首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of ethanolamine, choline, and different fatty acids on phospholipid synthesis via the CDP-ester pathways were studied in isolated rat intestinal villus cells. The incorporation of [14C]glucose into phosphatidylethanolamine was stimulated severalfold by the addition of ethanolamine and long-chained unsaturated fatty acids, while the addition of lauric acid inhibited the incorporation of radioactivity into phosphatidylethanolamine. At concentrations of ethanolamine higher than 0.2 mM, phosphoethanolamine accumulated, but the concentrations of CDP-ethanolamine and the incorporation of radioactivity into phospatidylethanolamine did not increase further. The incorporation of [14C]glucose into phosphatidylcholine responded in a way similar to that of phosphatidylethanolamine, except that a 10-fold higher concentration of choline was required for maximal stimulation. CCC inhibited the incorporation of choline into phosphatidylcholine. In contrast with hepatocytes, villus cells did not form phosphatidylcholine via phospholipid N-methylation. The data indicate that, in intestinal villus cells, the cytidylyltransferase reactions are rate limiting in the synthesis of phosphatidylethanolamine and probably also of phosphatidylcholine. The availability of diacylglycerol and its fatty acid composition may also significantly affect the rate of phospholipid synthesis.  相似文献   

2.
Long chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for both anabolic and catabolic pathways. We have hypothesized that each of the five ACSL isoforms partitions FA toward specific downstream pathways. Acsl1 mRNA is increased in cells under both lipogenic and oxidative conditions. To elucidate the role of ACSL1 in hepatic lipid metabolism, we overexpressed an Acsl1 adenovirus construct (Ad-Acsl1) in rat primary hepatocytes. Ad-ACSL1, located on the endoplasmic reticulum but not on mitochondria or plasma membrane, increased ACS specific activity 3.7-fold. With 100 or 750 mum [1-(14)C]oleate, Ad-Acsl1 increased oleate incorporation into diacylglycerol and phospholipids, particularly phosphatidylethanolamine and phosphatidylinositol, and decreased incorporation into cholesterol esters and secreted triacylglycerol. Ad-Acsl1 did not alter oleate incorporation into triacylglycerol, beta-oxidation products, or total amount of FA metabolized. In pulse-chase experiments to examine the effects of Ad-Acsl1 on lipid turnover, more labeled triacylglycerol and phospholipid, but less labeled diacylglycerol, remained in Ad-Acsl1 cells, suggesting that ACSL1 increased reacylation of hydrolyzed oleate derived from triacylglycerol and diacylglycerol. In addition, less hydrolyzed oleate was used for cholesterol ester synthesis and beta-oxidation. The increase in [1,2,3-(3)H]glycerol incorporation into diacylglycerol and phospholipid was similar to the increase with [(14)C]oleate labeling suggesting that ACSL1 increased de novo synthesis. Labeling Ad-Acsl1 cells with [(14)C]acetate increased triacylglycerol synthesis but did not channel endogenous FA away from cholesterol ester synthesis. Thus, consistent with the hypothesis that individual ACSLs partition FA, Ad-Acsl1 increased FA reacylation and channeled FA toward diacylglycerol and phospholipid synthesis and away from cholesterol ester synthesis.  相似文献   

3.
Incorporation of (14C)choline and (3H)myo-inositol into the total lipid fraction, incorporation of (14C)acetate into the sterol fraction and incorporation of (3H)thymidine into DNA were studied in human lymphocyte cultures. Concanavalin A induced an increase in the incorporation of these labels with the following features: (a) Phospholipid synthesis was increased promptly. The lag time for the increase in sterol synthesis and DNA synthesis were 5 hours and 27 hours respectively; (b) The increase in phospholipid synthesis and sterol synthesis was proportional to ConA concentration initially. Cells treated with a high concentration of ConA showed very low levels of DNA synthesis; (c) The increase in phospholipid synthesis could be abolished immediately by alpha-Methyl-Mannoside. alpha-Methyl-Mannoside blunted but did not abolish the increase in sterol synthesis. alpha-Methyl-Mannoside enhanced DNA synthesis of those cells which had been treated by a high concentration of ConA; and (d) Selective inhibition of sterol synthesis with 25-hydroxycholesterol did not prevent the increase in phospholipid synthesis, but it blocked the increase in DNA synthesis. Supplement of LDL, HDL or total lipoproteins to lymphocyte cultures was effective in preventing the inhibition of DNA synthesis by 25-hydroxy-cholesterol. These results suggest that in lymphocyte activation by ConA phospholipid synthesis, sterol synthesis and DNA synthesis were sequentially increased. The rate of cellular commitment to mitogenesis was proportional to ConA concentrations. High concentrations of ConA arrested the cell growth at a postcommitment point in the G1 phase. Enhanced phospholipid synthesis was a precommitment event. Enhanced sterol synthesis was a postcommitment event and reflected the requirement of an increased cholesterol supply for the passage of cell growth through G1.  相似文献   

