首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt-modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV.  相似文献   

2.
Malaria is one of the major parasitic diseases. Current treatment of malaria is seriously hampered by the emergence of drug resistant cases. A once-effective drug chloroquine (CQ) has been rendered almost useless. The mechanism of CQ resistance is complicated and largely unknown. Recently, a novel transmembrane protein, Plasmodium falciparum chloroquine resistance transporter (PfCRT), has fulfilled all the requirements of being the CQ resistance gene. In order to elucidate the mechanism how PfCRT mediates CQ resistance, we have cloned the cDNA from a CQ sensitive parasite (3D7) and tried to express it in Pichia pastoris (P. pastoris) but with unsuccessful results due to AT-rich sequences in the malaria genome. We have therefore, based on the codon usage in P. pastoris, chemically synthesized a codon-modified pfcrt with an overall 55% AT content. This codon-modified pfcrt has now been successfully expressed in P. pastoris. The expressed PfCRT has been purified with immuno metal affinity chromatography (IMAC) and then reconstituted into proteoliposome. It was found that proteoliposomes have a saturable, concentration and time-dependent CQ transport activity. In addition, we found that proteoliposomes with resistant PfCRT(r) (K76T or K76I) showed an increased CQ transport activity compared to liposomes with lipid alone, or proteoliposomes reconstituted with sensitive PfCRT(s) (K76) protein. This activity could be inhibited by nigericin and decreased with the removal of Cl(-). This work suggests that PfCRT is mediating CQR in P. falciparum by virtue of its changes in CQ transport activity depending on pH gradient and chloride ion in the food vacuole.  相似文献   

3.
4.
The determinant of verapamil-reversible chloroquine resistance (CQR) in a Plasmodium falciparum genetic cross maps to a 36 kb segment of chromosome 7. This segment harbors a 13-exon gene, pfcrt, having point mutations that associate completely with CQR in parasite lines from Asia, Africa, and South America. These data, transfection results, and selection of a CQR line harboring a novel K761 mutation point to a central role for the PfCRT protein in CQR. This transmembrane protein localizes to the parasite digestive vacuole (DV), the site of CQ action, where increased compartment acidification associates with PfCRT point mutations. Mutations in PfCRT may result in altered chloroquine flux or reduced drug binding to hematin through an effect on DV pH.  相似文献   

5.
Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) can result in verapamil-reversible CQ resistance and altered susceptibility to other antimalarials. PfCRT contains 10 membrane-spanning domains and is found in the digestive vacuole (DV) membrane of intraerythrocytic parasites. The mechanism by which PfCRT mediates CQ resistance is unclear although it is associated with decreased accumulation of drug within the DV. On the permissive background of the P. falciparum 106/1(K76) parasite line, we used single-step drug selection to generate isogenic clones containing unique pfcrt point mutations that resulted in amino acid changes in PfCRT transmembrane domains 1 (C72R, K76N, K76I and K76T) and 9 (Q352K, Q352R). The resulting changes of charge and hydropathy affected quantitative CQ susceptibility and accumulation as well as the stereospecific responses to quinine and quinidine. These results, together with a previously described S163R mutation in transmembrane domain 4, indicate that transmembrane segments 1, 4 and 9 of PfCRT provide important structural components of a substrate recognition and translocation domain. Charge-affecting mutations within these segments may affect the ability of PfCRT to bind different quinoline drugs and determine their net accumulation in the DV.  相似文献   

6.
Several models describing how amino acid substitutions in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to chloroquine (CQ) and other antimalarial drugs have been proposed. Further progress requires molecular analysis of interactions between purified reconstituted PfCRT protein and these drugs. We have thus designed and synthesized several perfluorophenyl azido (pfpa) CQ analogues for PfCRT photolabeling studies. One particularly useful probe (AzBCQ) places the pfpa group at the terminal aliphatic N of CQ via a flexible four-carbon ester linker and includes a convenient biotin tag. This probe photolabels PfCRT in situ with high specificity. Using reconstituted proteoliposomes harboring partially purified recombinant PfCRT, we analyze AzBCQ photolabeling versus competition with CQ and other drugs to probe the nature of the CQ binding site. We also inspect how pH, the chemoreversal agent verapamil (VPL), and various amino acid mutations in PfCRT that cause CQ resistance (CQR) affect the efficiency of AzBCQ photolabeling. Upon gel isolation of AzBCQ-labeled PfCRT followed by trypsin digestion and mass spectrometry analysis, we are able to define a single AzBCQ covalent attachment site lying within the digestive vacuolar-disposed loop between putative helices 9 and 10 of PfCRT. Taken together, the data provide important new insight into PfCRT function and, along with previous results, allow us to propose a model for a single CQ binding site in the PfCRT protein.  相似文献   

