首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Failure of drug therapy of Duchenne muscular dystrophy (DMD) stimulated intense search for adequate methods of gene therapy (GT) which would ensure effective delivery of the dystrophin (D) gene, its long-term persistence in transfected cells, and its expression in muscle fibers. The main results of the experimental GT of DMD with the use of viral and nonviral delivery of the D gene into muscles of biological models are discussed. Delivery of a mini-gene of D with a specific muscle promoter using a modified adenoassociated virus is currently the most promising method, which will soon be available for clinical trials. The main results of the studies on the DMD GT in Russia are summarized. The results of experiments on genetic transfection of mdx mice with marker genes and various constructions with the D gene are outlined. The genes are delivered into muscles by means of gene gun, electroporation, viral oligopeptides, liposomes, microspheres, lactoferine, and other nonviral vehicles. It is emphasized that consolidation of funds and efforts of all Russian laboratories dealing with gene and cell therapy of DMD are necessary to complete the experiments and start clinical trials.  相似文献   

2.
Although gene therapy has great potential as a treatment for diseases, clinical trials are slowed down by the development of a safe and efficient gene delivery system. In this review, we will give an overview of the viral and nonviral vehicles used for drug and gene delivery, and the different nonviral delivery techniques, thereby focusing on delivery through ultrasound contrast agents.The development of ultrasound contrast agents containing encapsulated microbubbles has increased the possibilities not only for diagnostic imaging, but for therapy as well. Microbubbles have been shown to be able to carry drugs and genes, and destruction of the bubbles by ultrasound will result in local release of their contents. Furthermore, ligands can be attached so that they can be targeted to a specific target tissue. The recent advances of microbubbles as vehicles for delivery of drugs and genes will be highlighted.  相似文献   

3.
A number of gene therapy clinical trials are being carried out the world over. Gene therapy is being applied in (I) cancer diseases, involving the largest number of patients, (II) monogenic diseases, (III) infectious diseases, (IV) vascular diseases, (V) autoimmune diseases and others. In the last decade, several strategies of cancer gene therapy have emerged due to a rapid development of gene delivery systems, both viral (recombinant retroviruses, adenoviruses, AAVs, herpes viruses) and nonviral (liposomes, gene guns, electroporation). To date four main strategies of cancer gene therapy have been evaluated in clinical trials: (I) immunogene therapy, (II) suicide gene therapy, (III) antiangiogenic gene therapy, (IV) and administration of tumour suppressor genes.These strategies mostly involve: malignant melanoma, prostate cancer, renal cell cancer, colon cancer, breast and ovarian cancers, lung cancers, neoplastic diseases of the blood and brain tumours.At the Department of Cancer Immunology at the GreatPoland Cancer Center Gene Modified Tumour Vaccine has been tested in malignant melanoma patients for more than six years. Due to encouraging results from phase I and II of clinical trials a phase III was designed and will be started in 2003.  相似文献   

4.
5.
Gene therapy studies for Duchenne muscular dystrophy (DMD) have focused on viral vector-mediated gene transfer to provide therapeutic protein expression or treatment with drugs to limit dystrophic changes in muscle. The pathological activation of the nuclear factor (NF)-κB signaling pathway has emerged as an important cause of dystrophic muscle changes in muscular dystrophy. Furthermore, activation of NF-κB may inhibit gene transfer by promoting inflammation in response to the transgene or vector. Therefore, we hypothesized that inhibition of pathological NF-κB activation in muscle would complement the therapeutic benefits of dystrophin gene transfer in the mdx mouse model of DMD. Systemic gene transfer using serotype 9 adeno-associated viral (AAV9) vectors is promising for treatment of preclinical models of DMD because of vector tropism to cardiac and skeletal muscle. In quadriceps of C57BL/10ScSn-Dmd(mdx)/J (mdx) mice, the addition of octalysine (8K)-NF-κB essential modulator (NEMO)-binding domain (8K-NBD) peptide treatment to AAV9 minidystrophin gene delivery resulted in increased levels of recombinant dystrophin expression suggesting that 8K-NBD treatment promoted an environment in muscle tissue conducive to higher levels of expression. Indices of necrosis and regeneration were diminished with AAV9 gene delivery alone and to a greater degree with the addition of 8K-NBD treatment. In diaphragm muscle, high-level transgene expression was achieved with AAV9 minidystoophin gene delivery alone; therefore, improvements in histological and physiological indices were comparable in the two treatment groups. The data support benefit from 8K-NBD treatment to complement gene transfer therapy for DMD in muscle tissue that receives incomplete levels of transduction by gene transfer, which may be highly significant for clinical applications of muscle gene delivery.  相似文献   