4.
A new model system for the study of phosphatidylcholine biosynthesis is presented. Young rats were fed a diet that contained 5% cholesterol and 2% cholate. After 6 days there was a 2-fold increase in the concentration of plasma phospholipid (243 mg/dl compared to 132 mg/dl for control animals) and a 3-fold increase in the concentration of plasma phosphatidylcholine. The rate of phosphatidylcholine biosynthesis was measured after injection of [Me-3H]choline into the portal veins. The incorporation of tritium into choline, phosphocholine and betaine by liver was similar for experimental and control animals, whereas there was a 3-fold increased incorporation into phosphatidylcholine of the cholesterol/cholate-fed rats. The activities of the enzymes of phosphatidylcholine biosynthesis in cytosol and microsomes were assayed. The only change detected was in the cytosolic and microsomal activities of CTP: phosphocholine cytidylyltransferase which were increased more than 2-fold in specific activity. When total cytidylyltransferase activity per liver was determined, a dramatic translocation of the enzyme to microsomes was observed. The control livers had 24% of the cytidylyltransferase activity associated with microsomes, whereas this value was 61% in the livers from cholesterol/cholate-fed rats. When the cytosolic cytidylyltransferase was assayed in the presence of phospholipid, the enzyme was stimulated several-fold and the difference in specific activity between control and cholesterol/cholate-fed rats was abolished. The increased activity in cytosol appears to be the result of a 2-fold increase in the amount of phospholipid in the cytosol from cholesterol/cholate-fed rats. The data strongly support the hypothesis that the special diet stimulates phosphatidylcholine biosynthesis by causing a translocation of the cytidylyltransferase from cytosol to microsomes where it is activated.  相似文献   

5.
We have studied the rate of phospholipid synthesis and turnover in mouse peritoneal macrophages in reaction to cholesterol influx and high density lipoprotein (HDL)-mediated cholesterol efflux, using three different radioactive precursors, 32PO4(3-), [3H]choline, and [14C]oleic acid. The cells were loaded with cholesterol for up to 18 h with acetyl-low density lipoprotein (LDL), and phospholipid synthesis was measured at various time intervals and compared with nonloaded macrophages. In the first 2 h of cholesterol loading, a twofold increase in the rate of synthesis for sphingomyelin, phosphatidylcholine, phosphatidylserine-inositol, and phosphatidylethanolamine was observed. After this initial up-regulation, the rate of phospholipid synthesis continuously declined upon further cholesterol loading, while the turnover rate of cellular phospholipids was not affected under the same conditions. The lysosomal inhibitor chloroquine abolished the down-regulation, revealing a strong correlation between phospholipid synthesis and lysosomal enzyme activity which was presumably dependent on the release of cholesterol from the lysosome. The reduction in phospholipid synthesis induced by cholesterol loading is reversible by the addition of HDL3 to the cells. When HDL3 was added to the culture medium, a two- to threefold increase in phosphatidylcholine synthesis and a twofold increase in sphingomyelin formation was observed after 3 h. Ca2+ antagonists of the dihydropyridine type, which down-regulate HDL-receptor activity and promote the formation and cellular release of lamellar bodies derived from the lysosomal compartment (Schmitz, G., et al. 1988. Arteriosclerosis. 8: 46-56, and Robenek, H., and G. Schmitz. 1988. Arteriosclerosis. 8: 57-67), specifically enhance the synthesis of sphingomyelin in cholesterol-loaded macrophages. Inhibitors of acyl-CoA:cholesterol acyltransferase (Octimibate, progesterone) increase both the synthesis of sphingomyelin and phosphatidylcholine, and enhance HDL-receptor activity. The results indicate that cholesterol and phospholipid metabolism are coordinately regulated in macrophages. Moreover, the formation of phosphatidylcholine and sphingomyelin seems to be an important factor for the promotion of HDL-receptor-mediated cellular cholesterol efflux.  相似文献   

