首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been hypothesized that the potential for anaerobic metabolism might be a common feature of bacteria in coastal marine waters (L. Riemann and F. Azam, Appl. Environ. Microbiol. 68: 5554-5562, 2002). Therefore, we investigated whether different phylogenetic groups of heterotrophic picoplankton from the coastal North Sea were able to take up a simple carbon source under anoxic conditions. Oxic and anoxic incubations (4 h) or enrichments (24 h) of seawater with radiolabeled glucose were performed in July and August 2003. Bacteria with incorporated substrate were identified by using a novel protocol in which we combined fluorescence in situ hybridization and microautoradiography of cells on membrane filters. Incorporation of glucose under oxic and anoxic conditions was found in α-Proteobacteria, γ-Proteobacteria, and the Cytophaga-Flavobacterium cluster of the Bacteroidetes at both times, but not in marine Euryarchaeota. In July, the majority of cells belonging to the α-proteobacterial Roseobacter clade showed tracer incorporation both in oxic incubations and in oxic and anoxic enrichments. In August, only a minority of the Roseobacter cells, but most bacteria affiliated with Vibrio spp., were able to incorporate the tracer under either condition. A preference for glucose uptake under anoxic conditions was observed for bacteria related to Alteromonas and the Pseudoalteromonas-Colwellia group. These genera are commonly considered to be strictly aerobic, but facultatively fermentative strains have been described. Our findings suggest that the ability to incorporate substrates anaerobically is widespread in pelagic marine bacteria belonging to different phylogenetic groups. Such bacteria may be abundant in fully aerated coastal marine surface waters.  相似文献   

2.
Bacterioplankton abundance and production were followed during one decade (1991–2001) in the hypertrophic and steeply stratified small Lake Verevi (Estonia). The lake is generally dimictic. However, a partly meromictic status could be formed in specific meteorological conditions as occurred in springs of 2000 and 2001. The abundance of bacteria in Lake Verevi is highly variable (0.70 to 22 × 106 cells ml−1) and generally the highest in anoxic hypolimnetic water. In 2000–2001, the bacterial abundance in the hypolimnion increased probably due to meromixis. During a productive season, heterotrophic bacteria were able to consume about 10–40% of primary production in the epilimnion. Our study showed that bacterioplankton in the epilimnion was top-down controlled by predators, while in metalimnion bacteria were dependent on energy and carbon sources (bottom-up regulated). Below the thermocline hypolimnetic bacteria mineralized organic matter what led to the depletion of oxygen and created anoxic hypolimnion where rich mineral nutrient and sulphide concentrations coexisted with high bacterial numbers.  相似文献   

3.
We studied the effects of natural sunlight on heterotrophic marine bacterioplankton in short-term experiments. We used a single-cell level approach involving flow cytometry combined with physiological probes and microautoradiography to determine sunlight effects on the activity and integrity of the cells. After 4 h of sunlight exposure, most bacterial cells maintained membrane integrity and viability as assessed by the simultaneous staining with propidium iodide and SYBR green I. In contrast, a significant inhibition of heterotrophic bacterial activity was detected, measured by 5-cyano-2,3 ditolyl tetrazolium chloride reduction and leucine incorporation. We applied microautoradiography combined with catalyzed reporter deposition-fluorescence in situ hybridization to test the sensitivity of the different bacterial groups naturally occurring in the Northwestern Mediterranean to sunlight. Members of the Gammaproteobacteria and Bacteroidetes groups appeared to be highly resistant to solar radiation, with small changes in activity after exposure. On the contrary, Alphaproteobacteria bacteria were more sensitive to radiation as measured by the cell-specific incorporation of labeled amino acids, leucine, and ATP. Within Alphaproteobacteria, bacteria belonging to the Roseobacter group showed higher resistance than members of the SAR11 cluster. The activity of Roseobacter was stimulated by exposure to photosynthetic available radiation compared to the dark treatment. Our results suggest that UV radiation can significantly affect the in situ single-cell activity of bacterioplankton and that naturally dominating phylogenetic bacterial groups have different sensitivity to natural levels of incident solar radiation.  相似文献   

