首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the construction of a DNA molecule containing a topologically stable structure that simulates a replication fork. This preformed DNA molecule is a circular duplex of 7.2 X 10(3) base pairs (M13mp6 DNA) from which arises, at a unique BamHI recognition site, a noncomplementary 5'-phosphoryl-terminated single strand of 237 nucleotides (SV40 DNA). This structure has two experimental attributes. 1) Templates for both leading and lagging strand synthesis exist as stable structures prior to any DNA synthesis. 2) DNA synthesis creates a cleavage site for the restriction endonuclease BamHI. Form I of T7 DNA polymerase, alone, catalyzes limited DNA synthesis at the preformed replication fork whereas Form II, alone, polymerizes less than 5 nucleotides. However, when T7 gene 4 protein is present, Form II of T7 DNA polymerase catalyzes rapid and extensive synthesis via a rolling circle mode. Kinetic analysis of this synthesis reveals that the fork moves at a rate of 300 bases/s at 30 degrees C. We conclude that the T7 gene 4 protein requires a single-stranded DNA binding site from which point it translocates to the replication fork where it functions as a helicase. The phage T4 DNA polymerase catalyzes DNA synthesis at this preformed replication fork in the presence of gene 4 protein, but the amount of DNA synthesized is less that 3% of the amount synthesized by the combination of Form II of T7 DNA polymerase and gene 4 protein. We conclude that T7 DNA polymerase and T7 gene 4 protein interact specifically during DNA synthesis at a replication fork.  相似文献   

2.
The lagging strand of the replication fork is initially copied as short Okazaki fragments produced by the coupled activities of two template-dependent enzymes, a primase that synthesizes RNA primers and a DNA polymerase that elongates them. Gene 4 of bacteriophage T7 encodes a bifunctional primase-helicase that assembles into a ring-shaped hexamer with both DNA unwinding and primer synthesis activities. The primase is also required for the utilization of RNA primers by T7 DNA polymerase. It is not known how many subunits of the primase-helicase hexamer participate directly in the priming of DNA synthesis. In order to determine the minimal requirements for RNA primer utilization by T7 DNA polymerase, we created an altered gene 4 protein that does not form functional hexamers and consequently lacks detectable DNA unwinding activity. Remarkably, this monomeric primase readily primes DNA synthesis by T7 DNA polymerase on single-stranded templates. The monomeric gene 4 protein forms a specific and stable complex with T7 DNA polymerase and thereby delivers the RNA primer to the polymerase for the onset of DNA synthesis. These results show that a single subunit of the primase-helicase hexamer contains all of the residues required for primer synthesis and for utilization of primers by T7 DNA polymerase.  相似文献   

3.
The proteolytic removal of about 60 amino acids from the COOH terminus of the bacteriophage T4 helix-destabilizing protein (gene 32 protein) produces 32*I, a 27,000-dalton fragment which still binds tightly and cooperatively to single-stranded DNA. The substitution of 32*I protein for intact 32 protein in the seven-protein T4 replication complex results in dramatic changes in some of the reactions catalyzed by this in vitro DNA replication system, while leaving others largely unperturbed. 1. Like intact 32 protein, the 32*I protein promotes DNA synthesis by the DNA polymerase when the T4 polymerase accessory proteins (gene 44/62 and 45 proteins) are also present. The host helix-destabilizing protein (Escherichia coli ssb protein) cannot replace the 32I protein for this synthesis. 2. Unlike intact 32 protein, 32*I protein strongly inhibits DNA synthesis catalyzed by the T4 DNA polymerase alone on a primed single-stranded DNA template. 3. Unlike intact 32 protein, the 32*I protein strongly inhibits RNA primer synthesis catalyzed by the T4 gene 41 and 61 proteins and also reduces the efficiency of RNA primer utilization. As a result, de novo DNA chain starts are blocked completely in the complete T4 replication system, and no lagging strand DNA synthesis occurs. 4. The 32*I protein does not bind to either the T4 DNA polymerase or to the T4 gene 61 protein in the absence of DNA; these associations (detected with intact 32 protein) would therefore appear to be essential for the normal control of 32 protein activity, and to account at least in part for observations 2 and 3, above. We propose that the COOH-terminal domain of intact 32 protein functions to guide its interactions with the T4 DNA polymerase and the T4 gene 61 RNA-priming protein. When this domain is removed, as in 32*I protein, the helix destabilization induced by the protein is controlled inadequately, so that polymerizing enzymes tend to be displaced from the growing 3'-OH end of a polynucleotide chain and are thereby inhibited. Eukaryotic helix-destabilizing proteins may also have similar functional domains essential for the control of their activities.  相似文献   