6.
The molecular mechanisms of Duchenne muscular dystrophy (DMD) have been extensively investigated since the discovery of the dystrophin gene in 1986. Nonetheless, there is currently no effective treatment for DMD. Recent reports, however, indicate that adenoassociated viral (AAV) vector-mediated transfer of a functional dystrophin cDNA into the affected muscle is a promising strategy. In addition, antisense-mediated exon skipping technology has been emerging as another promising approach to restore dystrophin expression in DMD muscle. Ongoing clinical trials show restoration of dystrophin in DMD patients without serious side effects. Here, we summarize the recent progress in gene therapy, with an emphasis on exon skipping for DMD.  相似文献   

7.
Gene therapy has been applied to the treatment of cancer and metastatic disease for over ten years. Research in this area has utilised multiple gene therapy approaches including targeting tumour suppressor genes and oncogenes, stimulating the immune system, targeted chemotherapy, antiangiogenic strategies, and direct viral oncolysis. In recent years, gene delivery vectors have been developed that selectively target tumour cells through tumour-specific receptors, deletion of certain viral gene sequences, or incorporation of tumour-specific promoter sequences that drive gene expression. Preclinical models have produced promising results, demonstrating significant tumour regression and reduction of metastatic disease. Unfortunately, only limited responses have been observed in clinical trials. The main limitations in treating metastatic disease include poor vector transduction efficiencies and difficulties in targeting remote tumour cells with systemic vector delivery. Currently, various groups are investigating means to improve gene delivery and clinical responses by continuing to modify gene delivery vectors and by concentrating on combination gene therapy and multimodality therapy.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is a lethal heritable childhood myodegenerative condition caused by a mutation within the gene encoding the dystrophin protein within the X chromosome. While, historically, patients with this condition rarely lived into their thirties, they are now living substantially longer as a result of new treatments based on multi-disciplinary care. Despite these advances, the prognosis for DMD patients is limited, and a progressive reduction in quality of life and early death in adulthood cannot be prevented using currently available treatment regimens. The best hopes for a cure lies with cellular and gene therapy approaches that target the underlying genetic defect. In the past several years, viral and nonviral gene therapy methodologies based on adeno-associated viruses, naked plasmid delivery, antisense oligonucleotides, and oligonucleotide-mediated gene editing have advanced to a high degree of sophistication, to the extent that research has moved from the laboratory setting to the clinic. Notwithstanding these accomplishments, shortcomings with each therapy remain, so more work is required to devise an appropriate therapeutic strategy for the management and eventual cure of this debilitating disease.  相似文献   

9.
Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches.  相似文献   

10.
Recently, there has been a flurry of experimental work on understanding the supramolecular assemblies that are formed when cationic liposomes (CLs) are mixed with DNA. From a biomedical point of view, CLs (vesicles) are empirically known to be carriers of genes (sections of DNA) in nonviral gene delivery applications. Although viral-based carriers of DNA are presently the most common method of gene delivery, nonviral synthetic methods are rapidly emerging as alternative carriers, because of their ease of production and nonimmunogenicity (viral carriers very often evoke an undesirable and potentially lethal immune response). At the moment, cationic-lipid-based carriers have emerged as the most popular nonviral method to deliver genes in therapeutic applications, for example, CL carriers are used extensively in clinical trials worldwide. However, because the mechanism of transfection (the transfer of DNA into cells by CL carriers, followed by expression) of CL--DNA complexes remains largely unknown, the measured efficiencies are, at present, very low. The low transfection efficiencies of current nonviral gene delivery methods are the result of poorly understood transfection-related mechanisms at the molecular and self-assembled levels. Recently, work has been carried out on determining the supramolecular structures of CL--DNA complexes by the quantitative technique of synchrotron X-ray diffraction. When DNA is mixed with CLs (composed of mixtures of cationic DOTAP and neutral DOPC lipids), the resulting CL--DNA complex consists of a multilamellar structure (L(alpha)(C)) comprising DNA monolayers sandwiched between lipid bilayers. The existence of a different columnar inverted hexagonal (H(II)(C)) phase in CL--DNA complexes was also demonstrated using synchrotron X-ray diffraction. Ongoing functional studies and optical imaging of cells are expected to clarify the relationship between the supramolecular structures of CL--DNA complexes and transfection efficiency.  相似文献   