4.
Abstract The dominant members of the bacterioplankton community in a set of 10 small, thermally stratified lakes in northeastern Indiana were determined by denaturing gradient gel electrophoresis (DGGE) of a polymerase chain reaction amplified fragment of 16S rDNA. The variability in community composition was analyzed as function of vertical stratification (epilimnion vs metalimnion), time (July vs August samples), and geographical location. In 58 discrete samples, a range of 8–23 bands were detected (mean = 14, s.d. = 4). For all variables, sample pairs shared about 40–70% of bands. In comparisons between depth strata, pairs of oxic samples shared more bands than an oxic–anoxic pair. There was no obvious relationship between the geographical location of lakes (or their physical connection) and band sharing. Received: 4 March 1999; Accepted: 11 May 1999  相似文献   

5.
A common source of disturbance for coastal aquatic habitats is nutrient enrichment through anthropogenic activities. Although the water column bacterioplankton communities in these environments have been characterized in some cases, changes in α-diversity and/or the abundances of specific taxonomic groups across enriched habitats remain unclear. Here, we investigated the bacterial community changes at three different nutrient-enriched and adjacent undisturbed habitats along the north coast of Crete, Greece: a fish farm, a closed bay within a town with low water renewal rates, and a city port where the level of nutrient enrichment and the trophic status of the habitat were different. Even though changes in α-diversity were different at each site, we observed across the sites a common change pattern accounting for most of the community variation for five of the most abundant bacterial groups: a decrease in the abundance of the Pelagibacteraceae and SAR86 and an increase in the abundance of the Alteromonadaceae, Rhodobacteraceae, and Cryomorphaceae in the impacted sites. The abundances of the groups that increased and decreased in the impacted sites were significantly correlated (positively and negatively, respectively) with the total heterotrophic bacterial counts and the concentrations of dissolved organic carbon and/or dissolved nitrogen and chlorophyll α, indicating that the common change pattern was associated with nutrient enrichment. Our results provide an in situ indication concerning the association of specific bacterioplankton groups with nutrient enrichment. These groups could potentially be used as indicators for nutrient enrichment if the pattern is confirmed over a broader spatial and temporal scale by future studies.  相似文献   

6.
Variations in the thymidine incorporation rate, bacterial abundance, and mean cell volumes in the surface water (0.5 m) of the Baltic Sea in spring and summer were compared in studies with different spatial scales (570 nautical miles [nmi] [ca. 1056 km], 220 nmi [ca. 407 km], 24 nmi [ca. 44 km], 12 nmi [ca. 22 km], and 200 m). The objective of the comparison was to investigate whether a single sample taken at one sampling point is representative enough for researchers to make generalizations about a larger water area. Bacterioplankton variation was connected more to seasonal characteristics than to the spatial scale of sampling. Variation was greater and more random in spring than in summer. The state variables (bacterial abundance and mean cell volume) varied less than the rate variable (thymidine incorporation). The results suggest that the sampling design for bacterioplankton studies in northern temperate seas should be planned primarily according to the season and that more stress should be put on rate variable measurements than on those of state variables.  相似文献   

7.
Microscopic estimation of bacterial biomass requires determination of both biovolume and biovolume-to-biomass conversion. Both steps have uncertainty when applied to the very small bacteria typically found in natural seawater. In the present study, natural bacterioplankton assemblages were freshly collected, passed through 0.6-μm-pore-size Nuclepore filters to remove larger particulate materials, and diluted for growth in 0.22-μm-pore-size Millipore filter-sterilized unenriched seawater. This provided cells comparable in size and morphology to those in natural seawater, but the cultures were free of the interfering particulate detritus naturally present. Cells were collected on glass-fiber GF/F filters, and biovolumes were corrected for cells passing these filters; C and N were measured with a CHN analyzer. Our criteria for size measurement by epifluorescence photomicrography were confirmed with fluorescent microspheres of known diameters. Surprisingly, in six cultures with average per-cell biovolumes ranging from 0.036 to 0.073 μm3, the average per-cell carbon biomass was relatively constant at 20 ± 0.08 fg of C (mean ± standard error of the mean). The biovolume-to-biomass conversion factor averaged 0.38 ± 0.05 g of C cm−3, which is about three times higher than the value previously estimated from Escherichia coli, and decreased with increasing cell volume. The C:N ratio was 3.7 ± 0.2. We conclude that natural marine bacterial biomass and production may be higher than was previously thought and that variations in bacterial size may not reflect variations in biomass per cell.  相似文献   

