首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eye lens crystallins of the octopus Octopus dofleini were identified by sequencing abundant proteins and cDNAs. As in squid, the octopus crystallins have subunit molecular masses of 25-30 kDa, are related to mammalian glutathione S-transferases (GST), and are encoded in at least six genes. The coding regions and deduced amino acid sequences of four octopus lens cDNAs are 75-80% identical, while their non-coding regions are entirely different. Deduced amino acid sequences show 52-57% similarity with squid GST-like crystallins, but only 20-25% similarity with mammalian GST. These data suggest that the octopus and squid lens GST-like crystallin gene families expanded after divergence of these species. Northern blot hybridization indicated that the four octopus GST-like crystallin genes examined are lens-specific. Lens extracts showed about 40 times less GST activity using 1-chloro-2,4-dinitrobenzene as substrate than liver extracts of the octopus, indicating that the major GST-like crystallins are specialized for a lens structural role. A prominent 59-kDa crystallin polypeptide, previously observed in octopus but not squid and called omega-crystallin (Chiou, S.-H. (1988) FEBS Lett. 241, 261-264), has been identified as an aldehyde dehydrogenase. Since cytoplasmic aldehyde dehydrogenase is a major protein in elephant shrew lenses (eta-crystallin; Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269) the octopus aldehyde dehydrogenase crystallin provides the first example of a similar enzyme-crystallin in vertebrates and invertebrates. The use of detoxification stress proteins (GST and aldehyde dehydrogenase) as cephalopod crystallins indicates a common strategy for recruitment of enzyme-crystallins during the convergent evolution of vertebrate and invertebrate lenses. For historical reasons we propose that the octopus GST-like crystallins, like those of the squid, are called S-crystallins.  相似文献   

2.
Our previous studies have shown that the S-crystallins of cephalopod (Ommastrephes sloani pacificus) eye lenses comprise a family of at least ten members which are evolutionarily related to glutathione S-transferase (GST, EC 2.5.1.18). Here we show by cDNA cloning that there are at least 24 different S-crystallins that are 46–99% identical to each other by amino acid sequence in the squid Loligo opalescens. In each species, all but one S-crystallin (SL11 in O. pacificus and Lops4 in L. opalescens) examined has an inserted central peptide of variable length and sequence. cDNA expression studies conducted in Escherichia coli showed that squid GST (which is expressed little in the lens) has very high enzymatic activity using 1-chloro-2, 4-dinitrobenzene (CDNB) as a substrate; by contrast, SL20-1 of O. pacificus and Lops 12 of L. opalescens (which are encoded by abundant lens mRNAs) have no GST activity. Interestingly, SL11 and Lops4 have some enzymatic activity with the CDNB substrate. Site-specific mutations at Y7 or W38, both residues essential for activity of vertebrate GSTs, or insertion of the central peptide present in the inactive SL20-1, reduced the specific activity of squid GST by 30- to 100-fold. These data indicate that the S-crystallins consist of a family of enzymatically inactive proteins (when using CDNB as a substrate) which is considerably larger than previously believed and that GST activity was lost by gradual drift in sequence as well as by insertion of an extra peptide by exon shuffling. The results are also consistent with the idea that SL11 and Lops4 are orthologous crystallins representing the first descendants of the ancestral GST gene in the pathway which gave rise to the extensive S-crystallin family of lens proteins. Correspondence to: S.I. Tomarev  相似文献   

3.
S-crystallin is a major lens protein present in the octopus and squid of Cephalopods. To facilitate the cloning of the protein, cDNA was constructed from the poly(A)+RNA of octopus lenses, and amplification by polymerase chain reaction (PCR) was carried out with two primers designed according to the 5'- and 3'-coding regions of S-crystallin gene. Sequencing two of 15 positive clones obtained shows 37-44% similarity in nucleotide and 23-30% similarity in amino acid sequences as compared with mammalian glutathione S-transferases (GST), revealing that S-crystallins exist as a multigene family and probably derived from GST by gene duplication and subsequent mutational base replacements.  相似文献   

