in the presence of rIFN-gamma resulted in NO-mediated inhibition of proliferation. Th2 cells provided only a cell-associated cofactor, whereas Th1 cells secreted a soluble cofactor for IFN-gamma as well, i.e., TNF-alpha. Finally, a role for IFN-gamma and NO during immune responses was studied in spleen cells obtained from immunized IFN-gamma(-/-) mice. NO production and subsequent inhibition of Ag-specific proliferation ex vivo was observed only after the addition of rIFN-gamma. These studies suggest an IFN-gamma-dependent regulatory role for NO during Ag-specific Th cell activation involving macrophages, with obvious implications for Th subset-dependent immune responses in general.  相似文献   

8.
9.
After corneal infection, herpes simplex virus type 1 (HSV-1) invades sensory neurons with cell bodies in the trigeminal ganglion (TG), replicates briefly, and then establishes a latent infection in these neurons. HSV-1 replication in the TG can be detected as early as 2 days after corneal infection, reaches peak titers by 3-5 days after infection, and is undetectable by 7-10 days. During the period of HSV-1 replication, macrophages and gammadelta TCR+ T lymphocytes infiltrate the TG, and TNF-alpha, IFN-gamma, the inducible nitric oxide synthase (iNOS) enzyme, and IL-12 are expressed. TNF-alpha, IFN-gamma, and the iNOS product nitric oxide (NO) all inhibit HSV-1 replication in vitro. Macrophage and gammadelta TCR+ T cell depletion studies demonstrated that macrophages are the main source of TNF-alpha and iNOS, whereas gammadelta TCR+ T cells produce IFN-gamma. Macrophage depletion, aminoguanidine inhibition of iNOS, and neutralization of TNF-alpha or IFN-gamma all individually and synergistically increased HSV-1 titers in the TG after HSV-1 corneal infection. Moreover, individually depleting macrophages or neutralizing TNF-alpha or IFN-gamma markedly reduced the accumulation of both macrophages and gammadelta TCR+ T cells in the TG. Our findings establish that after primary HSV-1 infection, the bulk of virus replication in the sensory ganglia is controlled by macrophages and gammadelta TCR+ T lymphocytes through their production of antiviral molecules TNF-alpha, NO, and IFN-gamma. Our findings also strongly suggest that cross-regulation between these two cell types is necessary for their accumulation and function in the infected TG.  相似文献   

10.
11.
Current immunization protocols in cancer patients involve CTL-defined tumor peptides. Mature dendritic cells (DC) are the most potent APCs for the priming of naive CD8(+) T cells, eventually leading to tumor eradication. Because DC can secrete MHC class I-bearing exosomes, we addressed whether exosomes pulsed with synthetic peptides could subserve the DC function consisting in MHC class I-restricted, peptide-specific CTL priming in vitro and in vivo. The priming of CTL restricted by HLA-A2 molecules and specific for melanoma peptides was performed: 1) using in vitro stimulations of total blood lymphocytes with autologous DC pulsed with GMP-manufactured autologous exosomes in a series of normal volunteers; 2) in HLA-A2 transgenic mice (HHD2) using exosomes harboring functional HLA-A2/Mart1 peptide complexes. In this study, we show that: 1). DC release abundant MHC class I/peptide complexes transferred within exosomes to other naive DC for efficient CD8(+) T cell priming in vitro; 2). exosomes require nature's adjuvants (mature DC) to efficiently promote the differentiation of melanoma-specific effector T lymphocytes producing IFN-gamma (Tc1) effector lymphocytes in HLA-A2 transgenic mice (HHD2). These data imply that exosomes might be a transfer mechanism of functional MHC class I/peptide complexes to DC for efficient CTL activation in vivo.  相似文献   

12.
Kim GY  Oh WK  Shin BC  Shin YI  Park YC  Ahn SC  Lee JD  Bae YS  Kwak JY  Park YM 《FEBS letters》2004,576(3):391-400
Dendritic cells (DC) are known to not only induce the activation of T cells, but are also associated with the polarization of T cells. This study investigated whether or not proteoglycan (PG) isolated from Phellinus linteus induces the phenotypic and functional maturation of CD11c+ DC in vitro and in vivo. PG was found to induce the phenotypic and functional maturation of bone marrow-derived DC via Toll-like receptors (TLR) 2 and 4 in vitro. Administration of PG in vivo strongly inhibited the MCA-102 tumor growth and increase in vivo. The ratio of CD8+ DC to CD8- DC increased, and PG enhanced IL-12 and IFN-gamma production, and expression of surface molecules including major histocompatibility complexes (MHC) classes I, MHC II, CD80, and CD86 in MCA-102-challenged mice. PG also caused a marked increase in the production of Th (helper T cells)-1 cytokine (IFN-gamma) and a decrease in the production of Th-2 cytokine (IL-4) by splenic cells and inguinal lymph node cells in MCA-102 tumor-bearing mice. Furthermore, PG stimulated the proliferation of CD4+ and CD8+ T cells. In addition, a combination of PG and tumor lysate-pulsed DC inhibited completely the growth of MCA-102 cells in tumor-bearing mice. These results indicate that the administration of PG inhibited the tumor growth through a mechanism leading to a Th-1 dominant immune state and the activation of CD11cCD8+ DC.  相似文献   