7.
Chloroquine (CQ), an antimalarial drug with a long history, now frequently fails in the field owing to the rapid spread of resistant Plasmodium falciparum strains. CQ resistance is linked to a K76T mutation in PfCRT, a membrane-located food vacuolar protein and member of the drug-metabolite transporter superfamily, but there is as yet no agreed mechanism of how mutated PfCRT brings about CQ resistance. Current models suggest that mutated PfCRT acts either as a channel or a transporter of CQ, enabling CQ to leave the digestive food vacuole of the parasite, in which the CQ accumulates. Here, we review the pros and cons of the carrier and transporter models in light of recent developments in the field.  相似文献   

8.
Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) are major determinants of verapamil (VP)‐reversible CQ resistance (CQR). In the presence of mutant PfCRT, additional genes contribute to the wide range of CQ susceptibilities observed. It is not known if these genes influence mechanisms of chemosensitization by CQR reversal agents. Using quantitative trait locus (QTL) mapping of progeny clones from the HB3 × Dd2 cross, we show that the P. falciparum multidrug resistance gene 1 (pfmdr1) interacts with the South‐East Asia‐derived mutant pfcrt haplotype to modulate CQR levels. A novel chromosome 7 locus is predicted to contribute with the pfcrt and pfmdr1 loci to influence CQR levels. Chemoreversal via a wide range of chemical structures operates through a direct pfcrt‐based mechanism. Direct inhibition of parasite growth by these reversal agents is influenced by pfcrt mutations and additional loci. Direct labelling of purified recombinant PfMDR1 protein with a highly specific photoaffinity CQ analogue, and lack of competition for photolabelling by VP, supports our QTL predictions. We find no evidence that pfmdr1 copy number affects CQ response in the progeny; however, inheritance patterns indicate that an allele‐specific interaction between pfmdr1 and pfcrt is part of the complex genetic background of CQR.  相似文献   

9.
Zhang H  Paguio M  Roepe PD 《Biochemistry》2004,43(26):8290-8296
Recently, mutations in the novel polytopic integral membrane protein PfCRT were shown to cause chloroquine resistance (CQR) in the malarial parasite Plasmodium falciparum. PfCRT is not a member of the well-known family of ABC proteins that have previously been associated with other drug resistance phenomena. Thus, the mechanism(s) whereby mutant PfCRT molecules confer antimalarial drug resistance is (are) unknown. Previously, we succeeded in overexpressing PfCRT to high levels in Pichia pastoris yeast by synthesizing a codon-optimized version of the pfcrt gene. Using purified membranes and inside-out plasma membrane vesicles (ISOV) isolated from strains harboring either wild-type or CQR-associated mutant PfCRT, we now show that under deenergized conditions the PfCRT protein specifically binds the antimalarial drug chloroquine (CQ) with a K(D) near 400 nM but does not measurably bind the related drug quinine (QN) at physiologically relevant concentrations. Transport studies using ISOV show that QN is passively accumulated as expected on the basis of previous measurement of the ISOV DeltapH for the different strains. However, passive accumulation of CQ is lower than expected for ISOV harboring mutant PfCRT, despite higher DeltapH for these ISOV.  相似文献   

10.
Plasmodium falciparum chloroquine resistance (CQR) transporter point mutation (PfCRT 76T) is known to be the key determinant of CQR. Molecular detection of PfCRT 76T in field samples may be used for the surveillance of CQR in malaria-endemic countries. The genotype-resistance index (GRI), which is obtained as the ratio of the prevalence of PfCRT 76T to the incidence of CQR in a clinical trial, was proposed as a simple and practical molecular-based addition to the tools currently available for monitoring CQR in the field. In order to validate the GRI model across populations, time, and resistance patterns, we compiled data from the literature and generated new data from 12 sites across Mali. We found a mean PfCRT 76T mutation prevalence of 84.5% (range 60.9–95.1%) across all sites. CQR rates predicted from the GRI model were extrapolated onto a map of Mali to show the patterns of resistance throughout the participating regions. We present a comprehensive map of CQR in Mali, which strongly supports recent changes in drug policy away from chloroquine.  相似文献   

