首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic phospholipase A(2) (cPLA(2)) alpha plays critical roles in lipid mediator synthesis. We performed far-Western analysis and identified a 60-kDa protein (P60) that interacted with cPLA(2)alpha in a Ca(2+)-dependent manner. Peptide microsequencing revealed that purified P60 was identical to vimentin, a major component of the intermediate filament. The interaction occurred between the C2 domain of cPLA(2)alpha and the head domain of vimentin. Immunofluorescence microscopic analysis demonstrated that cPLA(2)alpha and vimentin colocalized around the perinuclear area in cPLA(2)alpha-overexpressing human embryonic kidney 293 cells following A23187 stimulation. Forcible expression of vimentin in vimentin-deficient SW13 cells augmented A23187-induced arachidonate release. Moreover, overexpression of the vimentin head domain in rat fibroblastic 3Y1 cells exerted a dominant inhibitory effect on arachidonate metabolism, significantly reducing A23187-induced arachidonate release and attendant prostanoid generation. These results suggest that vimentin is an adaptor for cPLA(2)alpha to function properly during the eicosanoid-biosynthetic process.  相似文献   

2.
Calmodulin (CaM)-dependent protein kinase (CaM kinase) is proposed to regulate the type alpha of cytosolic phospholipase A(2) (cPLA(2)alpha), which has a dominant role in the release of arachidonic acid (AA), via phosphorylation of Ser515 of the enzyme. However, the exact role of CaM kinase in the activation of cPLA(2)alpha has not been well established. We investigated the effects induced by transfection with mutant cPLA(2)alpha and inhibitors for CaM and CaM kinase on the Ca(2+)-stimulated release of AA and translocation of cPLA(2)alpha. The mutation of Ser515 to Ala (S515A) did not change cPLA(2)alpha activity, although S228A and S505A completely and partially decreased the activity, respectively. Stimulation with hydrogen peroxide (H(2)O(2), 1 mM) and A23187 (10 microM) markedly released AA in C12 cells expressing S515A and wild-type cPLA(2)alpha, but the responses in C12-S505A, C12-S727A, and C12-S505A/S515A/S727A (AAA) cells were reduced. In HEK293T cells expressing cPLA(2)alpha, A23187 caused the translocation of the wild-type, the every mutants, cPLA(2)alpha-C2 domain, and cPLA(2)alpha-Delta397-749 lacking proposed phosphorylation sites such as Ser505 and Ser515. Treatment with inhibitors of CaM (W-7) and CaM kinase (KN-93) at 10 microM significantly decreased the release of AA in C12-cPLA(2)alpha cells and C12-S515A cells. KN-93 inhibited the A23187-induced translocation of the wild-type, S515A, AAA and cPLA(2)alpha-Delta397-749, but not cPLA(2)alpha-C2 domain. Our findings show a possible effect of CaM kinase on cPLA(2)alpha in a catalytic domain A-dependent and Ser515-independent manner.  相似文献   

3.
The Ca(2+)-sensing receptor (CaR) stimulates a number of phospholipase activities, but the specific phospholipases and the mechanisms by which the CaR activates them are not defined. We investigated regulation of phospholipase A(2) (PLA(2)) by the Ca(2+)-sensing receptor (CaR) in human embryonic kidney 293 cells that express either the wild-type receptor or a nonfunctional mutant (R796W) CaR. The PLA(2) activity was attributable to cytosolic PLA(2) (cPLA(2)) based on its inhibition by arachidonyl trifluoromethyl ketone, lack of inhibition by bromoenol lactone, and enhancement of the CaR-stimulated phospholipase activity by coexpression of a cDNA encoding the 85-kDa human cPLA(2). No CaR-stimulated cPLA(2) activity was found in the cells that expressed the mutant CaR. Pertussis toxin treatment had a minimal effect on CaR-stimulated arachidonic acid release and the CaR-stimulated rise in intracellular Ca(2+) (Ca(2+)(i)), whereas inhibition of phospholipase C (PLC) with completely inhibited CaR-stimulated PLC and cPLA(2) activities. CaR-stimulated PLC activity was inhibited by expression of RGS4, an RGS (Regulator of G protein Signaling) protein that inhibits Galpha(q) activity. CaR-stimulated cPLA(2) activity was inhibited 80% by chelation of extracellular Ca(2+) and depletion of intracellular Ca(2+) with EGTA and inhibited 90% by treatment with W7, a calmodulin inhibitor, or with KN-93, an inhibitor of Ca(2+), calmodulin-dependent protein kinases. Chemical inhibitors of the ERK activator, MEK, and a dominant negative MEK, MEK(K97R), had no effect on CaR-stimulated cPLA(2) activity but inhibited CaR-stimulated ERK activity. These results demonstrate that the CaR activates cPLA(2) via a Galpha(q), PLC, Ca(2+)-CaM, and calmodulin-dependent protein kinase-dependent pathway that is independent the ERK pathway.  相似文献   