4.
About 130 kb of sequence information was obtained from the coliphage JS98 isolated from the stool of a pediatric diarrhea patient in Bangladesh. The DNA shared up to 81% base pair identity with phage T4. The most conserved regions between JS98 and T4 were the structural genes, but their degree of conservation was not uniform. The head genes showed the highest sequence conservation, followed by the tail, baseplate, and tail fiber genes. Many tail fiber genes shared only protein sequence identity. Except for the insertion of endonuclease genes in T4 and gene 24 duplication in JS98, the structural gene maps of the two phages were colinear. The receptor-recognizing tail fiber proteins gp37 and gp38 were only distantly related to T4, but shared up to 83% amino acid identity to other T6-like phages, suggesting lateral gene transfer. A greater degree of variability was seen between JS98 and T4 over DNA replication and DNA transaction genes. While most of these genes came in the same order and shared up to 76% protein sequence identity, a few rearrangements, insertions, and replacements of genes were observed. Many putative gene insertions in the DNA replication module of T4 were flanked by intron-related endonuclease genes, suggesting mobile DNA elements. A hotspot of genome diversification was located downstream of the DNA polymerase gene 43 and the DNA binding gene 32. Comparative genomics of 100-kb genome sequence revealed that T4-like phages diversify more by the accumulation of point mutations and occasional gene duplication events than by modular exchanges.  相似文献   

5.
The T4 bacteriophage dda protein is a DNA-dependent ATPase and DNA helicase that is the product of an apparently nonessential T4 gene. We have examined its effects on in vitro DNA synthesis catalyzed by a purified, multienzyme T4 DNA replication system. When DNA synthesis is catalyzed by the T4 DNA polymerase on a single-stranded DNA template, the addition of the dda protein is without effect whether or not other replication proteins are present. In contrast, on a double-stranded DNA template, where a mixture of the DNA polymerase, its accessory proteins, and the gene 32 protein is required, the dda protein greatly stimulates DNA synthesis. The dda protein exerts this effect by speeding up the rate of replication fork movement; in this respect, it acts identically with the other DNA helicase in the T4 replication system, the T4 gene 41 protein. However, whereas a 41 protein molecule remains bound to the same replication fork for a prolonged period, the dda protein seems to be continually dissociating from the replication fork and rebinding to it as the fork moves. Some gene 32 protein is required to observe DNA synthesis on a double-stranded DNA template, even in the presence of the dda protein. However, there is a direct competition between this helix-destabilizing protein and the dda protein for binding to single-stranded DNA, causing the rate of replication fork movement to decrease at a high ratio of gene 32 protein to dda protein. As shown elsewhere, the dda protein becomes absolutely required for in vitro DNA synthesis when E. coli RNA polymerase molecules are bound to the DNA template, because these molecules otherwise stop fork movement (Bedinger, P., Hochstrasser, M., Jongeneel, C.V., and Alberts, B. M. (1983) Cell 34, 115-123).  相似文献   

6.
Proofreading DNA polymerases share common short peptide motifs that bind Mg(2+) in the exonuclease active center; however, hydrolysis rates are not the same for all of the enzymes, which indicates that there are functional and likely structural differences outside of the conserved residues. Since structural information is available for only a few proofreading DNA polymerases, we developed a genetic selection method to identify mutant alleles of the POL3 gene in Saccharomyces cerevisiae, which encode DNA polymerase delta mutants that replicate DNA with reduced fidelity. The selection procedure is based on genetic methods used to identify "mutator" DNA polymerases in bacteriophage T4. New yeast DNA polymerase delta mutants were identified, but some mutants expected from studies of the phage T4 DNA polymerase were not detected. This would indicate that there may be important differences in the proofreading pathways catalyzed by the two DNA polymerases.  相似文献   

