首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
龟裂链霉菌zwf2基因阻断提高土霉素生物合成   总被引:2,自引:0,他引:2  
葡萄糖-6-磷酸脱氢酶(G6PDH)是链霉菌磷酸戊糖途径中第一个酶("看家"酶),也是形成NADPH的关键酶,由zwf1和zwf2基因编码.以温敏型质粒pKC1139为基础构建了用于阻断龟裂链霉菌zwf2的重组质粒pKC1139-zwf2',通过大肠杆菌GM2929去甲基化pKC1139-zwf2'后电转至原始龟裂链霉菌M4018感受态细胞,筛选得到转化子.转化子进一步通过PCR鉴定和点杂交印迹分析鉴定,证明是zwf2基因阻断的阳性突变子命名为M4018-△zwf2.以原始菌株为对照,突变子摇瓶发酵结果表明:突变子的葡萄糖-6-磷酸脱氢酶酶活是原始菌的50%左右,但土霉素生物合成水平则提高了27%;在细胞生长方面,二者均在第4d进入生长稳定期而开始大量合成土霉素,发酵结束时细胞菌体浓度基本相同,但突变子的单位菌丝体土霉素生物合成能力则提高了31%.因此,zwf2的阻断有利于土霉素的生物合成,而对细胞生长没有明显影响.  相似文献   

3.
4.
The yeast Candida tropicalis produces xylitol, a natural, low-calorie sweetener whose metabolism does not require insulin, by catalytic activity of NADPH-dependent xylose reductase. The oxidative pentose phosphate pathway (PPP) is a major basis for NADPH biosynthesis in C. tropicalis. In order to increase xylitol production rate, xylitol dehydrogenase gene (XYL2)disrupted C. tropicalis strain BSXDH-3 was engineered to co-express zwf and gnd genes which, respectively encodes glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), under the control of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. NADPH-dependent xylitol production was higher in the engineered strain, termed "PP", than in BSXDH-3. In fermentation experiments using glycerol as a co-substrate with xylose, strain PP showed volumetric xylitol productivity of 1.25 g l(-1) h(-1), 21% higher than the rate (1.04 g l(-1) h(-1)) in BSXDH-3. This is the first report of increased metabolic flux toward PPP in C. tropicalis for NADPH regeneration and enhanced xylitol production.  相似文献   

5.
2-Deoxy-scyllo-inosose (DOI) is a six-membered carbocycle formed from d-glucose-6-phosphate catalyzed by 2-deoxy-scyllo-inosose synthase (DOIS), a key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminocyclitol antibiotics. DOI is valuable as a starting material for the benzene-free synthesis of catechol and other benzenoids. We constructed a series of metabolically engineered Escherichia coli strains by introducing a DOIS gene (btrC) from Bacillus circulans and disrupting genes for phosphoglucose isomerase, d-glucose-6-phosphate dehydrogenase, and phosphoglucomutase (pgi, zwf and pgm, respectively). It was found that deletion of the pgi gene, pgi and zwf genes, pgi and pgm genes, or all pgi, zwf and pgm genes significantly improved DOI production by recombinant E. coli in 2YTG medium (3% glucose) up to 7.4, 6.1, 11.6, and 8.4 g l(-1), respectively, compared with that achieved by wild-type recombinant E. coli (1.5 g l(-1)). Moreover, E. coli mutants with disrupted pgi, zwf and pgm genes showed strongly enhanced DOI productivity of up to 29.5 g l(-1) (99% yield) in the presence of mannitol as a supplemental carbon source. These results demonstrated that DOI production by metabolically engineered recombinant E. coli may provide a novel, efficient approach to the production of benzenoids from renewable d-glucose.  相似文献   