8.
Anoxia occurs in bottom waters of stratified estuaries when respiratory consumption of oxygen, primarily by bacteria, outpaces atmospheric and photosynthetic reoxygenation. Once water becomes anoxic, bacterioplankton must change their metabolism to some form of anaerobic respiration. Analysis of redox chemistry in water samples spanning the oxycline of Chesapeake Bay during the summer of 2004 suggested that there was a succession of respiratory metabolism following the loss of oxygen. Bacterial community doubling time, calculated from bacterial abundance (direct counts) and production (anaerobic leucine incorporation), ranged from 0.36 to 0.75 day and was always much shorter than estimates of the time that the bottom water was anoxic (18 to 44 days), indicating that there was adequate time for bacterial community composition to shift in response to changing redox conditions. However, community composition (as determined by PCR-denaturing gradient gel electrophoresis analysis of 16S rRNA genes) in anoxic waters was very similar to that in surface waters in June when nitrate respiration was apparent in the water column and only partially shifted away from the composition of the surface community after nitrate was depleted. Anoxic water communities did not change dramatically until August, when sulfate respiration appeared to dominate. Surface water populations that remained dominant in anoxic waters were Synechococcus sp., Gammaproteobacteria in the SAR86 clade, and Alphaproteobacteria relatives of Pelagibacter ubique, including a putative estuarine-specific Pelagibacter cluster. Populations that developed in anoxic water were most similar (<92% similarity) to uncultivated Firmicutes, uncultivated Bacteroidetes, Gammaproteobacteria in the genus Thioalcalovibrio, and the uncultivated SAR406 cluster. These results indicate that typical estuarine bacterioplankton switch to anaerobic metabolism under anoxic conditions but are ultimately replaced by different organisms under sulfidic conditions.  相似文献   

9.
The numbers, biomass, and production of bacterioplankton were determined in the Russian Sector of the Gdansk Basin (Baltic Sea) in 2007–2009. Significant spatial and temporal variations were determined. During the year, bacterial activity increased with increasing water temperature and higher availability of organic substrates. The lowest bacterial production (0.01–31.63 mg C m−3 day−1) was observed in late winter and late autumn, while the highest (0.17–341.70 mg C m−3 day−1) occurred in spring and summer. Since bacterial numbers and biomass were found to depend on the weather conditions and the terrigenous inflow, significant variations were observed from year to year. The highest and lowest numbers and biomass of bacterioplankton determined in summer were 0.09–1.10 × 106 cells mL−1 and 2–22 mg C m−3 for July 2007 and 1.96–11.23 × 106 cells mL−1 and 23–123 mg C m–3 for July 2009. The values of these parameters were the highest along the coast and decreased towards the open sea.  相似文献   

10.
Denitrification activity was shown in the deep, low-oxygen waters of the Baltic proper by both in vitro and in situ methods. The vertical distribution of NO3 in the water column showed nitrate consumption and NO2 and N2O maxima in the deep waters when O2 was below 0.2 ml liter−1, which is suggestive evidence for denitrification. Direct in situ evidence for denitrification was obtained by finding an N2 saturation of up to 108% in the deep waters. When these waters were incubated with 15NO3, 15N2 was produced. Quantification of the denitrification rate done by the addition of C2H2 to water samples from the active depths showed a rate of about 0.10 μmol liter−1 day−1.  相似文献   