4.
We demonstrate that two isoforms of the cytosolic phospholipase A2, cPLA2alpha and cPLA2gamma, are present in Ehrlich ascites tumor cells. Both enzymes are almost uniformly distributed throughout the cells under control conditions, as visualized by laser-scanning confocal microscopy. Stimulation by either hypotonic cell swelling or addition of the Ca2+ ionophore A23187 results in translocation of cPLA2alpha, but not cPLA2gamma, to the nucleus, where it forms hot-spot-like clusters. Our group previously showed that release of radioactively labeled arachidonic acid, incorporated into the phospholipids of Ehrlich cells, was immediately and transiently increased on hypotonic cell swelling [Thoroed, S.M., Lauritzen, L., Lambert, I.H., Hansen, H.S. & Hoffmann, E.K. (1997) J. Membr. Biol. 160, 47-58]. We now demonstrate that arachidonic acid is released from the nuclear fraction following hypotonic exposure. Stimulation of Ehrlich cells with A23187 also leads to an increase in arachidonic acid release from the nucleus. However, as hypotonic cell swelling is not accompanied by any detectable increase in intracellular concentration of free cytosolic Ca2+ ([Ca2+]i), stimulus-induced translocation of cPLA2alpha can also occur without elevation of [Ca2+]i. The stimulus-induced translocation of cPLA2alpha appears not to be prevented by inhibition of mitogen-activated protein (MAP) kinase activation, p38 MAP kinase, tyrosine kinases and protein kinase C, hence, phosphorylation is not crucial for the stimulus-induced translocation of cPLA2alpha. Disruption of F-actin did not affect the translocation process, thus, an intact F-actin cytoskeleton does not seem to be required for translocation of cPLA2alpha.  相似文献   

5.
We have studied the regulation of cytosolic phospholipase A2 (cPLA2) synthesis in macrophages stimulated with receptor-recognized forms of alpha2-macroglobulin (alpha2M*). [35S]methionine-labeled cells were stimulated with alpha2M* and [35S]cPLA2 was immunoprecipitated with a monoclonal antibody directed against cPLA2. The precipitates were electrophoresed, immunoblotted, cPLA2 detected by Enhanced Chemifluorescence, and its radioactivity determined. Stimulation of cells with alpha2M* caused a two- to threefold increase in cPLA2 synthesis compared to buffer-treated cells which was consistently maximal at 200 pM of alpha2M*. Actinomycin D or cycloheximide treatment of cells drastically reduced alpha2M*-induced cPLA2 synthesis. Likewise, inhibition of protein kinase C with chelerythrin, farnesyl transferase with manumycin A, MEK kinase with U0126, Erk1/2 kinases with PD98059, p38MAPK with SB203580, PI 3-kinase with wortmannin or LY294002, p70s6k with rapamycin, or depletion of [Ca2+]i with either BAPTA/AM or EGTA drastically reduced alpha2M* induction of cPLA2. Inhibition of NFKB activation with BAY11-7182 or PGA1 also abolished alpha2M* induction of cPLA2. We conclude that alpha2M*-induced cPLA2 synthesis is controlled by [Ca2+]i levels, tyrosine kinase activity, the p21ras-dependent MAPK and PI 3-kinase downstream signaling pathways, and regulation of NFkappaB.  相似文献   