6.
In the present work, metabolic flux engineering of Corynebacterium glutamicum was carried out to increase lysine production. The strategy focused on engineering of the pentose phosphate pathway (PPP) flux by different genetic modifications. Over expression of the zwf gene, encoding G6P dehydrogenase, in the feedback-deregulated lysine-producing strain C. glutamicum ATCC 13032 lysC(fbr) resulted in increased lysine production on different carbon sources including the two major industrial sugars, glucose and sucrose. The additional introduction of the A243T mutation into the zwf gene and the over expression of fructose 1,6-bisphosphatase resulted in a further successive improvement of lysine production. Hereby the point mutation resulted in higher affinity of G6P dehydrogenase towards NADP and reduced sensitivity against inhibition by ATP, PEP and FBP. Overall, the lysine yield increased up to 70% through the combination of the different genetic modifications. Through strain engineering formation of trehalose was reduced by up to 70% due to reduced availability of its precursor G6P. Metabolic flux analysis revealed a 15% increase of PPP flux in response to over expression of the zwf gene. Overall a strong apparent NADPH excess resulted. Redox balancing indicated that this excess is completely oxidized by malic enzyme.  相似文献   

7.
The obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H oxidizes sugars and sugar alcohols primarily in the periplasm, and only a small fraction is metabolized in the cytoplasm. The latter can occur either via the Entner-Doudoroff pathway (EDP) or via the pentose phosphate pathway (PPP). The Embden-Meyerhof pathway is nonfunctional, and a cyclic operation of the tricarboxylic acid cycle is prevented by the absence of succinate dehydrogenase. In this work, the cytoplasmic catabolism of fructose formed by oxidation of mannitol was analyzed with a Δgnd mutant lacking the oxidative PPP and a Δedd Δeda mutant devoid of the EDP. The growth characteristics of the two mutants under controlled conditions with mannitol as the carbon source and enzyme activities showed that the PPP is the main route for cytoplasmic fructose catabolism, whereas the EDP is dispensable and even unfavorable. The Δedd Δeda mutant (lacking 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase) formed 24% more cell mass than the reference strain. In contrast, deletion of gnd (6-phosphogluconate dehydrogenase) severely inhibited growth and caused a strong selection pressure for secondary mutations inactivating glucose-6-phosphate dehydrogenase, thus preventing fructose catabolism via the EDP also. These Δgnd zwf* mutants (with a mutation in the zwf gene causing inactivation of the glucose-6-phosphate dehydrogenase) were almost totally disabled in fructose catabolism but still produced about 14% of the carbon dioxide of the reference strain, possibly by catabolizing substrates from the yeast extract. Overexpression of gnd in the reference strain improved biomass formation in a similar manner as deletion of edd and eda, further confirming the importance of the PPP for cytoplasmic fructose catabolism.  相似文献   

8.
9.
Jiang P  Du W  Wang X  Mancuso A  Gao X  Wu M  Yang X 《Nature cell biology》2011,13(3):310-316
Cancer cells consume large quantities of glucose and primarily use glycolysis for ATP production, even in the presence of adequate oxygen. This metabolic signature (aerobic glycolysis or the Warburg effect) enables cancer cells to direct glucose to biosynthesis, supporting their rapid growth and proliferation. However, both causes of the Warburg effect and its connection to biosynthesis are not well understood. Here we show that the tumour suppressor p53, the most frequently mutated gene in human tumours, inhibits the pentose phosphate pathway (PPP). Through the PPP, p53 suppresses glucose consumption, NADPH production and biosynthesis. The p53 protein binds to glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the PPP, and prevents the formation of the active dimer. Tumour-associated p53 mutants lack the G6PD-inhibitory activity. Therefore, enhanced PPP glucose flux due to p53 inactivation may increase glucose consumption and direct glucose towards biosynthesis in tumour cells.  相似文献   

10.
增强胞内NDAH水平和乙偶姻还原酶活力提高2,3-丁二醇产量   总被引:1,自引:0,他引:1  
枯草芽孢杆菌Bacillus subtilis 168是一株安全生产菌株,首次通过弱化B.subtilis 168磷酸戊糖途径(PPP)中的关键酶葡萄糖-6-磷酸脱氢酶(G6PDH)基因zwf,研究了其对胞内NADH水平的影响,进而研究其对2,3-丁二醇(2,3-BD)及副产物合成的影响。弱化菌株B. subtilis168△zwf进行摇瓶发酵实验,与出发菌株相比,胞内辅酶NADH水平得到了增强, 2,3-BD产量提高了15.0%,主要副产物AC积累量下降了10.6%,但乙酸、乳酸等有机酸的积累量提高。为了进一步提高2,3-BD生产效率,在B. subtilis168中克隆表达了不同来源的ACR基因,研究发现克雷伯氏菌来源的ACR酶活力最高,将此来源的ACR的基因kphs克隆到B.subtilis168△zwf中加强表达,对重组菌株B.subtilis168△zwf/pMA5-kphs进行摇瓶发酵实验,与出发菌相比,2,3-BD产量提高了37.3 %,主要副产物AC积累量下降了28.1%,同时,乙酸等分支路径的其他副产物也有不同程度的降低。  相似文献   