4.
5.
Previous experiments have shown that the minimal promoters required for function of the squid SL20-1 and SL11 crystallin genes in transfected rabbit lens epithelial cells contain an overlapping AP-1/antioxidant responsive element (ARE) upstream of the TATA box. This region resembles the PL-1 and PL-2 elements of the chicken B 1-cry stallin promoter which are essential for promoter function in transfected primary chicken lens epithelial cells. Here we demonstrate by site-directed mutagenesis that the AP-1/ARE sequence is essential for activity of the squid SL20-1 and SL11 promoters in transfected embryonic chicken lens cells and fibroblasts. Promoter activity was higher in transfected lens cells than in fibroblasts. Electrophoretic mobility shift and DNase protection experiments demonstrated the formation of numerous complexes between nuclear proteins of the embryonic chicken lens and the AP-1/ARE sequences of the squid SL20-1 and SL11 crystallin promoters. One of these complexes comigrated and cross-competed with that formed with the PL-1 element of the chicken B1-crystallin promoter. This complex formed with nuclear extracts from the lens, heart, brain, and skeletal muscle of embryonic chickens and was eliminated by competition with a consensus AP-1 sequence. The nonfunctional mutant AP-1/ ARE sequences did not compete for complex formation. These data raise the intriguing possibility that entirely different, nonhomologous crystallin genes of the chicken and squid have convergently evolved a similar cis-acting regulatory element (AP-1/ARE) for high expression in the lens. Correspondence to: S. I. Tomarev  相似文献   

6.
Lens crystallins and their genes: diversity and tissue-specific expression   总被引:10,自引:0,他引:10  
J Piatigorsky 《FASEB journal》1989,3(8):1933-1940
  相似文献   

7.
Mutations in the Ganglioside-induced differentiation-associated protein-1 (GDAP1) gene cause autosomal recessive Charcot-Marie-Tooth disease type 4A. The protein encoded by GDAP1 shows clear similarity to glutathione transferases (also known as glutathione S-transferases or GSTs). The human genome contains a paralog of GDAP1 called GDAP1L1. Using comparative genomics, we show that orthologs of GDAP1 and GDAP1L1 are found in mammals, birds, amphibians, and fishes. Likely orthologs of those genes in invertebrates and a low but consistent similarity with some plant and eubacterial genes have also been found. We demonstrate that GDAP1 and GDAP1L1 do not belong to any of the known classes of GST genes. In addition to having distinctive sequences, GDAP1 and its relatives are also characterized by an extended region in GST domain II, absent in most other GSTs, and by a C-terminal end predicted to contain transmembrane domains. Mutations affecting any of those characteristic domains are known to cause Charcot-Marie-Tooth disease. These features define the GDAP1 class of GST-like proteins.  相似文献   

8.
A 3-dimensional model of the human eye lens protein gamma S-crystallin has been constructed using comparative modeling approaches encoded in the program COMPOSER on the basis of the 3-dimensional structure of gamma-crystallin and beta-crystallin. The model is biased toward the monomeric gamma B-crystallin, which is more similar in sequence. Bovine gamma S-crystallin was shown to be monomeric by analytical ultracentrifugation without any tendency to form assemblies up to concentrations in the millimolar range. The connecting peptide between domains was therefore built assuming an intramolecular association as in the monomeric gamma-crystallins. Because the linker has 1 extra residue compared with gamma B and beta B2, the conformation of the connecting peptide was constructed by using a fragment from a protein database. gamma S-crystallin differs from gamma B-crystallin mainly in the interface region between domains. The charged residues are generally paired, although in a different way from both beta- and gamma-crystallins, and may contribute to the different roles of these proteins in the lens.  相似文献   

9.
Previously, we characterized glutathione S-transferase (GST) B1-1 from Escherichia coli enzymologically and structurally. Besides GST B1-1, E. coli has seven genes that encode GST-like proteins, for which, except SspA, neither biological roles nor biochemical properties are known. Here we show that the GST-like YfcF and YfcG proteins have low but significant GSH-conjugating activity toward 1-chloro-2,4-dinitorobenzene and GSH-dependent peroxidase activity toward cumene hydroperoxide. Analysis involving site-directed mutagenesis suggested that Ser16 and Asn11 were important for the activities of YfcF and YfcG, respectively. On the contrary, no residue around the catalytic site of GST B1-1 has been demonstrated to be essential for catalytic activity. Deletions of the gst, yfcF, and yfcG genes each decreased the resistibility of the bacteria to hydrogen peroxide, which was recovered by transformation with the expression plasmid for the deleted enzyme. The inactive YfcF(S16G) and YfcG(N11A) mutants, however, could not rescue the knockout bacteria. Thus, E. coli has at least three GSTs of distinct classes, all of which are important for defense against oxidative stress in spite of the structural diversity. This seems consistent with the hypothesis that GSTs constitute a protein superfamily that has evolved from a thioredoxin-like ancestor in response to the development of oxidative stress.  相似文献   