11.
Using DNA extracted from 112 parasitised blood blots, we screened for the population marker of chloroquine resistance (CQR) pfcrt K76T in Plasmodium falciparum infections from Guyana. Pfmdr1 mutations S1034C, N1042D, and D1246Y also associated with CQR were surveyed as well in 15 isolates for which the in vitro responses to CQ were known. Results indicate that the pfcrt K76T is ubiquitous in this environment, and confirmatory sequencing of codons 72 and 76 revealed two novel allelic sequences SVMIT and RVMNT in addition to the previously identified CVMNT and SVMNT haplotypes. The frequency of the pfcrt K76T despite its presence in both CQR and CQS (chloroquine sensitive) infections measured in vivo and in vitro, suggests that it is a useful population marker in this low-transmission setting of sweeping CQR.  相似文献   

12.
Here we provide definitive evidence that chloroquine (CQ) uptake in Plasmodium falciparum is determined by binding to ferriprotoporphyrin IX (FPIX). Specific proteinase inhibitors that block the degradation of hemoglobin and stop the generation of FPIX also inhibit CQ uptake. Food vacuole enzymes can generate cell-free binding, using human hemoglobin as a substrate. This binding accounts for CQ uptake into intact cells and is subject to identical inhibitor specificity. Inhibition of CQ uptake by amiloride derivatives occurs because of inhibition of CQ-FPIX binding rather than inhibition of the Na+/H+ exchanger (NHE). Inhibition of parasite NHE using a sodium-free medium does not inhibit CQ uptake nor does it alter the ability of amilorides to inhibit uptake. CQ resistance is characterized by a reduced affinity of CQ-FPIX binding that is reversible by verapamil. Diverse compounds that are known to disrupt lysosomal pH can mimic the verapamil effect. These effects are seen in sodium-free medium and are not due to stimulation of the NHE. We propose that these compounds increase CQ accumulation and overcome CQ resistance by increasing the pH of lysosomes and endosomes, thereby causing an increased affinity of binding of CQ to FPIX.  相似文献   

13.
Resistance to the cytostatic activity of the antimalarial drug chloroquine (CQ) is becoming well understood, however, resistance to cytocidal effects of CQ is largely unexplored. We find that PfCRT mutations that almost fully recapitulate P. falciparum cytostatic CQ resistance (CQRCS) as quantified by CQ IC50 shift, account for only 10–20% of cytocidal CQR (CQRCC) as quantified by CQ LD50 shift. Quantitative trait loci (QTL) analysis of the progeny of a chloroquine sensitive (CQS; strain HB3)×chloroquine resistant (CQR; strain Dd2) genetic cross identifies distinct genetic architectures for CQRCS vs CQRCC phenotypes, including identification of novel interacting chromosomal loci that influence CQ LD50. Candidate genes in these loci are consistent with a role for autophagy in CQRCC, leading us to directly examine the autophagy pathway in intraerythrocytic CQR parasites. Indirect immunofluorescence of RBC infected with synchronized CQS vs CQR trophozoite stage parasites reveals differences in the distribution of the autophagy marker protein PfATG8 coinciding with CQRCC. Taken together, the data show that an unusual autophagy – like process is either activated or inhibited for intraerythrocytic trophozoite parasites at LD50 doses (but not IC50 doses) of CQ, that the pathway is altered in CQR P. falciparum, and that it may contribute along with mutations in PfCRT to confer the CQRCC phenotype.  相似文献   

14.
Chloroquine resistance in Plasmodium falciparum malaria results from mutations in PfCRT, a member of a unique family of transporters present in apicomplexan parasites and Dictyostelium discoideum. Mechanisms that have been proposed to explain chloroquine resistance are difficult to evaluate within malaria parasites. Here we report on the targeted expression of wild-type and mutant forms of PfCRT to acidic vesicles in D. discoideum. We show that wild-type PfCRT has minimal effect on the accumulation of chloroquine by D. discoideum, whereas forms of PfCRT carrying a key charge-loss mutation of lysine 76 (e.g. K76T) enable D. discoideum to expel chloroquine. As in P. falciparum, the chloroquine resistance phenotype conferred on transformed D. discoideum can be reversed by the channel-blocking agent verapamil. Although intravesicular pH levels in D. discoideum show small acidic changes with the expression of different forms of PfCRT, these changes would tend to promote intravesicular trapping of chloroquine (a weak base) and do not account for reduced drug accumulation in transformed D. discoideum. Our results instead support outward-directed chloroquine efflux for the mechanism of chloroquine resistance by mutant PfCRT. This mechanism shows structural specificity as D. discoideum transformants that expel chloroquine do not expel piperaquine, a bisquinoline analog of chloroquine used frequently against chloroquine-resistant parasites in Southeast Asia. PfCRT, nevertheless, may have some ability to act on quinine and quinidine. Transformed D. discoideum will be useful for further studies of the chloroquine resistance mechanism and may assist in the development and evaluation of new antimalarial drugs.  相似文献   