6.
We examined the mechanisms underlying the activation of group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) contributing to the supply of fatty acids required for the formation of cholesteryl ester in oxidized low-density lipoprotein (oxLDL)-stimulated macrophages. The possible involvement of oxidized lipids was also examined. In [(3)H]arachidonic acid-labeled mouse peritoneal macrophages, oxLDL stimulated the release of arachidonic acid, which was suppressed by methyl arachidonyl fluorophosphonate (MAFP), a cPLA(2)alpha inhibitor. oxLDL induced an increase in PLA(2)alpha levels in the membrane fraction without affecting those in whole cells or the activity in the lysate. Among 13-hydroxyoctadecadienoic acid (13-HODE), 7-ketocholesterol, and 25-hydroxycholesterol, oxidized lipids present in oxLDL particles, only 13-HODE induced the release of arachidonic acid, which was also sensitive to MAFP. Under conditions where addition of Ca(2+) to the cell lysate induced an increase in cPLA(2)alpha protein in the membrane fraction, preincubation with 13-HODE facilitated the Ca(2+)-dependent translocation of cPLA(2)alpha. Furthermore, 13-HODE increased cholesteryl ester formation in the presence of [(3)H]cholesterol. These results suggest that 13-HODE mediates the oxLDL-induced activation of cPLA(2)alpha through an increase in cPLA(2)alpha protein in the membranes, thus contributing, in part, to the supply of fatty acids required for the esterification of cholesterol in macrophages.  相似文献   

7.
We have previously demonstrated that the novel imidazoline compound (+)-2-(2-(4,5-dihydro-1H-imidazol-2-yl)-thiopene-2-yl-ethyl)-pyridine (NNC77-0074) increases insulin secretion from pancreatic beta-cells by stimulation of Ca(2+)-dependent exocytosis. Using capacitance measurements, we now show that NNC77-0074 stimulates exocytosis in clonal INS-1E cells. NNC77-0074-stimulated exocytosis was antagonised by the cytoplasmic phospholipase A(2) (cPLA(2)) inhibitors ACA and AACOCF(3) and in cells treated with antisense oligonucleotide against cPLA(2)alpha. NNC77-0074-evoked insulin secretion was likewise inhibited by ACA, AACOCF(3), and cPLA(2)alpha antisense oligonucleotide treatment. In pancreatic islets NNC77-0074 stimulated PLA(2) activity. We propose that cPLA(2)alpha plays an important role in the regulation of NNC77-0074-evoked exocytosis in insulin secreting beta-cells.  相似文献   

8.
In the current study, we have probed the role of cytosolic phospholipase A2 (cPLA2) activity in the cellular response to the calciotropic hormones, 1alpha,25,dihydroxy-vitamin D(3) [1alpha,25(OH)(2)D(3)] and PTH. Stimulation of rat enterocytes with either hormone, increased release of arachidonic acid (AA) 3H-AA] one-two fold in a concentration and time-dependent manner. The effect of either hormone on enterocytes was totally reduced by preincubation with the intracellular Ca(2+) chelator BAPTA-AM (5 microM), suggesting that the release of AA following cell exposure to the calciotropic hormones occurs mainly through a Ca(2+)-dependent mechanism involving activation of Ca(2+)-dependent cPLA2. Calciotropic homone stimulation of rat intestinal cells increases cPLA2 phosphorylation (three to four fold). This effect was decreased by PD 98059 (20 microM), a MAP kinase inhibitor, indicating that this action is, in part, mediated through activation of the MAP kinases ERK 1 and ERK2. Enterocytes exposure to 1alpha,25(OH)(2)D(3) (1nM) or PTH (10 nM) also resulted in P-cPLA2 translocation from cytosol to nuclei and membrane fractions, where phospholipase subtrates reside. Collectively, these data suggest that PTH and 1alpha,25(OH)(2)D(3) activate in duodenal cells, a Ca(2+)-dependent cytosolic PLA2 and attendant arachidonic acid release and that this activation requieres prior stimulation of intracellular ERK1/2. 1alpha,25(OH)(2)D(3) and PTH modulation of cPLA2 activity may change membrane fluidity and permeability and thereby affecting intestinal cell membrane function.  相似文献   