11.
The aromatic polyketide antibiotic, oxytetracycline (OTC), is produced by Streptomyces rimosus as an important secondary metabolite. High level production of antibiotics in Streptomycetes requires precursors and cofactors which are derived from primary metabolism; therefore it is exigent to engineer the primary metabolism. This has been demonstrated by targeting a key enzyme in the oxidative pentose phosphate pathway (PPP) and nicotinamide adenine dinucleotide phosphate (NADPH) generation, glucose-6-phosphate dehydrogenase (G6PDH), which is encoded by zwf1 and zwf2. Disruption of zwf1 or zwf2 resulted in a higher production of OTC. The disrupted strain had an increased carbon flux through glycolysis and a decreased carbon flux through PPP, as measured by the enzyme activities of G6PDH and phosphoglucose isomerase (PGI), and by the levels of ATP, which establishes G6PDH as a key player in determining carbon flux distribution. The increased production of OTC appeared to be largely due to the generation of more malonyl-CoA, one of the OTC precursors, as observed in the disrupted mutants. We have studied the effect of zwf modification on metabolite levels, gene expression, and secondary metabolite production to gain greater insight into flux distribution and the link between the fluxes in the primary and secondary metabolisms.  相似文献   

12.
13C NMR was used to study the pattern of label incorporation from [2-13C]acetate into trehalose during sporulation in Saccharomyces cerevisiae. A wild-type strain and a strain homozygous for the zwf1 mutation (which affects glucose-6-phosphate dehydrogenase) were used. In the wild-type it was possible to deduce the cycling of glucose 6-phosphate around the hexose monophosphate pathway whilst in the mutant strain this did not occur. The requirement of the hexose monophosphate pathway for providing NADPH for fatty acid biosynthesis was examined using 13C NMR and GC/MS. The wild-type strain produced a typical profile of fatty acids with palmitoleic acid being the most abundant whereas the mutant contained only one-quarter the amount of total fatty acid. As zwf1 homozygous diploids are able to sporulate this indicates that the large amount of fatty acid biosynthesis observed in sporulation of wild-type strains is not essential to the process.  相似文献   

13.
A cyclic version of the Entner-Doudoroff pathway is used by Pseudomonas aeruginosa to metabolize carbohydrates. Genes encoding the enzymes that catabolize intracellular glucose to pyruvate and glyceraldehyde 3-phosphate are coordinately regulated, clustered at 39 min on the chromosome, and collectively form the hex regulon. Within the hex cluster is an open reading frame (ORF) with homology to the devB/SOL family of unidentified proteins. This ORF encodes a protein of either 243 or 238 amino acids; it overlaps the 5' end of zwf (encodes glucose-6-phosphate dehydrogenase) and is followed immediately by eda (encodes the Entner-Doudoroff aldolase). The devB/SOL homolog was inactivated in P. aeruginosa PAO1 by recombination with a suicide plasmid containing an interrupted copy of the gene, creating mutant strain PAO8029. PAO8029 grows at 9% of the wild-type rate using mannitol as the carbon source and at 50% of the wild-type rate using gluconate as the carbon source. Cell extracts of PAO8029 were specifically deficient in 6-phosphogluconolactonase (Pgl) activity. The cloned devB/SOL homolog complemented PAO8029 to restore normal growth on mannitol and gluconate and restored Pgl activity. Hence, we have identified this gene as pgl and propose that the devB/SOL family members encode 6-phosphogluconolactonases. Interestingly, three eukaryotic glucose-6-phosphate dehydrogenase (G6PDH) isozymes, from human, rabbit, and Plasmodium falciparum, contain Pgl domains, suggesting that the sequential reactions of G6PDH and Pgl are incorporated in a single protein. 6-Phosphogluconolactonase activity is induced in P. aeruginosa PAO1 by growth on mannitol and repressed by growth on succinate, and it is expressed constitutively in P. aeruginosa PAO8026 (hexR). Taken together, these results establish that Pgl is an essential enzyme of the cyclic Entner-Doudoroff pathway encoded by pgl, a structural gene of the hex regulon.  相似文献   