15.
The mechanism of chloroquine (CQ) resistance in Plasmodium falciparum is not clearly understood. However, CQ resistance has been shown to be associated with point mutations in Pfcrt and Pfmdr1. These genes encode for digestive vacuole transmembrane proteins Pfcrt and Pgh1, respectively. The present study was carried out to analyze the association of Pfcrt-K76T and Pfmdr1-N86Y mutations with CQ resistance in Northeast Indian P. falciparum isolates. 115 P. falciparum isolates were subjected to in vitro CQ sensitivity testing and PCR-RFLP analysis for the Pfmdr1-N86Y and Pfcrt-K76T mutations. 100 isolates of P. falciparum were found to be resistant to CQ by the in vitro susceptibility test (geometric mean EC50 2.21 µM/L blood) while 15 were found to be CQ sensitive (geometric mean EC50 0.32 µM/L blood). All the CQ resistant isolates showed the presence of Pfmdr1 and Pfcrt mutations. CQ sensitive isolates were negative for these mutations. Strong linkage disequilibrium was observed between the alleles at these two loci (Pfmdr1-N86Y and Pfcrt-K76T). The results indicate that Pfmdr1-N86Y and Pfcrt-K76T mutations can be used as molecular markers to identify CQ resistance in P. falciparum. The result necessitates the evaluation of CQ in vivo therapeutic efficacy in endemic areas for more effective malaria control strategies.  相似文献   

16.

Background

Chloroquine accumulates in the acidic digestive vacuole of the intraerythrocytic malaria parasite, and prevents the detoxication of haematin released during haemoglobin digestion. Changes in protein PfCRT in the digestive vacuole membrane of growing intra-erythrocytic stages of Plasmodium falciparum are crucial for resistance. Expressed in yeast, PfCRT resembles an anion channel. Depressed anion channel function could increase intralysosomal pH to reduce entry of basic drug, or enhanced function could reduce drug interaction with target haematin. The most important resistance-associated change is from positively-charged lysine-76 to neutral threonine which could facilitate drug efflux through a putative channel. It has been proposed that the resistance-reversing effect of verapamil is due to hydrophobic binding to the mutated PfCRT protein, and replacement of the lost positive charge, which repels the access of 4-aminoquinoline cations, thus partially restoring sensitivity. Desethylamodiaquine, the active metabolite of amodiaquine, which has significant activity in chloroquine-resistance, may also act similarly on its own.

Methods

Changes in physicochemical parameters in different CQ-resistant PfCRT sequences are analysed, and correlations with drug activity on lines transfected with different alleles of the pfcrt gene are examined.

Results and conclusions

The results support the idea that PfCRT is a channel which, in resistant parasites, can allow efflux of chloroquine from the digestive vacuole. Activity of the chloroquine/verapamil combination and of desethylamodiaquine both correlate with the mean hydrophobicity of PfCRT residues 72-76. This may partly explain clinical-resistance to amodiaquine found in the first chloroquine-resistant malaria cases from South America and enables tentative prediction of amodiaquine's clinical activity against novel haplotypes of PfCRT.  相似文献   