9.
Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) is a prototypic sPLA(2) enzyme that may play roles in modification of eicosanoid biosynthesis as well as antibacterial defense. In several cell types, inducible expression of sPLA(2) by pro-inflammatory stimuli is attenuated by group IVA cytosolic PLA(2) (cPLA(2)alpha) inhibitors such as arachidonyl trifluoromethyl ketone, leading to the proposal that prior activation of cPLA(2)alpha is required for de novo induction of sPLA(2). However, because of the broad specificity of several cPLA(2)alpha inhibitors used so far, a more comprehensive approach is needed to evaluate the relevance of this ambiguous pathway. Here, we provide evidence that the induction of sPLA(2)-IIA by pro-inflammatory stimuli requires group VIB calcium-independent PLA(2) (iPLA(2)gamma), rather than cPLA(2)alpha, in rat fibroblastic 3Y1 cells. Results with small interfering RNA unexpectedly showed that the cytokine induction of sPLA(2)-IIA in cPLA(2)alpha knockdown cells, in which cPLA(2)alpha protein was undetectable, was similar to that in replicate control cells. By contrast, knockdown of iPLA(2)gamma, another arachidonyl trifluoromethyl ketone-sensitive intracellular PLA(2), markedly reduced the cytokine-induced expression of sPLA(2)-IIA. Supporting this finding, the R-enantiomer of bromoenol lactone, an iPLA(2)gamma inhibitor, suppressed the cytokine-induced sPLA(2)-IIA expression, whereas (S)-bromoenol lactone, an iPLA(2)beta inhibitor, failed to do so. Moreover, lipopolysaccharide-stimulated sPLA(2)-IIA expression was also abolished by knockdown of iPLA(2)gamma. These findings open new insight into a novel regulatory role of iPLA(2)gamma in stimulus-coupled sPLA(2)-IIA expression.  相似文献   

10.
Ligation of macrophage alpha(2)-macroglobulin signalling receptors (alpha(2)MSR) with activated alpha(2)-macroglobulin (alpha(2)M*) increases intracellular Ca(2+), and cytosolic phospholipase A(2) (cPLA(2)) and phospholipase D activities. In view of the relationship between cellular Ca(2+) and mitogenesis, we examined the effect of the product of cPLA(2) activity, arachidonic acid (AA), on nuclear Ca(2+) levels in macrophages stimulated with alpha(2)M*, platelet derived growth factor, and bradykinin. AA addition increased Ca(2+) levels in Fura-2/AM loaded nuclei from both buffer-treated and agonist-stimulated cells, but the increase in stimulated macrophages was 2-4-fold higher. Preincubation of Fura-2/AM loaded nuclei with EGTA or BAPTA/AM abolished AA-induced increase in nuclear Ca(2+) levels. Preincubation of nuclei with indomethacin did not affect AA-induced increase in nuclear Ca(2+) in agonist-stimulated nuclei. It is concluded that in macrophages stimulated with various agonists, AA, derived from cPLA(2)-dependent hydrolysis of phospholipids, plays a significant role in regulating nuclear Ca(2+) levels and thus nuclear functions.  相似文献   