6.
Other studies have shown that inhalation of carbon tetrachloride (CCl4) decreases the amount of pulmonary surfactant lining the alveolar surface. Therefore, we studied the effects of CCl4 on the synthesis of surfactant phosphatidylcholines (PCs) in rat alveolar type II cells in vitro. The rate of incorporation of choline, palmitate or glycerol into disaturated PC (DSPC) is decreased in a concentration-dependent manner. The CCl4 concentrations which cause maximal inhibition and 50% inhibition are similar for each substrate. The rate of incorporation of choline or glycerol into total PC is diminished to the same extent as their incorporation into DSPC. In addition, the rate of incorporation of glycerol into phosphatidylglycerol is decreased by the same extent as its incorporation into PC. All of these data suggest that there is a common site(s) at which CCl4 inhibits PC synthesis and that the inhibition occurs early in the biosynthetic pathway. However, individual enzymes involved in phospholipid synthesis do not seem to be affected by the solvent. Exposure of alveolar type II cells to CCl4 does cause a rapid and dramatic loss in cellular ATP, a cofactor required by some enzymes involved in PC synthesis. Studies with isolated lung mitochondria suggest that CCl4 inhibits the enzyme complex which catalyzes the synthesis of ATP from ADP. In addition, CCl4 causes a decrease in the amount of 3-O-methylglucose associated with type II cells, suggesting that glucose influx is impaired. This may also contribute to lower cellular ATP levels. The results of this study suggest that inhalation of CCl4 may impair surfactant phospholipid synthesis by decreasing ATP levels in alveolar type II cells.  相似文献   

7.
This study examines the relationship between cellular sphingomyelin content and the distribution of unesterified cholesterol between the plasma-membrane pool and the putative intracellular regulatory pool. The sphingomyelin content of cultured human skin fibroblasts was reduced by treatment of intact cells with extracellularly added neutral sphingomyelinase, and subsequent changes in the activities of cholesterol-metabolizing enzymes were determined. Exposure of fibroblasts to 0.1 unit of sphingomyelinase/ml for 60 min led to the depletion of more than 90% of the cellular sphingomyelin, as determined from total lipid extracts. In a time-course study, it was found that within 10 min of the addition of sphingomyelinase to cells, a dramatic increase in acyl-CoA:cholesterol acyltransferase activity could be observed, whether measured from the appearance of plasma membrane-derived [3H]cholesterol or exogenously added [14C]oleic acid, in cellular cholesteryl esters. In addition, the cholesteryl ester mass was significantly higher in sphingomyelin-depleted fibroblasts at 3 h after exposure to sphingomyelinase compared with that in untreated fibroblasts [7.1 +/- 0.4 nmol of cholesterol/mg equivalents of esterified cholesterol compared with 4.2 +/- 0.1 nmol of cholesterol/mg equivalents of cholesteryl ester in control cells (P less than 0.05)]. The sphingomyelin-depleted cells also showed a reduction in the rate of endogenous synthesis of cholesterol, as measured by incorporation of sodium [14C]acetate into [14C]cholesterol. These results are consistent with a rapid movement of cholesterol from sphingomyelin-depleted plasma membranes to the putative intracellular regulatory pool of cholesterol. This mass movement of cholesterol away from the plasma membranes presumably resulted from a decreased capacity of the plasma membranes to solubilize cholesterol, since sphingomyelin-depleted cells also had a decreased capacity to incorporate nanomolar amounts of [3H]cholesterol from the extracellular medium, as compared with control cells. These findings confirm previous assumptions that the membrane sphingomyelin content is an important determinant of the overall distribution of cholesterol within intact cells.  相似文献   