10.
A crystallin was isolated from the homogenate of the Squid (Loligo pealii) lens by gel filtration on a Sepharose CL-6B (2.5 X 170 cm) column. Biochemical characterization showed it is a dimeric protein with a molecular weight of (5.1 +/- 0.4) X 10(4) and a Stokes' radius of 26A. Electrophoresis on a cellulose acetate membrane indicated it is a basic protein with an isoelectric point higher than 8.6. High resolution two-dimensional gel in 8 M urea/2% NP-40 resolved this crystallin into 6 charge isomers, each with a major subunit of molecular weight 29,000 daltons and a minor subunit of 27,000 daltons in a molar ratio of 3:1. The extreme susceptibility of the protein to denaturation and precipitation even at low temperature hampered further characterization of this crystallin under nondenaturing conditions. Amino acid analysis indicated it contains an unusually high content of methionine (12.8 mol%) which may have some bearing on the instability of this crystallin in vitro. Biochemical comparison of the squid crystallin with mammalian lens crystallins shows that it is a crystallin distinguishable from all reported vertebrate lens crystallins. A detailed study of this protein may shed light on the evolution of lens crystallins in general.  相似文献   

11.
Kozlov KA 《Ontogenez》2001,32(5):325-343
A review of literature on tissue-specific proteins of the vertebrate eye lens and genes coding for these proteins is presented. Particular attention is paid to the most heterogeneous family of crystallins: beta- and gamma-crystallins, their nomenclature, and the structure of their genes. It is pointed out that mutations in gene coding for ubiquitous crystallins may be related to some forms of cataracts.  相似文献   

12.
Polyclonal antisera have been made to synthetic peptides of 11-15 residues that correspond to nine different regions of the alpha A crystallins. These antisera have been used in a radioimmunoassay to quantitatively probe for structural and/or covalent changes of alpha-crystallins in the nucleus versus cortex of the adult bovine lens. Antisera specific for the C-terminal and N-terminal regions of the alpha-crystallins bind more to alpha-crystallins from cortex. Antisera to three out of the seven internal sequences (residues 75-89, 87-101 and 135-149) bind better to alpha-crystallins from the bovine lens nucleus, suggesting a greater accessibility of these sequences to antisera binding. Together, these studies demonstrate that antisera against synthetic peptide sequences of alpha A crystallins are very specific probes that can detect structural and/or covalent changes in specified regions of the alpha-crystallins during the process of aging in the bovine lens.  相似文献   

13.
Many of the structural proteins of ocular lenses, commonly referred to as crystallins, are identical to specific enzymes or the result of a recent gene duplication (Piatigorsky, J., and Wistow, G. (1991) Science 252, 1078-1079). One such enzyme, aldehyde dehydrogenase (ALDH), has been recruited as a lens crystallin in certain mammals (Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269) and cephalopods (Tomarev, S., Zinovieva, R., and Piatigorsky, J. (1991) J. Biol. Chem. 266, 24226-24231). We report here that a transparent tissue, derived from muscle but functioning as a lens in the light-emitting organ of a squid, Euprymna scolopes, shows striking biochemical convergence with the epidermally derived ocular lenses of some mammals and cephalopods. In the light organ lens of E. scolopes, an ALDH-like protein is the predominant molecular component. The typical muscle-specific proteins are replaced as the dominant species by a protein composed of 54-kDa subunits. This protein, which we designate as L-crystallin, constitutes approximately 70% of the total soluble protein of the light organ lens. The amino acid sequences of three peptides of L-crystallin (approximately 9% of the total protein) showed 54.5% sequence identity with human cytosolic ALDH. Using polyclonal antiserum made against L-crystallin, we found that it is present in low abundance in other tissues of the squid, including muscle and the ocular lens. This polyclonal antiserum also cross-reacted with the ALDH-like crystallins found in the ocular lenses of certain mammals and cephalopods. L-Crystallin showed no ALDH activity, which is similar to several other enzyme/crystallins, including ALDH/eta-crystallin (Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269). The characteristics of this muscle-derived lens are evidence that a common biochemical basis underlies transparency and that certain proteins may possess properties that promote their selection as lens structural proteins.  相似文献   

14.
The reducing environment in the eye lens diminishes with age, leading to significant oxidative stress. Oxidation of lens crystallin proteins is the major contributor to their destabilization and deleterious aggregation that scatters visible light, obscures vision, and ultimately leads to cataract. However, the molecular basis for oxidation-induced aggregation is unknown. Using X-ray crystallography and small-angle X-ray scattering, we describe the structure of a disulfide-linked dimer of human γS-crystallin that was obtained via oxidation of C24. The γS-crystallin dimer is stable at glutathione concentrations comparable to those in aged and cataractous lenses. Moreover, dimerization of γS-crystallin significantly increases the protein’s propensity to form large insoluble aggregates owing to non-cooperative domain unfolding, as is observed in crystallin variants associated with early-onset cataract. These findings provide insight into how oxidative modification of crystallins contributes to cataract and imply that early-onset and age-related forms of the disease share comparable development pathways.  相似文献   