11.
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha; type IVA), an essential initiator of stimulus-dependent arachidonic acid (AA) metabolism, underwent caspase-mediated cleavage at Asp(522) during apoptosis. Although the resultant catalytically inactive N-terminal fragment, cPLA(2)(1-522), was inessential for cell growth and the apoptotic process, it was constitutively associated with cellular membranes and attenuated both the A23187-elicited immediate and the interleukin-1-dependent delayed phases of AA release by several phospholipase A(2)s (PLA(2)s) involved in eicosanoid generation, without affecting spontaneous AA release by PLA(2)s implicated in phospholipid remodeling. Confocal microscopic analysis revealed that cPLA(2)(1-522) was distributed in the nucleus. Pharmacological and transfection studies revealed that Ca(2+)-independent PLA(2) (iPLA(2); type VI), a phospholipid remodeling PLA(2), contributes to the cell death-associated increase in fatty acid release. iPLA(2) was cleaved at Asp(183) by caspase-3 to a truncated enzyme lacking most of the first ankyrin repeat, and this cleavage resulted in increased iPLA(2) functions. iPLA(2) had a significant influence on cell growth or death, according to cell type. Collectively, the caspase-truncated form of cPLA(2)alpha behaves like a naturally occurring dominant-negative molecule for stimulus-induced AA release, rendering apoptotic cells no longer able to produce lipid mediators, whereas the caspase-truncated form of iPLA(2) accelerates phospholipid turnover that may lead to apoptotic membranous changes.  相似文献   

12.
The regulated generation of prostaglandins from endothelial cells is critical to vascular function. Here we identify a novel mechanism for the regulation of endothelial cell prostaglandin generation. Cytosolic phospholipase A(2)-alpha (cPLA(2)alpha) cleaves phospholipids in a Ca(2+)-dependent manner to yield free arachidonic acid and lysophospholipid. Arachidonic acid is then converted into prostaglandins by the action of cyclooxygenase enzymes and downstream synthases. By previously undefined mechanisms, nonconfluent endothelial cells generate greater levels of prostaglandins than confluent cells. Here we demonstrate that Ca(2+)-independent association of cPLA(2)alpha with the Golgi apparatus of confluent endothelial cells correlates with decreased prostaglandin synthesis. Golgi association blocks arachidonic acid release and prevents functional coupling between cPLA(2)alpha and COX-mediated prostaglandin synthesis. When inactivated at the Golgi apparatus of confluent endothelial cells, cPLA(2)alpha is associated with the phospholipid-binding protein annexin A1. Furthermore, the siRNA-mediated knockdown of endogenous annexin A1 significantly reverses the inhibitory effect of confluence on endothelial cell prostaglandin generation. Thus the confluence-dependent interaction of cPLA(2)alpha and annexin A1 at the Golgi acts as a novel molecular switch controlling cPLA(2)alpha activity and endothelial cell prostaglandin generation.  相似文献   

13.
We have studied the translocation of cytosolic phospholipase A(2) (cPLA(2)) to nuclei in macrophages stimulated with receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*). Translocation of phosphorylated cPLA(2) to nuclei was determined by immunoprecipitation of cPLA(2) in (32)P(i)-labeled cells. The identity of cPLA(2) was established by comparing its mobility on gels with an authentic cPLA(2) standard. cPLA(2) activity was quantified by measuring the release of [(14)C]arachidonic acid from the substrate 1-palmitoyl-2-[1-(14)C]arachidonyl-sn-glycerophosphatidylcholine. alpha(2)M* caused a two- to threefold increase in cPLA(2) phosphorylation and its translocation to nuclei. The p38 MAPK inhibitor SB203580, PKC inhibitor chelerythrin, or depletion of intracellular Ca(2+) profoundly decreased cPLA(2) activity in nuclei isolated from agonist-stimulated cells. The requirement for Ca(2+), PKC, and p38 MAPK activation appears to be of major importance for nuclear cPLA(2) activity. In contrast to cellular cPLA(2) activity, nuclear cPLA(2) activity was not inhibited by arachidonyl trifluoromethyl ketone (AACOCF(3)) in agonist-stimulated cells. It is concluded that the association of cPLA(2) with nuclear membranes in agonist-stimulated cells modifies the activity and the sensitivity of the enzyme to inhibition by AACOCF(3) in this phospholipid environment.  相似文献   