13.
Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/-) mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.  相似文献   

14.
Cytotoxic T lymphocytes and natural killer cells are essential effectors of anti-tumor immune responses in vivo. Dendritic cells (DC) 'prime' tumor antigen-specific cytotoxic T lymphocytes; thus, we investigated whether DC might also trigger the innate, NK cell-mediated anti-tumor immunity. In mice with MHC class I-negative tumors, adoptively transferred- or Flt3 ligand-expanded DC promoted NK cell-dependent anti-tumor effects. In vitro studies demonstrated a cell-to-cell contact between DC and resting NK cells that resulted in a substantial increase in both NK cell cytolytic activity and IFN-gamma production. Thus, DC are involved in the interaction between innate and adaptive immune responses.  相似文献   

15.
IL-2-activated killer lymphocytes (LAK cells) secrete inflammatory cytokines such as interferon-gamma (IFN-gamma) and tumor necrosis factor alpha (TNFalpha) that can induce nitric oxide (NO) synthesis. We evaluated whether LAK cells could activate NO synthesis in human cancer cells. LAK cells and their culture supernatants induced NO synthesis in DLD-1 colon cancer cells in a dose-dependent manner. NO synthesis was inhibited completely by blocking antibodies to IFN-gamma, demonstrating a key role for this LAK cell cytokine in regulating NO synthesis. The addition of TNFalpha antibodies resulted in partial inhibition. Induction of iNOS mRNA and protein expression in DLD-1 cells was detected. Endogenous NO production inhibited DLD-1 cell proliferation and induced apoptosis, processes that were inhibitable by the NO synthase inhibitor N(G)-monomethyl-l-arginine. Our study has identified a novel, non-contact-dependent LAK cell cytotoxic mechanism: induction of growth inhibition and programmed cell death due to endogenous NO synthesis in susceptible human cancer cells.  相似文献   

16.
17.
The effects of ionizing irradiation on the nitric oxide (NO) production in murine embryonic liver cell line, BNL CL.2 cells, were investigated. Various doses (5-40 Gy) of radiation made BNL CL.2 cells responsive to interferon-gamma alone for the production of NO in a dose-dependent manner. Small amounts of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) synergized with IFN-gamma in the production of NO from irradiated BNL CL.2 cells, even though LPS or TNF-alpha alone did not induce NO production from the same cells. Immunoblots showed parallel induction of inducible nitric oxide synthase (iNOS). NO production in irradiated BNL CL.2 cells by IFN-gamma or IFN-gamma plus LPS was decreased by the addition of catalase, suggesting that H(2)O(2) produced by ionizing irradiation primed the cells to trigger NO production in response to IFN-gamma or IFN-gamma plus LPS. Furthermore, the treatment of nongamma-irradiated BNL CL.2 cells with H(2)O(2) made the cells responsive to IFN-gamma or IFN-gamma plus LPS for the production of NO. This study shows that ionizing irradiation has the ability to induce iNOS gene expression in responsive to IFN-gamma via the formation of H(2)O(2) in BNL CL.2 murine embryonic liver cells.  相似文献   

18.
Suppressor of cytokine signaling (SOCS1/JAB) has been shown to play an important role in regulating dendritic cell (DC) function and suppressing inflammatory diseases and systemic autoimmunity. However, role of SOCS1 in DCs for the initiation of Th cell response has not been clarified. Here we demonstrate that SOCS1-deficient DCs induce stronger Th1-type responses both in vitro and in vivo. SOCS1-deficient DCs induced higher IFN-gamma production from naive T cells than wild-type (WT) DCs in vitro. Lymph node T cells also produced a higher amount of IFN-gamma when SOCS1-deficient bone marrow-derived DCs (BMDCs) were transferred in vivo. Moreover, SOCS1(-/-) BMDCs raised more effective anti-tumor immunity than WT BMDCs. Microarray analysis revealed that IFN-inducible genes were highly expressed in SOCS1-deficient DCs without IFN stimulation, suggesting hyper STAT1 activation in SOCS1(-/-) DCs. These phenotypes of SOCS1-deficient DCs were similar to those of CD8alpha(+) DCs, and in the WT spleen, SOCS1 is expressed at higher levels in the Th2-inducing CD4(+) DC subset, relative to the Th1-inducing CD8alpha(+) DC subset. We propose that reduction of the SOCS1 gene expression in DCs leads to CD8alpha(+) DC-like phenotype which promotes Th1-type hyperresponses.  相似文献   

19.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号