17.
Baro NK  Pooput C  Roepe PD 《Biochemistry》2011,50(31):6701-6710
Previous work from our laboratory optimized MeOH-inducible expression of the P. falciparum malarial parasite transporter PfCRT in P. pastoris yeast. These strains are useful for many experiments but do not allow for inducible protein expression under ambient growth conditions. We have therefore optimized galactose-inducible expression of PfCRT in S. cerevisiae yeast. We find that expression of PfCRT confers CQ hypersensitivity to growing yeast and that this is due to plasma membrane localization of the transporter. We use quantitative analyses of growth rates to compare hypersensitivity for yeast expressing various PfCRT isoforms. We also report successful high level inducible expression of the P. vivax orthologue, PvCRT, and compare CQ hypersensitivity for PvCRT vs PfCRT expressing yeast. We test the hypothesis that hypersensitivity is due to increased transport of CQ into yeast expressing the transporters via direct (3)H-CQ transport experiments and analyze the effect that membrane potential has on transport. The data suggest important new tools for rapid functional screening of PfCRT and PvCRT isoforms and provide further evidence for a model wherein membrane potential promotes charged CQ transport by PfCRT. Data also support our previous conclusion that wild type PfCRT is capable of CQ transport and provide a basis for understanding the lack of correspondence between PvCRT mutations and resistance to CQ in the important malarial parasite P. vivax.  相似文献   

18.
In the previous paper [Gligorijevic, B., et al. (2006) Biochemistry 45, pp 12400-12410], we reported on a customized Nipkow spinning disk confocal microscopy (SDCM) system and its initial application to DIC imaging of hemozoin within live, synchronized, intraerythrocytic Plasmodium falciparum malarial parasites. In this paper, we probe the biogenesis as well as the volume and pH regulation of the parasite digestive vacuole (DV), using the fluorescence imaging capabilities of the system. Several previous reports have suggested that mutant PfCRT protein, which causes chloroquine resistance (CQR) in P. falciparum, also causes increased acidification of the DV. Since pH and volume regulation are often linked, we wondered whether DV volume differences might be associated with CQR. Using fast acquisition of SDCM z stacks for synchronized parasites with OGd internalized into the DV, followed by iterative deconvolution using experimental point spread functions, we quantify the volume of the DV for live, intraerythrocytic HB3 (CQS), Dd2 (CQR via drug selection), GCO3 (CQS), and GCO3/C3(Dd2) (CQR via transfection with mutant pfcrt) malarial parasites as they develop within the human red blood cell. We find that relative to both CQS strains, both CQR strains show significantly increased DV volume as the organelle forms upon entry into the trophozoite stage of development and that this persists until the trophozoite-schizont boundary. A more acidic DV pH is found for CQR parasites as soon as the organelle forms and persists throughout the trophozoite stage. We probe DV volume and pH changes upon ATP depletion, hypo- and hypertonic shock, and rapid withdrawal of perfusate chloride. Taken together, these data suggest that the PfCRT mutations that cause CQR also lead to altered DV volume regulation.  相似文献   

19.
The development and rapid spread of chloroquine resistance (CQR) in Plasmodium falciparum have triggered the identification of several genetic target(s) in the P. falciparum genome. In particular, mutations in the Pfcrt gene, specifically, K76T and mutations in three other amino acids in the region adjoining K76 (residues 72, 74, 75 and 76), are considered to be highly related to CQR. These various mutations form several different haplotypes and Pfcrt gene polymorphisms and the global distribution of the different CQR- Pfcrt haplotypes in endemic and non-endemic regions of P. falciparum malaria have been the subject of extensive study. Despite the fact that the Pfcrt gene is considered to be the primary CQR gene in P. falciparum , several studies have suggested that this may not be the case. Furthermore, there is a poor correlation between the evolutionary implications of the Pfcrt haplotypes and the inferred migration of CQR P. falciparum based on CQR epidemiological surveillance data. The present paper aims to clarify the existing knowledge on the genetic basis of the different CQR- Pfcrt haplotypes that are prevalent in worldwide populations based on the published literature and to analyse the data to generate hypotheses on the genetics and evolution of CQR malaria.  相似文献   

20.
Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance   总被引:1,自引:0,他引:1  
Recent studies have highlighted the importance of a parasite protein referred to as the chloroquine resistance transporter (PfCRT) in the molecular basis of Plasmodium falciparum resistance to the quinoline antimalarials. PfCRT, an integral membrane protein with 10 predicted transmembrane domains, is a member of the drug/metabolite transporter superfamily and is located on the membrane of the intra-erythrocytic parasite's digestive vacuole. Specific polymorphisms in PfCRT are tightly correlated with chloroquine resistance. Transfection studies have now proven that pfcrt mutations confer verapamil-reversible chloroquine resistance in vitro and reveal their important role in resistance to quinine. Available evidence is consistent with the view that PfCRT functions as a transporter directly mediating the efflux of chloroquine from the digestive vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号