14.
Brain tissue contains multiple forms of intracellular phospholipase A(2) (PLA(2)) activity that differ from each other in many ways including their response to specific inhibitors. The systemic administration of kainic acid to rats produces a marked increase in cPLA(2) activity in neurons and astrocytes. This is associated with increased lipid peroxidation as evidenced by accumulation of 4-hydroxynonenal (4-HNE) modified proteins. The present study describes the effect of specific inhibitors of Ca(2+)-dependent or Ca(2+)-independent PLA(2) on kainite-induced excitotoxic injury in rat hippocampal slices. Specific inhibitors of Ca(2+)-dependent PLA(2) prevented the decrease of a neuronal marker, GluR1, and increase in cPLA(2) and 4-HNE immunoreactivities in slices treated with kainate. This shows that cPLA(2) plays an important role in kainite-induced neurotoxicity and that cPLA(2) inhibitors can be used to protect hippocampal slices from damage induced by kainate.  相似文献   

15.
To create the unique properties of a certain cellular membrane, both the composition and the metabolism of membrane phospholipids are key factors. Phospholipase A(2) (PLA(2)), with hydrolytic enzyme activities at the sn-2 position in glycerophospholipids, plays critical roles in maintaining the phospholipid composition as well as producing bioactive lipid mediators. In this study we examined the contribution of a Ca(2+)-independent group IVC PLA(2) isozyme (cPLA(2)gamma), a paralogue of cytosolic PLA(2)alpha (cPLA(2)alpha), to phospholipid remodeling. The enzyme was localized in the endoplasmic reticulum and Golgi apparatus, as seen using green fluorescence fusion proteins. Electrospray ionization mass spectrometric analysis of membrane extracts revealed that overexpression of cPLA(2)gamma increased the proportion of polyunsaturated fatty acids in phosphatidylethanolamine, suggesting that the enzyme modulates the phospholipid composition. We also found that H(2)O(2) and other hydroperoxides induced arachidonic acid release in cPLA(2)gamma-transfected human embryonic kidney 293 cells, possibly through the tyrosine phosphorylation pathway. Thus, we propose that cPLA(2)gamma is constitutively expressed in the endoplasmic reticulum and plays important roles in remodeling and maintaining membrane phospholipids under various conditions, including oxidative stress.  相似文献   

16.
We reported previously that exogenously added human group V phospholipase A(2) (hVPLA(2)) could elicit leukotriene B(4) (LTB(4)) biosynthesis in human neutrophils (Han, S. K., Kim, K. P., Koduri, R., Bittova, L., Munoz, N. M., Leff, A. R., Wilton, D. C., Gelb, M. H., and Cho, W. (1999) J. Biol. Chem. 274, 11881-11888). To determine the mechanism of the hVPLA(2)-induced LTB(4) biosynthesis in neutrophils, we thoroughly examined the effects of hVPLA(2) and their lipid products on the activity of group IVA cytosolic PLA(2) (cPLA(2)) and LTB(4) biosynthesis under different conditions. As low as 1 nm exogenous hVPLA(2) was able to induce the release of arachidonic acid (AA) and LTB(4). Typically, AA and LTB(4) were released in two phases, which were synchronized with a rise in intracellular calcium concentration ([Ca(2+)](i)) near the perinuclear region and cPLA(2) phosphorylation. A cellular PLA(2) assay showed that hVPLA(2) acted primarily on the outer plasma membrane, liberating fatty acids and lysophosphatidylcholine (lyso-PC), whereas cPLA(2) acted on the perinuclear membrane. Lyso-PC and polyunsaturated fatty acids including AA activated cPLA(2) and 5-lipoxygenase by increasing [Ca(2+)](i) and inducing cPLA(2) phosphorylation, which then led to LTB(4) biosynthesis. The delayed phase was triggered by the binding of secreted LTB(4) to the cell surface LTB(4) receptor, which resulted in a rise in [Ca(2+)](i) and cPLA(2) phosphorylation through the activation of mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2. These results indicate that a main role of exogenous hVPLA(2) in neutrophil activation and LTB(4) biosynthesis is to activate cPLA(2) and 5-lipoxygenase primarily by liberating from the outer plasma membrane lyso-PC that induces [Ca(2+)](i) increase and cPLA(2) phosphorylation and that hVPLA(2)-induced LTB(4) production is augmented by the positive feedback activation of cPLA(2) by LTB(4).  相似文献   