11.
A flow-sorting technique was developed to determine unperturbed metabolic activities of phylogenetically characterized bacterioplankton groups with incorporation rates of [(35)S]methionine tracer. According to fluorescence in situ hybridization with rRNA targeted oligonucleotide probes, a clade of alpha-proteobacteria, related to Roseobacter spp., and a Cytophaga-Flavobacterium cluster dominated the different groups. Cytometric characterization revealed both these groups to have high DNA (HNA) content, while the alpha-proteobacteria exhibited high light scatter (hs) and the Cytophaga-Flavobacterium cluster exhibited low light scatter (ls). A third abundant group with low DNA (LNA) content contained cells from a SAR86 cluster of gamma-proteobacteria. Cellular specific activities of the HNA-hs group were 4- and 1.7-fold higher than the activities in the HNA-ls and LNA groups, respectively. However, the higher cellular protein synthesis by the HNA-hs could simply be explained by their maintenance of a larger cellular protein biomass. Similar biomass specific activities of the different groups strongly support the main assumption that underlies the determination of bacterial production: different bacteria in a complex community incorporate amino acids at a rate proportional to their protein synthesis. The fact that the highest growth-specific rates were determined for the smallest cells of the LNA group can explain the dominance of this group in nutrient-limited waters. The metabolic activities of the three groups accounted for almost the total bacterioplankton activity, indicating their key biogeochemical role in the planktonic ecosystem of the Celtic Sea.  相似文献   

12.
13.
The specificity of the species composition of the ichthyofauna in the Russian and Korean waters in the Sea of Japan/East Sea (northwards from 35°17′N) is considered. The population and the proportion of species from the order of the perch-like fishes (Perciformes) steadily decline from the south towards the north; the proportion of the species from the order of the ray-finned fish (Scorpaeniformes) tends to rise. The northward latitudinal gradient in the family composition variability results in a decrease of their numbers along with a significant increase in the sculpins (Cottidae) and the picklebacks (Stichaeidae) in the species composition. In the southernmost region of the studied water area, the sublittoral species tend to prevail; in all of the others, the elittoral species are predominant. The four northern areas are characterized by a high similarity in the species composition (81.8%); this value is significantly lower (63.1%) in case of their comparison with the more southern areas. The similarity in the ichthyofauna composition between the southernmost area and the other studied water area comprises 44.1%.  相似文献   

14.
Pelagic bacterial production is often positively correlated, or coupled, with primary production through utilization of autotrophically produced dissolved organic carbon. Recent studies indicate that inorganic N or P can directly limit both bacterial and phytoplanktonic growth. Our mesocosm experiments, with whole communities from mesotrophic Calder Lake, test whether this apparent bacterial-algal coupling may be the result of independent responses to limiting inorganic nutrients. In systems without N additions, numbers of bacteria but not phytoplankton increased 2- to 2.5-fold in response to P fertilization (0 to 2.0 μmol of P per liter); this resulted in uncoupled production patterns. In systems supplemented with 10 μmol of NH4NO3 per liter, P addition resulted in up to threefold increases in bacteria and two- to fivefold increases in total phytoplankton biomass (close coupling). P limitation of pelagic bacteria occurred independently of phytoplankton dynamics, and regressions between bacterial abundance and phytoplankton chlorophyll a were nonsignificant in all systems without added N. We describe a useful and simple coupling index which predicts that shifts in phytoplankton and bacterioplankton growth will be unrelated (Δ bacteria/Δ phytoplankton → either + ∞ or - ∞) in systems with inorganic N/P (molar) ratios of <~40. In systems with higher N/P ratios (>40), the coupling index will approach 1.0 and close coupling between bacteria and phytoplankton is predicted to occur.  相似文献   