8.
Phospholipid interconversions in Mycoplasma capricolum   总被引:5,自引:0,他引:5  
Mycoplasma capricolum cells increase their phospholipid content by incorporating exogenous phospholipids from the growth medium. Growing the cells in media with increasing serum concentrations resulted in a massive incorporation of phosphatidylcholine and sphingomyelin (up to about 50% of total phospholipids) into the cell membrane. The incorporation of the exogenous phospholipids had essentially no effect on the rate of cell growth and did not decrease the overall phospholipid biosynthesis of the cells. Thus, the ratio of phospholipid to protein in membranes from cells grown with 5% horse serum was 0.5 (mumol/mg) compared to 0.3 (mumol/mg) in cells grown without serum, and the relative content of charged polar lipids was apparently decreased. The consequence of the incorporation of exogenous phosphatidylcholine was an alteration in the relative amount of the major end-products of the de novo phospholipid biosynthesis; a marked increase in the ratio of diphosphatidylglycerol to phosphatidylglycerol was observed. The possibility that the increase in the ratio of diphosphatidylglycerol to phosphatidylglycerol is part of a control mechanism to maintain a mixture of bilayer and non-bilayer lipids is discussed.  相似文献   

9.
The regulation of acylcoenzyme A:cholesterol acyltransferase (ACAT) activity by cholesterol was studied in an established enterocyte cell line. CaCo-2 cells were grown in culture to confluency and dome formation. They were characterized morphologically by light and transmission electron microscopy. During the culture period, ACAT activity remained stable while the activities of the brush border enzymes sucrase and alkaline phosphatase progressively increased with time and plateaued 12 days after plating. As determined by the rate of incorporation of oleic acid into the individual lipid classes, the rate of triglyceride synthesis was twice that of phospholipid and 15 times that of cholesteryl ester synthesis in these cells. Incubating CaCo-2 cells with cholesterol solubilized in taurocholate micelles resulted in a significant increase in ACAT activity (149 +/- 5 pmol/dish per 2 hr vs. 366 +/- 5, (P less than 0.001) without changing the rates of triglyceride or phospholipid synthesis. The stimulation of ACAT activity by micellar cholesterol was rapid, occurring within 5 min and reaching a maximal effect by 2 hr. The regulation of ACAT activity by cholesterol was directly dependent upon the concentration of cholesterol solubilized in the micelle and was independent of protein synthesis. Incubating CaCo-2 cells with micellar cholesterol did not increase the esterification of, nor did the cholesterol enter the pool of, newly synthesized or performed cholesterol within 2 hr. The micellar cholesterol that was taken up by the cells was esterified within 5 min after starting the incubation. Progesterone, a known ACAT inhibitor, significantly decreased the rate of esterification of intracellular micellar cholesterol proving that the cholesterol taken up by CaCo-2 cells was indeed entering the ACAT pool. Despite increasing amounts of unesterified cholesterol entering the cells via micelles, the percent of cholesterol that was esterified at any one time remained constant at 1%. The results suggest that ACAT activity in CaCo-2 cells is stimulated by cholesterol delivered to the cells by way of taurocholate micelles. The rapid entry of this sterol into the ACAT substrate pool suggests that ACAT activity in CaCo-2 cells is regulated by the expansion of the cholesterol substrate pool that is being utilized by an unsaturated ACAT enzyme.  相似文献   

10.
11.
Effect of cell density on metabolism in isolated rat hepatocytes   总被引:2,自引:0,他引:2  
Freshly isolated rat hepatocytes show many changes in metabolic activities as a function of cell density in the incubation flask. Fatty acid synthesis, cholesterol synthesis, general protein synthesis, and rates of accumulation of pyruvate, lactate, citrate, acetyl-CoA, acetoacetate and beta-hydroxybutyrate decrease as the cell density increases between 1 mg/ml and 60 mg/ml. Glucose release only decreases between 1-5 mg/ml and the concentration of ATP does not vary at any density. There is a small increase in the lactate/pyruvate ratio and a dramatic decrease in the beta-hydroxybutyrate/acetoacetate ratio with increasing cell concentration. When cells at 8 or 28 mg/ml were incubated with added lactate and pyruvate, or alanine, a two fold increase in fatty acid synthesis and 50% decrease in cholesterol synthesis were observed as compared to rates with endogenous substrate. With added glucose the synthetic rates were similar to those obtained with endogenous substrate. However, regardless of the type of substrate used, the less dense cells gave rates up to three times greater than that of the more dense cells. When conditioned medium isolated after incubation of cells at high density was added to the less dense cells, a decrease in the rates of fatty acid synthesis and cholesterol synthesis was observed in the less dense cells; however, when medium from the less dense cells after incubation for the same period was added to the more dense cells, there was no significant change in fatty acid or cholesterol synthesis. These results suggest that a factor may be released into the medium of incubating hepatocytes that progressively inhibits certain metabolic processes as the cell density increases.  相似文献   