17.
The enzymatic properties of cytosolic phospholipase A(2)gamma (cPLA(2)gamma), an isoform of 85-kDa group IV cPLA(2)alpha (cPLA(2)alpha) were studied in vitro and when the enzyme was expressed in cells. cPLA(2)gamma expressed in Sf9 cells is associated with membrane. Membranes isolated from [(3)H]arachidonic acid-labeled Sf9 cells expressing cPLA(2)gamma, constitutively release [(3)H]arachidonic acid. The membrane-associated activity is inhibited by the group IV PLA(2) inhibitor methylarachidonyl fluorophosphonate, but not effectively by the group VI PLA(2) inhibitor (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one. cPLA(2)gamma has higher lysophospholipase activity than PLA(2) activity. Purified His-cPLA(2)gamma does not exhibit phospholipase A(1) activity, but sequentially hydrolyzes fatty acid from the sn-2 and sn-1 positions of phosphatidylcholine. cPLA(2)gamma overexpressed in HEK293 cells is constitutively active in isolated membranes, releasing large amounts of oleic, arachidonic, palmitic, and stearic acids; however, basal fatty acid release from intact cells is not increased. cPLA(2)gamma overexpressed in lung fibroblasts from cPLA(2)alpha-deficient mice is activated by mouse serum resulting in release of arachidonic, oleic, and palmitic acids, whereas overexpression of cPLA(2)alpha results primarily in arachidonic acid release.  相似文献   

18.
CHO transfectants expressing the three subtypes of rat alpha2 adrenergic receptors (alpha2AR): alpha2D, alpha2B, alpha2C were studied to compare the transduction pathways leading to the receptor-mediated stimulation of phospholipase A2 (PLA2) in the corresponding cell lines CHO-2D, CHO-2B, CHO-2C. The alpha2B subtype stimulated the arachidonic acid (AA) release after incubation of the cells with 1 microM epinephrine, whereas alpha2D and alpha2C gave no stimulation. Calcium ionophore A23187 (1 microM) increased the release by a factor of 2-4 in the three strains. When cells were incubated with both epinephrine and Ca2+ ionophore, the AA release differed greatly between cell lines with strong potentiation in CHO-2B (2-3 times greater than Ca2+ ionophore alone), moderate potentiation in CHO-2D, and no potentiation in CHO-2C. The three cell lines each inhibited adenylylcyclase with similar efficiencies when 1 microM epinephrine was used as the agonist. The potentiation depended on both alpha2AR and Gi proteins since yohimbine and pertussis toxin inhibited the process. Pretreatment of CHO-2B cells with MAFP which inhibits both cytosolic and Ca2+-independent PLA2, reduced the release of AA induced by epinephrine+Ca2+ ionophore to basal value, whereas bromoenol lactone, a specific Ca2+-independent PLA2 inhibitor, had no effect. Preincubation of the cells with the intracellular calcium chelator BAPTA gave a dose-dependent inhibition of the arachidonic acid (AA) release. In CHO cells expressing the angiotensin II type 1 receptor, coupled to a Gq protein, the agonist (10-7 M) produced maximal AA release: there was no extra increase when angiotensin and Ca2+ ionophore were added together. There was no increase in the amount of inositol 1,4, 5-triphosphate following stimulation of CHO-2B, -2C, -2D cells with 1 microM epinephrine. Epinephrine led to greater phosphorylation of cPLA2, resulting in an electrophoretic mobility shift for all three cell lines, so inadequate p42/44 MAPKs stimulation was not responsible for the weaker stimulation of cPLA2 in CHO-2C cells. Therefore, the stimulation of cPLA2 by Gi proteins presumably involves another unknown mechanism. The differential stimulation of cPLA2 in these transfectants will be of value to study the actual involvement of the transduction pathways leading to maximal cPLA2 stimulation.  相似文献   