7.
The RNA polymerases encoded by bacteriophages T3 and T7 have similar structures, but exhibit nearly exclusive template specificities. We have determined the nucleotide sequence of the region of T3 DNA that encodes the T3 RNA polymerase (the gene 1.0 region), and have compared this sequence with the corresponding region of T7 DNA. The predicted amino acid sequence of the T3 RNA polymerase exhibits very few changes when compared to the T7 enzyme (82% of the residues are identical). Significant differences appear to cluster in three distinct regions in the amino-terminal half of the protein. Analysis of the data from both enzymes suggests features that may be important for polymerase function. In particular, a region that differs between the T3 and T7 enzymes exhibits significant homology to the bi-helical domain that is common to many sequence-specific DNA binding proteins. The region that flanks the structural gene contains a number of regulatory elements including: a promoter for the E. coli RNA polymerase, a potential processing site for RNase III and a promoter for the T3 polymerase. The promoter for the T3 RNA polymerase is located only 12 base pairs distal to the stop codon for the structural gene.  相似文献   

8.
9.
The recognition of bacterial functions involved in DNA metabolism of bacteriophage T4 might reveal interactions between different enzymes during DNA replication and recombination. To detect such functions we have studied the replication of complete and incomplete T4 chromosomes in various mutant strains of Escherichia coli that are defective in their own DNA metabolism. We found that several E. coli functions can substitute for phage functions in T4 replication and recombination and will discuss here the role of the E. coli pol A gene which codes for DNA polymerase I1–4 and of the dna B and E genes3,5.  相似文献   

10.
Bacteriophage T4 gene 1 and 42 amber mutants (defective in deoxynucleoside monophosphate kinase and deoxycytidylate hydroxymethylase, respectively) are able to synthesize DNA in cell-free lysates prepared as described by Barry and Alberts (1972), in contrast to their inabliity to do so in plasmolyzed and toluenized cell systems. Addition of extracts containing an active gene 1 or 42 product has no effect on synthesis in lysates defective in the respective gene. Thus, if these enzymes do play additional direct roles in replication, these roles are not manifest in the lysed-cell system. The gene 42 mutant am N122/m, a double mutant bearing an additional defect in DNA polymerase, is unable to synthesize DNA in these lysates. This inability is overcome by addition of extracts containing an active T4 DNA polymerase. m is a leaky amber mutation which reduces DNA polymerase activity to a very low level. However, this level is high enough to allow positive genetic complementation tests with gene 43 mutants. Two other gene 42 amber mutants contain additional defects: am 269 induces only half the normal level of DNA polymerase, and am C87 fails to induce a detectable level of thymidylate synthetase. These defects do not result from pleiotropic effects of the gene 42 mutations. In plasmolyzed cells, temperature-sensitive gene 42 mutants fail to synthesize DNA under conditions where replication forks and 5-hydroxymethyl-dCTP are present. This supports the idea that the gene 42 protein is directly involved in DNA synthesis.  相似文献   

11.
A procedure has been developed which allows the T4 bacteriophage proteins corresponding to the products of genes 43, 44, 45, and 62 to be purified to near homogeneity from a single T4-infected cell lysate (greater than 90% single species as judged by sodium dodecyl sulfate polyacrylamide elctrophoresis). In these preparations, the major problem of removing all contaminating nucleases has been overcome. Each of the above proteins is known from genetic analysis to be essential for phage DNA replication. The protein product of gene 43 is T4 DNA polymerase, and its recovery can be monitored using a standard DNA polymerase assay. The other three gene products have been designated as "polymerase accessory proteins," since they directly enhance polymerase function on both single- and double-stranded DNA templates. Their activities were monitored by an "in vitro complementation assay," which measures the stimulation of DNA synthesis observed in a concentrated lysate of T4 mutant-infected Escherichia coli cells when the missing T4 wild type protein is added. Starting from 300 g of infected cell paste, we obtained 9.3 mg of gene 43 protein, 21 mg of gene 45 protein, and 70 mg of a tight complex made up of 44 and 62 proteins; final yields were estimated at 30%, 14%, and 28%, respectively, of the initial activity present in the lysate. When the above purified proteins are incubated with preparations of two other T4 DNA replication proteins (gene 41 and gene 32 proteins) plus deoxyribonucleoside and ribonucleoside triphosphates, extensive DNA synthesis occurs on both single- and double-stranded DNA templates. As reported elsewhere, this synthesis mimicks that catalyzed by the T4 DNA replication apparatus in vivo.  相似文献   