12.
The incorporation of labeled acetate into lipids was studied in rat hepatocytes isolated after treatment of liver with collagenase and hyaluronidase. About 60% of the lipid radioactivity was in free cholesterol and 13% was in triglycerides. Acetate incorporation was markedly inhibited when human serum lipoproteins were present in the incubation medium. Very low, high, and low density lipoproteins, at concentrations of 1.0 mg/ml, inhibited acetate incorporation by 70, 55, and 35%, respectively. Chylomicrons, at similar concentrations, did not inhibit acetate incorporation. The distribution of radioactivity into lipid classes was unchanged by the addition of lipoproteins. Lipoproteins did not produce a nonspecific toxic effect on hepatocytes, since their addition did not alter the rate of leucine incorporation into protein. The addition of the delipidated protein from low density lipoprotein or of lecithin in amounts comparable to those present in inhibitory concentrations of lipoproteins failed to diminish acetate incorporation. Artificial cholesterol-lecithin emulsions containing small amounts of free cholesterol did not inhibit lipid synthesis. Although the mechanism for the inhibition of acetate incorporation by lipoproteins is unclear, such effects may play some physiological role in the control of lipid biosynthesis in the liver.  相似文献   

13.
The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and 32Pi, the incorporation of 32Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. 32Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of 32Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using [3H]serine-labeled phospholipid. Pulse and pulse-chase experiments with L-[U-14C] serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold whereas the turnover of newly synthesized phosphatidylserine was normal. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine. These results demonstrate that exogenous phosphatidylserine can be efficiently incorporated into Chinese hamster ovary cells and utilized for membrane biogenesis, endogenous phosphatidylserine biosynthesis thereby being suppressed.  相似文献   

14.
The relation of the activity of the microsomal enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase, to cellular phospholipid composition was studied in C-6 glial cells. Phospholipid composition was perturbed by growth of cells in the naturally occurring amino alcohol, N,N-dimethylethanolamine. After growth of C-6 glia in 5 mM N,N-dimethylethanolamine for 24 h, reductase activity was diminished by 50%. A similar diminution in cholesterol synthesis was observed. This effect was not accompanied by any parallel change in cell growth, DNA synthesis, protein synthesis, fatty acid synthetase activity, or microsomal NADPH-cytochrome c reductase activity. The inhibition of reductase activity by N,N-dimethylethanolamine was prevented by the addition of equimolar concentrations of choline to the culture medium and, also, could be reversed completely by removal of N,N-dimethylethanolamine from the culture medium. The effect of N,N-dimethylethanolamine on reductase was associated with the formation of phosphatidyl-N,N-dimethylethanolamine which accumulated primarily at the expense of phosphatidylcholine and, after 24 h, accounted for 27% of total phospholipid phosphorus. The data demonstrate that incorporation of N,N-dimethylethanolamine into the polar head group of cellular phospholipids has a major impact on the regulation of the reductase. These observations may have particular relevance for the mechanisms of regulation of this enzyme, the cellular adaptation to alterations in membrane lipid composition, and the regulation of cholesterol synthesis in the developing nervous system.  相似文献   

15.
The extent to which cholesterol synthesis is modulated in macrophage foam cells by changes in cholesterol influx and efflux was determined using thioglycollate-elicited peritoneal macrophages from normal and cholesterol-fed White Carneau (WC) and Show Racer (SR) pigeons. In peritoneal macrophages from normocholesterolemic pigeons, sterol synthesis from [(14)C]-acetate was down-regulated by more than 90% following incubation in vitro with beta-VLDL. Sterol synthesis was increased when the cellular free cholesterol concentration was decreased in response to stimulation of cholesterol efflux with apoHDL/phosphatidylcholine vesicles and cyclodextrin. Peritoneal macrophages isolated from hypercholesterolemic pigeons were loaded with cholesterol to levels similar to foam cells from atherosclerotic plaques (375-614 microg/mg cell protein), and had an extremely low rate of sterol synthesis. When cholesterol efflux was stimulated in these cells, sterol synthesis increased 8 to 10-fold, even though the cells remained grossly loaded with cholesterol. Cholesterol efflux also stimulated HMG-CoA reductase activity and LDL receptor expression. This suggests that only a small portion of the total cholesterol pool in macrophage foam cells was responsible for regulation of sterol synthesis, and that cholesterol generated by hydrolysis of cholesteryl esters was directed away from the regulatory pool by efflux from the cells. When the increase in sterol synthesis was blocked with the HMG-CoA reductase inhibitor mevinolin, there was no difference in the cholesterol content of the cells, or in the mass efflux of cholesterol into the culture medium.Thus, under these conditions, the increase in cholesterol synthesis during stimulation of cholesterol efflux does not appear to contribute significantly to the mass of cholesterol in these macrophage foam cells. Whether a similar situation exists in vivo is unknown.  相似文献   