19.
Neutrophils and differentiated PLB-985 cells contain various types of PLA(2)s including the 85 kDa cytosolic PLA(2) (cPLA(2)), Ca(2+)-independent PLA(2) (iPLA(2)) and secreted PLA(2)s (sPLA(2)s). The present study focuses on the behavior of sPLA(2)s in neutrophils and PLB cells and their relationship to cPLA(2)alpha. The results of the present research show that the two types of sPLA(2) present in neutrophils, sPLA(2)-V and sPLA(2)-X, which are located in the azurophil granules, are differentially affected by physiological stimuli. While sPLA(2)-V is secreted to the extacellular milieu, sPLA(2)-X is detected on the plasma membranes after stimulation. Stimulation of neutrophils with formyl-Met-Leu-Phe (fMLP), opsonized zymosan (OZ) or A23187 resulted in a different kinetics of sPLA(2) secretion as detected by its activity in the neutrophil supernatants. Neutrophil priming by inflammatory cytokines or LPS enhanced sPLA(2) activity detected in the supernatant after stimulation by fMLP. This increased activity was due to increased secretion of sPLA(2)-V to the supernatant and not to release of sPLA(2)-X. sPLA(2) in granulocyte-like PLB cells exhibit identical characteristics to neutrophil sPLA(2), with similar activity and optimal pH of 7.5. Granulocyte-like cPLA(2)alpha-deficient PLB cells serve as a good model to study whether sPLA(2) activity is regulated by cPLA(2)alpha. Secretion and activity of sPLA(2) were found to be similar in granulocyte-like PLB cells expressing or lacking cPLA(2)alpha, indicating that they are not under cPLA(2)alpha regulation.  相似文献   

20.
Annexins (ANXs) display regulatory functions in diverse cellular processes, including inflammation, immune suppression, and membrane fusion. However, the exact biological functions of ANXs still remain obscure. Inhibition of phospholipase A(2) (PLA(2)) by ANX-I, a 346-amino acid protein, has been observed in studies with various forms of PLA(2). "Substrate depletion" and "specific interaction" have been proposed for the mechanism of PLA(2) inhibition by ANX-I. Previously, we proposed a specific interaction model for inhibition of a 100-kDa porcine spleen cytosolic form of PLA(2) (cPLA(2)) by ANX-I (Kim, K. M., Kim, D. K., Park, Y. M., and Na, D. S. (1994) FEBS Lett. 343, 251-255). Herein, we present an analysis of the inhibition mechanism of cPLA(2) by ANX-I in detail using ANX-I and its deletion mutants. Deletion mutants were produced in Escherichia coli, and inhibition of cPLA(2) activity was determined. The deletion mutant ANX-I-(1-274), containing the N terminus to amino acid 274, exhibited no cPLA(2) inhibitory activity, whereas the deletion mutant ANX-I-(275-346), containing amino acid 275 to the C terminus, retained full activity. The protein-protein interaction between cPLA(2) and ANX-I was examined using the deletion mutants by immunoprecipitation and mammalian two-hybrid methods. Full-length ANX-I and ANX-I-(275-346) interacted with the calcium-dependent lipid-binding domain of cPLA(2). ANX-I-(1-274) did not interact with cPLA(2). Immunoprecipitation of A549 cell lysate with anti-ANX-I antibody resulted in coprecipitation of cPLA(2). These results are consistent with the specific interaction mechanism rather than the substrate depletion model. ANX-I may function as a negative regulator of cPLA(2) in cellular signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号