15.
This study considers variability in phytoplankton and heterotrophic bacterial abundances and production rates, in one of the most oligotrophic marine regions in the world–the Levantine Basin. The temporal dynamics of these planktonic groups were studied in the coastal waters of the southeastern Mediterranean Sea approximately every two weeks for a total of two years. Heterotrophic bacteria were abundant mostly during late summer and midwinter, and were positively correlated with bacterial production and with N2 fixation. Based on size fractionating, picophytoplankton was abundant during the summer, whereas nano-microphytoplankton predominated during the winter and early spring, which were also evident in the size-fractionated primary production rates. Autotrophic abundance and production correlated negatively with temperature, but did not correlate with inorganic nutrients. Furthermore, a comparison of our results with results from the open Levantine Basin demonstrates that autotrophic and heterotrophic production, as well as N2 fixation rates, are considerably higher in the coastal habitat than in the open sea, while nutrient levels or cell abundance are not different. These findings have important ecological implications for food web dynamics and for biological carbon sequestration in this understudied region.  相似文献   

16.
Specific growth rates of heterotrophic bacterioplankton have been frequently estimated from in situ bacterial production (BP) to biomass (BB) ratios, using a series of assumptions that may result in serious discrepancies with values obtained from predator-free cultures. Here, we used both types of approaches together with a comprehensive assessment of single-cell physiological characteristics (membrane integrity, nucleic acid content, and active respiration) of coastal bacterioplankton during a complete annual cycle (February 2007–January 2008) in the southern Bay of Biscay off Xixón, Spain. Both leucine and thymidine incorporation rates were used in conjunction with empirical tracer to carbon or cells conversion factors (eCFs) to accurately derive BP. Leu and TdR incorporation rates covaried year-round, as did the corresponding eCFs at 0 and 50 m depth. eCFs peaked in autumn, with mean annual values close to the theoretical ones (3.4 kg C mol Leu−1 and 2.0 × 1018 cells mol TdR−1). Bacterial abundance (0.2–1.5 × 106 cells L−1) showed a bimodal distribution with maxima in May and October and minima in March. Live (membrane-intact) cells dominated year-round (79–97%), with high nucleic acid cells (42–88%) and actively respiring bacteria (CTC+, 1–16%) showing distinct surface maxima in April and July, respectively. BB (557–1,558 mg C m−2) and BP (7–139 mg C m−2 day−1) presented two distinct peaks in spring and autumn, both of similar size due to a strong upwelling event observed in September. Specific growth rates (0.35–3.8 day−1) were one order of magnitude higher in predator-free incubations than bacterial turnover rates derived from integrated BP:BB ratios (0.01–0.16 and 0.01–0.09 day−1, for Leu and TdR, respectively) and were not correlated, probably due to a significant contribution of low activity cells to total standing stocks. The Leu:TdR molar ratio averaged for the water column (6.6–25.5) decreased significantly with higher integrated BB, indicating that low standing stocks tend to present unbalanced growth. Discrepancies about the true magnitude of specific growth rates must be solved before fully appreciating the role of bacteria in the ocean carbon cycle.  相似文献   

17.
Laboratory and in situ experiments were performed in order to evaluate the role of UV radiation on bacterial activity. Particular attention was given to the determination of the role of UV-A and photosynthetic active radiation (PAR) and different nutrient conditions on the recovery of bacterial activity. Laboratory experiments with nearly natural radiation intensities indicated a 20 to 40% reduction from the initial level of bacterial activity after UV-B exposure for 2 to 4 h. Bacterial activity in freshly collected seawater showed a more pronounced inhibition and faster recovery than bacterial activity in aged, nutrient-depleted seawater. The results of in situ experiments with filtered water (0.8-(mu)m-pore-size filter) and natural surface solar radiation levels agreed with those of the laboratory experiments and revealed that UV-A and PAR are important for the recovery of bacterial activity and result in levels of bacterial activity that are higher than those prior to exposure to full solar radiation. Bacterioplankton exposed to full solar radiation for 3 h and subsequently incubated at different depths within the upper mixed water column showed an increase in bacterial activity with increased depth; the highest bacterial activity was detected at depths of 5.5 to 10.5 m, where the short-wavelength UV-B was already largely attenuated, but enough long wavelength UV-A and short PAR were available to allow recovery. This elevated bacterial activity following exposure to UV-B was attributed to the photolysis of dissolved organic matter (DOM) exposed to near-surface radiation and to the rapid recovery of bacteria from UV stress once they were mixed into deeper layers of the upper mixed water column, where they efficiently utilize the photolytically cleaved DOM. It is concluded that studies on the role of UV on the carbon and energy flux through the upper layer of the ocean should take into account the highly dynamic radiation conditions.  相似文献   