11.
Gene therapy is a medical technique intended for treatment of disorders caused by defective, missing, or overexpressing genes. Efficient delivery vectors are necessary in order to transport genetic material to the target cells. Such vectors include viral and non-viral carriers. Viral vectors transfect cells efficiently, however risks associated with their use have limited their clinical applications. Nonviral delivery systems are safer, easier to prepare, more versatile and cost effective. However, their transfection efficiency still falls behind that of the viral vectors. Considerable research into nonviral gene delivery has been conducted in the last two decades on synthetic soft materials such as cationic lipids, polymers, surfactants, and dendrimers as prospective nucleotide carriers for gene delivery. So far, cationic lipids are the most widely used constituents of nonviral gene carriers, with multiple strategies employed to improve their in vitro and in vivo transfection. Efforts in synthesizing new cationic lipids were not fully successful in closing the gap between the efficiency of the viral vectors and that of binary cationic lipid/DNA complexes. Current efforts for improving lipofection efficiency are focused on the development of multicomponent carriers including cationic lipids as key constituents. This review summarizes the recent patents on new cationic lipids as well as on multicomponent formulations enhancing their efficiency as nucleotide carriers.  相似文献   

12.
Gene therapy provides powerful new approaches to curing a large variety of diseases, which are being explored in ongoing worldwide clinical trials. To overcome the limitations of viral gene delivery systems, synthetic nonviral vectors such as cationic liposomes (CLs) are desirable. However, improvements of their efficiency at reduced toxicity and a better understanding of their mechanism of action are required. We present the efficient synthesis of a series of degradable multivalent cationic lipids (CMVLn, n=2 to 5) containing a disulfide bond spacer between headgroup and lipophilic tails. This spacer is designed to be cleaved in the reducing milieu of the cytoplasm and thus decrease lipid toxicity. Small angle X-ray scattering demonstrates that the initially formed lamellar phase of CMVLn-DNA complexes completely disappears when reducing agents such as DTT or the biologically relevant reducing peptide glutathione are added to mimic the intracellular milieu. The CMVLs (n=3 to 5) exhibit reduced cytotoxicity and transfect mammalian cells with efficiencies comparable to those of highly efficient non-degradable analogs and benchmark commercial reagents such as Lipofectamine 2000. Thus, our results demonstrate that degradable disulfide spacers may be used to reduce the cytotoxicity of synthetic nonviral gene delivery carriers without compromising their transfection efficiency.  相似文献   

13.
The clinical trials of myoblast transplantation in Duchenne Muscular Dystrophy (DMD) patients produced disappointing results. The main problems responsible for these poor results have since then been identified and partially resolved. One of them was related to the use of an inadequate immunosuppression and, since then, immunosuppression with FK506 has permitted successful myoblast transplantation not only in mice but also in monkeys. The requirement for a sustained immunosuppression may be eventually avoided by developing a state of tolerance to the allogeneic cells or by autologous transplantation of genetically corrected myoblasts or stem cells. The rapid death of 75-80% of the injected myoblasts during the first five days has also contributed to the limited success of the early trials. This death was due to an inflammatory reaction and has been compensated in animal experiments by the injection of a larger number of cells (30 millions per cc). Finally, the myoblasts migrated only 0.5 mm away from their site of injection. This problem is currently compensated in animal experiments by injecting the myoblasts at every mm. The number of injections required may eventually be reduced by transfecting myoblasts with one or several metalloproteinase genes. The very good results obtained during the last two years in primates permit us to undertake a new phase I clinical trial to verify that myoblast transplantation can lead to the formation of muscle fibers expressing normal dystrophin in muscles of DMD patients.  相似文献   

14.
Skeletal muscle is a promising target tissue for the gene therapy of both muscle and non-muscle disorders. Gene transfer into muscle tissue can produce a variety of physiologically active proteins and may ultimately be applied to the treatment of many diseases. A variety of methods have been studied to transfer genes into skeletal muscle, including viral and non-viral vectors. In this review, we discuss recent developments in the non-viral delivery of genes to muscles.  相似文献   

15.
The goal of gene therapy is either to introduce a therapeutic gene into or replace a defective gene in an individual's cells and tissues. Gene therapy has been urged as a potential method to induce therapeutic angiogenesis in ischemic myocardium and peripheral tissues after extensive investigation in recent preclinical and clinical studies. A successful gene therapy mainly relies on the development of the gene delivery vector. Developments in viral and nonviral vector technology including cell-based gene transfer will further improve transgene delivery and expression efficiency. Nonviral approaches as alternative gene delivery vehicles to viral vectors have received significant attention. Recently, a simple and safe approach of gene delivery into target cells using naked DNA has been improved by combining several techniques. Among the physical approaches, ultrasonic microbubble gene delivery, with its high safety profile, low costs, and repeatable applicability, can increase the permeability of cell membrane to macromolecules such as plasmid DNA by its bioeffects and can provide as a feasible tool in gene delivery. On the other hand, among the promising areas for gene therapy in acquired diseases, ischemic cardiovascular diseases have been widely studied. As a result, gene therapy using advanced technology may play an important role in this regard. The aims of this review focus on understanding the cellular and in vivo barriers in gene transfer and provide an overview of currently used chemical vectors and physical tools that are applied in nonviral cardiovascular gene transfer.  相似文献   