16.
The mitochondrial isoform of glycerol-3-phosphate acyltransferase (GPAT), the first step in glycerolipid synthesis, is up-regulated by insulin and by high carbohydrate feeding via SREBP-1c, suggesting that it plays a role in triacylglycerol synthesis. To test this hypothesis, we overexpressed mitochondrial GPAT in Chinese hamster ovary (CHO) cells. When GPAT was overexpressed 3.8-fold, triacylglycerol mass was 2.7-fold higher than in control cells. After incubation with trace [(14)C]oleate ( approximately 3 microm), control cells incorporated 4.7-fold more label into phospholipid than triacylglycerol, but GPAT-overexpressing cells incorporated equal amounts of label into phospholipid and triacylglycerol. In GPAT-overexpressing cells, the incorporation of label into phospholipid, particularly phosphatidylcholine, decreased 30%, despite normal growth rate and phospholipid content, suggesting that exogenous oleate was directed primarily toward triacylglycerol synthesis. Transiently transfected HEK293 cells that expressed a 4.4-fold increase in GPAT activity incorporated 9.7-fold more [(14)C]oleate into triacylglycerol compared with control cells, showing that the effect of GPAT overexpression was similar in two different cell types that had been transfected by different methods. When the stable, GPAT-overexpressing CHO cells were incubated with 100 microm oleate to stimulate triacylglycerol synthesis, they incorporated 1.9-fold more fatty acid into triacylglycerol than did the control cells. Confocal microscopy of CHO and HEK293 cells transfected with the GPAT-FLAG construct showed that GPAT was located correctly in mitochondria and was not present elsewhere in the cell. These studies indicate that overexpressed mitochondrial GPAT directs incorporation of exogenous fatty acid into triacylglycerol rather than phospholipid and imply that (a) mitochondrial GPAT and lysophosphatidic acid acyltransferase produce a separate pool of lysophosphatidic acid and phosphatidic acid that must be transported to the endoplasmic reticulum where the terminal enzymes of triacylglycerol synthesis are located, and (b) this pool remains relatively separate from the pool of lysophosphatidic acid and phosphatidic acid that contributes to the synthesis of the major phospholipid species.  相似文献   

17.
After infection of Escherichia coli with T4 phage, phospholipid synthesis continued but at a reduced rate. The same phospholipid components were synthesized as in uninfected cells; however, the relative rates of (32)P(i) incorporation into phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) were altered. This alteration was most pronounced during the first 10 min after infection. Under these conditions, the isotope incorporated into PG equaled or exceeded that found in PG from uninfected cells. Chloramphenicol (CM) added before, but not 5 min after, infection inhibited the relative increase in PG synthesis, and CM added at different times after infection indicated that a protein synthesized between 3 and 6 min was required for this change to occur. Supplies of exogenous l-serine or l-alpha-glycerol-P failed to affect the relative rates of (32)P(i) incorporation into PG and PE by infected or uninfected cells. Phospholipid synthesis was somewhat higher after infection with T4rII mutants than after infection with wild-type phage. After infection with these mutants or several amber mutants, the relative synthesis of PG and PE was characteristic of T4r(+)-infected cells. The phospholipid synthesized after infection did not rapidly turn over, but infection accelerated the loss of PG synthesized prior to infection.  相似文献   