12.
The DNA polymerases (gp43s) of the related bacteriophages T4 and RB69 are B family (polymerase alpha class) enzymes that determine the fidelity of phage DNA replication. A T4 whose gene 43 has been mutationally inactivated can be replicated by a cognate RB69 gp43 encoded by a recombinant plasmid in T4-infected Escherichia coli. We used this phage-plasmid complementation assay to obtain rapid and sensitive measurements of the mutational specificities of mutator derivatives of the RB69 enzyme. RB69 gp43s lacking proofreading function (Exo(-) enzymes) and/or substituted with alanine, serine, or threonine at the conserved polymerase function residue Tyr(567) (Pol(Y567(A/S/T)) enzymes) were examined for their effects on the reversion of specific mutations in the T4 rII gene and on forward mutation in the T4 rI gene. The results reveal that Tyr(567) is a key determinant of the fidelity of base selection and that the Pol and Exo functions are strongly coupled in this B family enzyme. In vitro assays show that the Pol(Y567A) Exo(-) enzyme generates mispairs more frequently but extends them less efficiently than does a Pol(+) Exo(-) enzyme. Other replicative DNA polymerases may control fidelity by strategies similar to those used by RB69 gp43.  相似文献   

13.
Structural data suggest that DNA polymerases, from at least three different families, employ common strategies for carrying out DNA replication. Universal features include a large conformational change in the enzyme-template complex and a conserved active-site geometry that imposes a sharp kink at the 5 end of the template strand. Recent single molecule experiments have shown that stretching the DNA template markedly alters the rate of DNA synthesis catalyzed by these motor enzymes. From these data, it was previously inferred that T7 DNA polymerase and two related enzymes convert two or four (depending on the enzyme) single-stranded (ss) template bases to double helix geometry in the polymerase active site during each catalytic cycle. We discuss structural data on related DNA polymerases, which suggest that only one (ss) template base is contracted to dsDNA geometry during the rate-limiting step of each replication cycle. Previous interpretations relied upon the global stretching curves for DNA polymers alone (with no reference to the enzyme or the structure of the transition state). In contrast, we present a structurally guided model that presumes the force dependence of the replication rate is governed chiefly by local interactions in the immediate vicinity of the enzyme s active site. Our analysis reconciles single molecule kinetic studies with structural data on DNA polymerases.  相似文献   

14.
An in vitro replication system reconstituted from six purified T4 bacteriophage proteins, each of which is essential for T4 DNA replication in vivo, requires ATP. Because of the complexity of the complete system, we examine in this report the involvement of ATP in two subsystems of the overall DNA synthesis reaction. One subsystem consists of the T4 DNA polymerase (gene 43 protein) and its "accessory proteins," the gene 44/62 and 45 products. An even simpler subsystem consists of the gene 44/62 and 45 proteins alone, which together have a DNA-dependent ATPase activity. The combination of the 44/62 and 45 proteins hydrolyze ATP to ADP and inorganic phosphate in the presence of DNA. These essential accessory proteins have been previously shown to increase T4 DNA polymerase activity on primed, single-stranded DNA templates. In this report we use nucleotide analogues to demonstrate that this polymerase stimulation requires hydrolysis of the beta,gamma-phosphate bond of ATP. However, our data suggest that the mechanism of accessory protein stimulation is such that less than 1 ATP molecule need be hydrolyzed per 10 deoxyribonucleotides incorporated by the DNA polymerase into DNA.  相似文献   

15.
With the use of an in vitro complementation assay to measure activity, the gene 4 protein of bacteriophage T7 has been purified 1000-fold to yield a nearly homogeneous protein. The purified gene 4 protein is a single polypeptide having a molecular weight of 58,000. In addition to being essential for T7 DNA replication in vivo and in vitro, the gene 4 protein is required for DNA synthesis by the purified T7 DNA polymerase on duplex T7 DNA templates. In the absence of ribonucleoside 5'-triphosphates, DNA synthesis by the gene 4 protein and the T7 DNA polymerase is dependent on phosphodiester bond interruptions containing 3'-hydroxyl groups (nicks) in the duplex DNA. The reaction is specific for the T7 DNA polymerase, but any duplex DNA containing nicks can serve as template. The Km for nicks in the reaction is 3 x 10(-10) M.  相似文献   