16.
Therapeutic angiogenesis is a new potential treatment in cardiovascular disease. It is performed by the delivery of the angiogenic agents (protein, gene). Most important consideration for gene therapy is the construction of an effective therapeutic gene. Currently, VEGF is the most effective therapeutic gene for the neovascularization. We constructed the hypoxia-regulated VEGF plasmid using the Epo enhancer and RTP801 promoter. The efficiency of the pEpo-SV-VEGF and pRTP801-VEGF were evaluated by various methodsin vitro andin vivo. The results suggested that the hypoxia-inducible VEGF gene therapy system is effective and safe, which may be useful for the gene therapy of ischemic heart disease. Development of a safe and efficient gene carrier is another main requirement for successful gene therapy. Although viralbased gene delivery is currently the most effective way to transfer genes to cells, nonviral vectors are increasingly being considered forin vivo gene delivery. The advantages of nonviral gene therapy are lack of specific immunogenecity, simplicity of use, and ease of large-scale production. In addition, the simple conjugation of a targeting moiety to nonviral gene carrier can facilitate tissue-targeting gene delivery. We have developed two new gene carrier systems, TerplexDNA and WSLP (water soluble lipopolymer). These two are efficient carrier to ischemic myocardium and has low toxicity and high transfection efficiency. So it may allow for application ofin vivo gene therapy in the treatment of heart disease.  相似文献   

17.
Gene therapy has recently witnessed accelerated progress as a new therapeutic strategy with the potential to treat a range of inherited and acquired diseases. Billions of dollars have been invested in basic and clinical research on gene medicine, with ongoing clinical trials focused on cancer, monogenic diseases, cardiovascular diseases and other refractory diseases. Advances addressing the inherent challenges of gene therapy, particularly those related to retaining the delivery efficacy and minimizing unwanted immune responses, provide the basis for the widespread clinical application of gene medicine. Several types of genes delivered by viral or non‐viral delivery vectors have demonstrated encouraging results in both animals and humans. As augmented by clinical indications, gene medicine techniques have rapidly become a promising alternative to conventional therapeutic strategies because of their better clinical benefit and lower toxicities. Their application in the clinic has been extensive as a result of the approval of many gene therapy drugs in recent years. In this review, we provide a comprehensive overview of the clinical translation of gene medicine, focusing on the key events and latest progress made regarding clinical gene therapy products. We also discuss the gene types and non‐viral materials with respect to developing gene therapeutics in clinical trials.  相似文献   

18.
Gene therapy has provided great potential to revolutionize the treatment of many diseases. This therapy is strongly relied on whether a delivery vector efficiently and safely directs the therapeutic genes into the target tissue/cells. Nonviral gene delivery vectors have been emerging as a realistic alternative to the use of viral analogs with the potential of a clinically relevant output. Dendritic polymers were employed as nonviral vectors due to their branched and layered architectures, globular shape and multivalent groups on their surface, showing promise in gene delivery. In the present review, we try to bring out the recent trend of studies on functional and biodegradable dendritic polymers as nontoxic and efficient gene delivery vectors. By regulating dendritic polymer design and preparation, together with recent progress in the design of biodegradable polymers, it is possible to precisely manipulate their architectures, molecular weight and chemical composition, resulting in predictable tuning of their biocompatibility as well as gene transfection activities. The multifunctional and biodegradable dendritic polymers possessing the desirable characteristics are expected to overcome extra- and intracellular obstacles, and as efficient and nontoxic gene delivery vectors to move into the clinical arena.  相似文献   

19.
非病毒基因治疗是相对于病毒性基因治疗而言,指采用非病毒的载体进行的基因治疗。非病毒的基因载体比病毒性基因载体具有高安全性、低免疫原性及易于生产的特点。本文就非病毒基因治疗所采用的主要方法、面蜂的主要问题及发展方向作一概括的介绍。随着人类对疾病发病分子机制的深入研究及人类基因组计划的实施,非病毒基因治疗将在人类疾病的治疗中发挥重要作用。  相似文献   

20.
In vivo gene transfer to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the systemic delivery of therapeutic proteins. Electrotransfer is a powerful method for DNA transfer into skeletal muscle. In view of the broad potential gene therapy clinical application of electrotransfer offers, it is important to perform toxicology studies on electrotransfered muscle tissue. We have investigated if the delivery of square wave electric pulses of low field strength and long duration to mouse tibial cranial muscle induced the expression of stress related genes. We have profiled gene expression patterns in muscles at different times after delivery of electric pulses using Stress/Toxicology microarrays. No significant variation in the expression of stress related-genes was detected between treated and non-treated muscles. This suggests that application of adequate, fine-tuned, electric pulses to the skeletal muscle is a non-toxic technique for gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号