14.
NADPH-dependent reactions play important roles in production of industrially valuable compounds. In this study, we used phosphofructokinase (PFK)-deficient strains to direct fructose-6-phosphate to be oxidized through the pentose phosphate pathway (PPP) to increase NADPH generation. pfkA or pfkB single deletion and double-deletion strains were tested for their ability to produce lycopene. Since lycopene biosynthesis requires many NADPH, levels of lycopene were compared in a set of isogenic strains, with the pfkA single deletion strain showing the highest lycopene yield. Using another NADPH-requiring process, a one-step reduction reaction of 2-chloroacrylate to 2-chloropropionic acid by 2-haloacrylate reductase, the pfkA pfkB double-deletion strain showed the highest yield of 2-chloropropionic acid product. The combined effect of glucose-6-phosphate dehydrogenase overexpression or lactate dehydrogenase deletion with PFK deficiency on NADPH bioavailability was also studied. The results indicated that the flux distribution of fructose-6-phosphate between glycolysis and the pentose phosphate pathway determines the amount of NAPDH available for reductive biosynthesis.  相似文献   

15.
16.
This study addresses the relation between NADPH supply and penicillin synthesis, by comparing the flux through the oxidative branch of the pentose phosphate pathway (PPP; the main source of cytosolic NADPH) in penicillin-G producing and non-producing chemostat cultures of Penicillium chrysogenum. The fluxes through the oxidative part of the PPP were determined using the recently introduced gluconate-tracer method. Significantly higher oxidative PPP fluxes were observed in penicillin-G producing chemostat cultures, indicating that penicillin production puts a major burden on the supply of cytosolic NADPH. To our knowledge this is the first time direct experimental proof is presented for the causal relationship between penicillin production and NADPH supply. Additional insight in the metabolism of P. chrysogenum was obtained by comparing the PPP fluxes from the gluconate-tracer experiment to oxidative PPP fluxes derived via metabolic flux analysis, using different assumptions for the stoichiometry of NADPH consumption and production.  相似文献   

17.
Genes at two unlinked loci (Tox1A and Tox1B) are required for production of the polyketide T-toxin by Cochliobolus heterostrophus race T, a pathogenic fungus that requires T-toxin for high virulence to maize with T-cytoplasm. Previous work indicated that Tox1A encodes a polyketide synthase (PKS1) required for T-toxin biosynthesis and for high virulence. To identify genes at Tox1B, a wild-type race T cDNA library was screened for genes missing in the genome of a Tox1B deletion mutant. The library was probed, first with a 415-kb NotI restriction fragment from the genome of the Tox1B mutant, then with the corresponding 560-kb fragment from the genome of wild type. Two genes, DEC1 (similar to acetoacetate decarboxylase-encoding genes) and RED1 (similar to genes encoding members of the medium-chain dehydrogenase/reductase superfamily), were recovered. Targeted disruption of DEC1 drastically reduced both T-toxin production and virulence of race T to T-cytoplasm maize, whereas specific inactivation of RED1 had no apparent effect on T-toxin production (as determined by bioassay) or on virulence. DEC1 and RED1 map within 1.5 kb of each other on Tox1B chromosome 6;12 and are unique to the genome of race T, an observation consistent with the hypothesis that these genes were acquired by C. heterostrophus via a horizontal transfer event.  相似文献   