16.
To investigate the relationship between the DNA replication apparatus and the control of telomere length, we examined the effects of several DNA replication mutations on telomere length in Saccharomyces cerevisiae. We report that a mutation in the structural gene for the large subunit of DNA replication factor C (cdc44/rfc1) causes striking increases in telomere length. A similar effect is seen with mutations in only one other DNA replication gene: the structural gene for DNA polymerase alpha (cdc17/pol1) (M.J. Carson and L. Hartwell, Cell 42:249-257, 1985). For both genes, the telomere elongation phenotype is allele specific and appears to correlate with the penetrance of the mutations. Furthermore, fluorescence-activated cell sorter analysis reveals that those alleles that cause elongation also exhibit a slowing of DNA replication. To determine whether elongation is mediated by telomerase or by slippage of the DNA polymerase, we created cdc17-1 mutants carrying deletions of the gene encoding the RNA component of telomerase (TLC1). cdc17-1 strains that would normally undergo telomere elongation failed to do so in the absence of telomerase activity. This result implies that telomere elongation in cdc17-1 mutants is mediated by the action of telomerase. Since DNA replication involves transfer of the nascent strand from polymerase alpha to replication factor C (T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1950-1960, 1991; T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1961-1968, 1991; S. Waga and B. Stillman, Nature [London] 369:207-212, 1994), one possibility is that this step affects the regulation of telomere length.  相似文献   

17.
The gene for Escherichia coli rep helicase (rep protein) was subcloned in a pBR plasmid and the protein overproduced in cells transformed with the hybrid DNA. The effect of purified enzyme on strand unwinding and DNA replication was investigated by electron microscopy. The templates used were partial duplexes of viral DNA from bacteriophage fd::Tn5 and reannealed DNA from bacteriophage Mu. The experiments with the two DNA species show DNA unwinding uncoupled from replication. The single-stranded phage fd::Tn5 DNA with the inverted repeat of transposon Tn5 could be completely replicated in the presence of the E. coli enzymes rep helicase, DNA binding protein I, RNA polymerase and DNA polymerase III holoenzyme. A block in the unwinding step increases secondary initiation events in single-stranded parts of the template, as DNA polymerase III holoenzyme cannot switch across the stem structure of the transposon.  相似文献   

18.
Abstract

Structural data suggest that DNA polymerases, from at least three different families, employ common strategies for carrying out DNA replication. Universal features include a large conformational change in the enzyme-template complex and a conserved active-site geometry that imposes a sharp kink at the 5′ end of the template strand. Recent single molecule experiments have shown that stretching the DNA template markedly alters the rate of DNA synthesis catalyzed by these motor enzymes. From these data, it was previously inferred that T7 DNA polymerase and two related enzymes convert two or four (depending on the enzyme) single-stranded (ss) template bases to double helix geometry in the polymerase active site during each catalytic cycle. We discuss structural data on related DNA polymerases, which suggest that only one (ss) template base is contracted to dsDNA geometry during the rate- limiting step of each replication cycle. Previous interpretations relied upon the global stretching curves for DNA polymers alone (with no reference to the enzyme or the structure of the transition state). In contrast, we present a structurally guided model that presumes the force dependence of the replication rate is governed chiefly by local interactions in the immediate vicinity of the enzyme's active site. Our analysis reconciles single molecule kinetic studies with structural data on DNA polymerases.  相似文献   

19.
T4 DNA topoisomerase is a type II enzyme and is thought to be required for normal T4 DNA replication T4 gene 39 codes for the largest of the three subunits of T4 DNA topoisomerase. I have determined the nucleotide sequence of a region of 2568 nucleotides of T4 DNA which includes gene 39. The location of the gene was established by the identification of the first fifteen amino acids in the large open reading frame in the DNA sequence as those found at the amino-terminus of the purified 39-protein. The coding region of gene 39 has 1560 bases, and it is followed by two in-frame stop codons. The gene is preceded by a typical Shine-Dalgarno sequence as well as possible promoter sequences for E. coli RNA polymerase. T4 39-protein consists of 520 amino acids, and it has a calculated molecular weight of 58,478. By comparing the amino acid sequences, T4 39-protein is found to share homology with the gyrB subunit of DNA gyrase. This suggests that these topoisomerase subunits may be equivalent functionally. Some of the characteristics of the 39-protein and its structural features predicted from the DNA sequence data are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号