18.
The current studies demonstrate that cultured human flbroblasts utilize mevalonate for the synthesis of ubiquinone-10 as well as for the synthesis of cholesterol. Study of the regulation of this branched pathway was facilitated by incubating the cells with compactin (ML-236B), a competitive inhibitor of 3-hydroxy-3-methylglutaryI coenzyme A reductase, which blocked the formation of mevalonate within the cell. The addition of known amounts of [3H]mevalonate to the culture medium in the presence of compactin permitted the study of the relative rates of mevalonate incorporation into cholesterol and ubiquinone-10 under controlled conditions. When low concentrations of exogenous [3H]mevalonate (10 to 50 μm) were added to cells that were provided with exogenous cholesterol in the form of plasma low density lipoprotein (LDL), the cells incorporated the [3H]mevalonate into ubiquinone-10 at a rate that was two- to threefold faster than the incorporation into cholesterol. When the cells were deprived of exogenous LDL-cholesterol, the incorporation of [3H]mevalonate into ubiquinone-10 decreased and the incorporation of [3H]mevalonate into cholesterol increased. As a result, in the absence of exogenous cholesterol more than 60 times as much [3H]mevalonate was incorporated into cholesterol as into ubiquinone-10. Considered together with previous findings, the current data are compatible with a regulatory mechanism in which LDL inhibits cholesterol synthesis in fibroblasts at two points: (1) at the level of 3-hydroxy-3-methylglutaryl coenzyme A reductase, thereby inhibiting mevalonate synthesis, and (2) at one or more points distal to the last intermediate common to the cholesterol and ubiquinone-10 biosynthetic pathways. The latter inhibition allows ubiquinone-10 synthesis to continue in the presence of LDL despite a 98% reduction in mevalonate synthesis.  相似文献   

19.
CL (cardiolipin) is a key phospholipid involved in ATP generation. Since progression through the cell cycle requires ATP we examined regulation of CL synthesis during S-phase in human cells and investigated whether CL or CL synthesis was required to support nucleotide synthesis in S-phase. HeLa cells were made quiescent by serum depletion for 24 h. Serum addition resulted in substantial stimulation of [methyl-(3)H]thymidine incorporation into cells compared with serum-starved cells by 8 h, confirming entry into the S-phase. CL mass was unaltered at 8 h, but increased 2-fold by 16 h post-serum addition compared with serum-starved cells. The reason for the increase in CL mass upon entry into S-phase was an increase in activity and expression of CL de novo biosynthetic and remodelling enzymes and this paralleled the increase in mitochondrial mass. CL de novo biosynthesis from D-[U-(14)C]glucose was elevated, and from [1,3-(3)H]glycerol reduced, upon serum addition to quiescent cells compared with controls and this was a result of differences in the selection of precursor pools at the level of uptake. Triascin C treatment inhibited CL synthesis from [1-(14)C]oleate but did not affect [methyl-(3)H]thymidine incorporation into HeLa cells upon serum addition to serum-starved cells. Barth Syndrome lymphoblasts, which exhibit reduced CL, showed similar [methyl-(3)H]thymidine incorporation into cells upon serum addition to serum-starved cells compared with cells from normal aged-matched controls. The results indicate that CL de novo biosynthesis is up-regulated via elevated activity and expression of CL biosynthetic genes and this accounted for the doubling of CL seen during S-phase; however, normal de novo CL biosynthesis or CL itself is not essential to support nucleotide synthesis during entry into S-phase of the human cell cycle.  相似文献   

20.
The composition, synthesis, and esterification of fatty acids were studied in aortas of White Carneau and Show Racer pigeons after perfusion of the aortas with a medium containing acetate-1-(14)C. For both breeds of pigeons the principal change in aortic fatty acids, in response to an atherogenic diet, was a marked increase in the percentage of oleic acid in the cholesteryl ester fraction. In atherosclerotic aortas incorporation of acetate-1-(14)C into the phospholipid and glyceride fractions increased 2-fold, while a much greater increase (up to 10-fold) was seen in incorporation into cholesteryl esters. In those birds receiving the atherogenic diet, palmitic acid accounted for approximately 50% of the fatty acid radioactivity, compared with approximately 25% from control aortas. Calculation of fatty acid synthesis showed the major newly synthesized fatty acids to be stearic acid in the phospholipid fraction; stearic, palmitic, and oleic acids in the glycerides; and oleic acid in the cholesteryl esters. The pattern of fatty acid synthesis was closely similar to the actual fatty acid composition of the aorta. In atherosclerotic aortas an increased synthesis of all fatty acids was seen, but the greatest increase was seen in the synthesis of oleic acid and its esterification to cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号