18.
Production of NADPH in Saccharomyces cerevisiae cells grown on glucose has been attributed to glucose-6-phosphate dehydrogenase (Zwf1p) and a cytosolic aldehyde dehydrogenase (Ald6p) (Grabowska, D., and Chelstowska, A. (2003) J. Biol. Chem. 278, 13984-13988). This was based on compensation by overexpression of Ald6p for phenotypes associated with ZWF1 gene disruption and on the apparent lethality resulting from co-disruption of ZWF1 and ALD6 genes. However, we have found that a zwf1Delta ald6Delta mutant can be constructed by mating when tetrads are dissected on plates with a nonfermentable carbon source (lactate), a condition associated with expression of another enzymatic source of NADPH, cytosolic NADP+-specific isocitrate dehydrogenase (Idp2p). We demonstrated previously that a zwf1Delta idp2Delta mutant loses viability when shifted to medium with oleate or acetate as the carbon source, apparently because of the inadequate supply of NADPH for cellular antioxidant systems. In contrast, the zwf1Delta ald6Delta mutant grows as well as the parental strain in similar shifts. In addition, the zwf1Delta ald6Delta mutant grows slowly but does not lose viability when shifted to culture medium with glucose as the carbon source, and the mutant resumes growth when the glucose is exhausted from the medium. Measurements of NADP(H) levels revealed that NADPH may not be rapidly utilized in the zwf1Delta ald6Delta mutant in glucose medium, perhaps because of a reduction in fatty acid synthesis associated with loss of Ald6p. In contrast, levels of NADP+ rise dramatically in the zwf1Delta idp2Delta mutant in acetate medium, suggesting a decrease in production of NADPH reducing equivalents needed both for biosynthesis and for antioxidant functions.  相似文献   

19.
Miki R  Saiki R  Ozoe Y  Kawamukai M 《The FEBS journal》2008,275(21):5309-5324
Among the steps in ubiquinone biosynthesis, that catalyzed by the product of the clk-1/coq7 gene has received considerable attention because of its relevance to life span in Caenorhabditis elegans. We analyzed the coq7 ortholog (denoted coq7) in Schizosaccharomyces pombe, to determine whether coq7 has specific roles that differ from those of other coq genes. We first confirmed that coq7 is necessary for the penultimate step in ubiquinone biosynthesis, from the observation that the deletion mutant accumulated the ubiquinone precursor demethoxyubiquinone-10 instead of ubiquinone-10. The coq7 mutant displayed phenotypes characteristic of other ubiquinone-deficient Sc. pombe mutants, namely, hypersensitivity to hydrogen peroxide, a requirement for antioxidants for growth on minimal medium, and an elevated production of sulfide. To compare these phenotypes with those of other respiration-deficient mutants, we constructed cytochrome c (cyc1) and coq3 deletion mutants. We also assessed accumulation of oxidative stress in various ubiquinone-deficient strains and in the cyc1 mutant by measuring mRNA levels of stress-inducible genes and the phosphorylation level of the Spc1 MAP kinase. Induction of ctt1, encoding catalase, and apt1, encoding a 25 kDa protein, but not that of gpx1, encoding glutathione peroxidase, was indistinguishable in four ubiquinone-deficient mutants, indicating that the oxidative stress response operates at similar levels in the tested strains. One new phenotype was observed, namely, loss of viability in stationary phase (chronological life span) in both the ubiquinone-deficient mutant and in the cyc1 mutant. Finally, Coq7 was found to localize in mitochondria, consistent with the possibility that ubiquinone biosynthesis occurs in mitochondria in yeasts. In summary, our results indicate that coq7 is required for ubiquinone biosynthesis and the coq7 mutant is not distinguishable from other ubiquinone-deficient mutants, except that its phenotypes are more pronounced than those of the cyc1 mutant.  相似文献   

20.
The cytotoxicity of asbestos has been related to its ability to increase the production of reactive oxygen species (ROS), via the iron-catalyzed reduction of oxygen and/or the activation of NADPH oxidase. The pentose phosphate pathway (PPP) is generally activated by the cell exposure to oxidant molecules. Contrary to our expectations, asbestos (crocidolite) fibers caused a dose- and time-dependent inhibition of PPP and decreased its activation by an oxidative stress in human lung epithelial cells A549. In parallel, the intracellular activity of the PPP rate-limiting enzyme, glucose 6-phosphate dehydrogenase (G6PD), was significantly diminished by crocidolite exposure. This inhibition was selective, as the activity of other PPP and glycolysis enzymes was not modified, and was not attributable to a decreased expression of G6PD. On the opposite, the incubation with glass fibers MMVF10 did not modify PPP and G6PD activity. PPP and G6PD inhibition did not correlate with the increased nitric oxide (NO) production elicited by crocidolite in A549 cells. Experiments with the purified enzyme suggest that crocidolite inhibits G6PD by directly interacting with the protein. We propose here a new mechanism of asbestos-evoked oxidative stress, wherein fibers increase the intracellular ROS levels also by inhibiting the main antioxidant pathway of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号