15.
Crystallins from carp eye lenses have been isolated and characterized by gel permeation chromatography, SDS-gel electrophoresis, immunodiffusion and amino acid analysis. gamma-Crystallin is the most abundant class of crystallins and constitutes over 55% of the total lens cytoplasmic proteins. It is immunologically distinct from the alpha- and beta-crystallins isolated from the same lens and its antiserum shows a very weak cross-reaction to total pig lens antigens. Comparison of the amino acid compositions of carp gamma-crystallin with those of bovine gamma-II, haddock gamma- and squid crystallins indicates that gamma-crystallin from the carp is very closely related to that of the haddock, and probably also related to the invertebrate squid crystallin. In vitro translation of total mRNAs isolated from carp lenses confirms the predominant existence of gamma-crystallin. The genomic characterization of carp crystallin genes should provide some insight into the mechanism of crystallin evolution in general.  相似文献   

16.
The 140-nucleotide spliced leader (SL) RNA, involved in mRNA maturation in the African trypanosomes and in other kinetoplastida, is encoded by a tandem array of spliced leader genes. We show that the 1.4-kb SL gene repeat unit in Trypanosoma gambiense is organized in tandem arrays confined to two large (minimum size 350-450 kb) restriction fragments. SL genes in both arrays are interrupted by a total of eight conserved insertion elements. Cleavage of genomic DNA at restriction sites present within the insertion element but not in the SL gene repeat, releases variable numbers of SL genes from the tandem array. Since the insertion element contains a terminal poly(A) track of 36 bases and because a 49-bp duplication of target DNA has occurred at the integration site, we conclude that it is a retroposon. This retropson is uniquely associated with the SL gene clusters. These retroposons presumably originated from a single insertion event after which their copy number increased, possibly through unequal sister chromatid exchange.  相似文献   

17.
18.
The TEF4 gene of the non-saccharomyces yeast Yarrowia lipolytica encodes an EF1Bgamma protein with structural similarity to the glutathione transferases (GSTs). This 1203bp gene was cloned, over-expressed in Escherichia coli, and the recombinant protein characterized. DNA sequencing of the cloned gene agreed with the recently completed Y. lipolytica genome and showed 100% identity to a previously reported 30-residue N-terminal sequence for a 110kDa Y. lipolytica GST, except that it encoded two additional N-terminal residues (N-Met-Ser-). The recombinant protein (subunit M(r) 52kDa) was found not to possess GST activity with 1-chloro-2,4-dinitrobenzene. Partial tryptic digestion released two fragments of M(r) 22 and 18kDa, which we interpret as N- and C-terminal domains. Homology modeling confirmed that the N-terminal domain of Y. lipolytica TEF4 encodes a GST-like protein.  相似文献   

19.
20.
We have isolated, purified and characterized six individual gamma-crystallin polypeptides present in the rat lens. Comparison of their amino acid compositions with the known structure of the six gamma-crystallin genes permits a one-to-one correspondence to be made between each protein synthesized and the encoding gene. This demonstrates that each of the six genes is actually expressed in vivo. Two classes of three gamma-crystallins each, which we have designated classes gamma ABC and gamma DEF, are known to exist, on the basis of internal sequence homology. We have measured the temperature-dependent phase-separation characteristics of solutions of the six purified gamma-crystallins, and find that the three members of the gamma DEF class (gamma 2-2, gamma 3-1 and gamma 4-1) are all cryo-proteins with relatively high phase-separation temperatures, whereas the three gamma ABC crystallins (gamma 1-1, gamma 1-2 and gamma 2-1) do not show phase separation above -7 degrees C. We have measured the spatial distribution in rat lens of each of the alpha-, beta- and gamma-crystallins as a function of age from 1 to 420 days, using size-exclusion and ion-exchange high-pressure liquid chromatography (HPLC). Our findings in the cortical layer permit us to establish the differential synthesis of each of the crystallins during lens development. Particular attention has been devoted to the spatial and temporal distribution of the six individual gamma-crystallins. Up to birth, synthesis of the three components of the gamma DEF class predominates, and in particular that of gamma 2-2. In subsequent development the three components of the gamma ABC class assume a greater proportion of monomeric crystallins synthesized, while beta s-crystallin synthesis predominates in late development. Our analysis of different layers within single lenses provides novel information on spatial gradients of the water-soluble and water-insoluble protein fractions as a function of age. We consider the consequences of these findings for lens transparency and opacity in both rat and mouse lens. We show that the high concentrations of gamma DEF-crystallins appear to be responsible for the opacity known to occur in young rat lenses. We conclude from these observations that close control of the differential synthesis of gamma-crystallins plays an important role in maintaining lens transparency during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号