18.
A free-floating, loose form of Furcellaria lumbricalis (Huds.) Lamour is rare in the Baltic Sea area. Kassari Bay, situated in the West Estonian Archipelago Sea area contains the largest known community of this kind. Here the free-floating mixed Furcellaria lumbricalis-Coccotylus truncatus (Paela) M. J. Wynne et J. N. Heine community inhabits sandy bottom, covering up to 120 km2. Commercial exploitation of the community started in 1966 and has led to regular monitoring surveys for the quantification of the commercial resource. The aim of the present study was to determine the potential growth rates of the two community-forming species as well as to test different environmental factors affecting their growth. Results showed that the highest growth rates were measured in shallower depths (4 m) for both species. The seasonal growth pattern was also very similar for both species, showing the highest growth rates during the beginning of summer. Incubation of both species in another sea area with apparently similar basic environmental conditions (the northern part of the Gulf of Riga, Kõiguste Bay) resulted in significantly lower growth rates during the whole incubation period.  相似文献   

19.
Water column structure, microphytoplankton size spectra andnutrient concentration were analysed at six sampling stationsin the Celtic Sea. Three types of stations were distinguished:(i) where the upper mixed layer (UML) reaches the total depth(TD), (ii) where the UML is about half of TD and (iii) wherethe UML is considerably less than half the TD. The UML was nutrientrich at type A stations and was nutrient depleted at type Bstations. At type C stations, the UML was nitrate depleted andsilicate rich. Two groups of microplankton size-abundance spectra(SAS) were found: (i) a typical linear SAS and (ii) a more complex‘atypical’ SAS, with a linear part up to 160 µmand a dome at 300 µm caused by a Coscinodiscus wailesiibloom. The dome was observed at all depths at type A stationsand above the pycnocline and at the seafloor of type B stations.Combining intrinsic growth rate, sinking rate and mixing layerdepth, the C. wailesii dome persists only at type A stationsbut settles out of the UML at the remaining stations. This suggeststhat a large part of the perturbation at the right extreme ofphytoplankton SAS does not propagate along the planktonic SASbut sinks to the seafloor. This paper was presented in a session on "Size Structure ofPlankton Communities", at the ASLO Summer International Meeting,held in Santiago de Compostela, Spain, between 19 and 24 June,and coordinated by Xabier Irigoien, Roger Harris and Angel Lopez-Urrutia.  相似文献   

20.
The spore-forming bacterium Bacillus licheniformis is a common contaminant of milk and milk products. Strains of this species isolated from dairy products can be differentiated into three major groups, namely, G, F1, and F2, using random amplification of polymorphic DNA (RAPD) analysis; however, little is known about the genomic differences between these groups and the identity of the fragments that make up their RAPD profiles. In this work we obtained high-quality draft genomes of representative strains from each of the three RAPD groups (designated strain G-1, strain F1-1, and strain F2-1) and compared them to each other and to B. licheniformis ATCC 14580 and Bacillus subtilis 168. Whole-genome comparison and multilocus sequence typing revealed that strain G-1 contains significant sequence variability and belongs to a lineage distinct from the group F strains. Strain G-1 was found to contain genes coding for a type I restriction modification system, urease production, and bacitracin synthesis, as well as the 8-kbp plasmid pFL7, and these genes were not present in strains F1-1 and F2-1. In agreement with this, all isolates of group G, but no group F isolates, were found to possess urease activity and antimicrobial activity against Micrococcus. Identification of RAPD band sequences revealed that differences in the RAPD profiles were due to differences in gene lengths, 3′ ends of predicted primer binding sites, or gene presence or absence. This work provides a greater understanding of the phylogenetic and phenotypic differences observed within the B. licheniformis species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号