首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertebrate muscle Z-bands show zig-zag densities due to different sets of alpha-actinin cross-links between anti-parallel actin molecules. Their axial extent varies with muscle and fibre type: approximately 50 nm in fast and approximately 100 nm in cardiac and slow muscles, corresponding to the number of alpha-actinin cross-links present. Fish white (fast) muscle Z-bands have two sets of alpha-actinin links, mammalian slow muscle Z-bands have six. The modular structure of the approximately 3 MDa protein titin that spans from M-band to Z-band correlates with the axial structure of the sarcomere; it may form the template for myofibril assembly. The Z-band-located amino-terminal 80 kDa of titin includes 45 residue repeating modules (Z-repeats) that are expressed differentially; heart, slow and fast muscles have seven, four to six and two to four Z-repeats, respectively. Gautel et al. proposed a Z-band model in which each Z-repeat links to one level of alpha-actinin cross-links, requiring that the axial extent of a Z-repeat is the same as the axial separation of alpha-actinin layers, of which there are two in every actin crossover repeat. The span of a Z-repeat in vitro is estimated by Atkinson et al. to be 12 nm or less; much less than half the normal vertebrate muscle actin crossover length of 36 nm. Different actin-binding proteins can change this length; it is reduced markedly by cofilin binding, or can increase to 38.5 nm in the abnormally large nemaline myopathy Z-band. Here, we tested whether in normal vertebrate Z-bands there is a marked reduction in crossover repeat so that it matches twice the apparent Z-repeat length of 12 nm. We found that the measured periodicities in wide Z-bands in slow and cardiac muscles are all very similar, about 39 nm, just like the nemaline myopathy Z-bands. Hence, the 39 nm periodicity is an important conserved feature of Z-bands and either cannot be explained by titin Z-repeats as previously suggested or may correlate with two Z-repeats.  相似文献   

2.
During myofibril formation, Z-bodies, small complexes of alpha-actinin and associated proteins, grow in size, fuse and align to produce Z-bands. To determine if there were changes in protein dynamics during the assembly process, Fluorescence Recovery after Photobleaching was used to measure the exchange of Z-body and Z-band proteins with cytoplasmic pools in cultures of quail myotubes. Myotubes were transfected with plasmids encoding Yellow, Green, or Cyan Fluorescent Protein linked to the Z-band proteins: actin, alpha-actinin, cypher, FATZ, myotilin, and telethonin. Each Z-band protein showed a characteristic recovery rate and mobility. All except telethonin were localized in both Z-bodies and Z-bands. Proteins that were present both early in development in Z-bodies and later in Z-bands had faster exchange rates in Z-bodies. These results suggest that during myofibrillogenesis, molecular interactions develop between the Z-band proteins that decrease their mobility and increase the stability of the Z-bands. A truncated construct of alpha-actinin, which localized in Z-bands in myotubes and exhibited a very low rate of exchange, led to disruption of myofibrils, suggesting the importance of dynamic, intact alpha-actinin molecules for the formation and maintenance of Z-bands. Our experiments reveal the Z-band to be a much more dynamic structure than its appearance in electron micrographs of cross-striated muscle cells might suggest.  相似文献   

3.
The Z-band in vertebrate striated muscles, mainly comprising actin filaments, alpha-actinin, and titin, serves to organise the antiparallel actin filament arrays in adjacent sarcomeres and to transmit tension between sarcomeres during activation. Different Z-band thicknesses, formed from different numbers of zigzag crosslinking layers and found in different fibre types, are thought to be associated with the number of repetitive N-terminal sequence domains of titin. In order to understand myofibril formation it is necessary to correlate the ultrastructures and sequences of the actin filaments, titin, and alpha-actinin in characteristic Z-bands. Here electron micrographs of the intermediate width, basketweave Z-band of plaice fin muscle have been subject to a novel 3D reconstruction process. The reconstruction shows that antiparallel actin filaments overlap in the Z-band by about 22-25 nm. There are three levels of Z-links (probably alpha-actinin) in which at each level two nearly diametrically opposed links join an actin filament to two of its antiparallel neighbours. One set of links is centrally located in the Z-band and there are flanking levels orthogonal to this. A 3D model of the observed structure shows how Z-bands of different widths may be formed and it provides insights into the structural arrangements of titin and alpha-actinin in the Z-band. The model shows that the two observed symmetries in different Z-bands, c2 and p12(1), may be attributed respectively to whether the number of Z-link levels is odd or even.  相似文献   

4.
The dorsal hemal vessel in Parastichopus consists of three distinct layers: An outer flagellated epithelium, an intermediate circular muscle layer and an inner connective tissue layer which nearly fills the lumen. Between the outer and intermediate layer runs strands of nerve fibers. Each coelomic epithelial cell has one flagellum and some microvilli. It contains a number of different vacuoles and a few bundles of tonofilaments. One special type of vacuole which contains well organized myofilaments is described. Each muscle cell contains one myofibril of a non-striated type consisting of thick and thin filaments and no dense bodies. The sarcoplasmic reticulum is poorly developed, but peripheral coupling are frequently found. The muscle cells in the dorsal hemal vessel of Parastichopus are compared with other muscles in echinoderms and muscle types described in other phyla.  相似文献   

5.
The vertebrate striated muscle Z-band connects actin filaments of opposite polarity from adjacent sarcomeres and allows tension to be transmitted along a myofibril during contraction. Z-bands in different muscles have a modular structure formed by layers of alpha-actinin molecules cross-linking actin filaments. Successive layers occur at 19 nm intervals and have 90 degrees rotations between them. 3D reconstruction from electron micrographs show a two-layer "simple" Z-band in fish body fast muscle, a three-layer Z-band in fish fin fast muscle, and a six-layer Z-band in mammalian slow muscle. Related to the number of these layers, longitudinal sections of the Z-band show a number of zigzag connections between the oppositely oriented actin filaments. The number of layers also determines the axial width of the Z-band, which is a useful indicator of fibre type; fast fibres have narrow (approximately 30-50 nm) Z-bands; slow and cardiac fibres have wide (approximately 100-140 nm) Z-bands. Here, we report the first observation of two different Z-band widths within a single sarcomere. By comparison with previous studies, the narrower Z-band comprises three layers. Since the increase in width of the wider Z-band is about 19 nm, we conclude that it comprises four layers. This finding is consistent with a Z-band assembly model involving molecular control mechanisms that can add additional layers of 19 nm periodicity. These multiple Z-band structures suggest that different isoforms of nebulin and titin with a variable number of Z-repeats could be present within a single sarcomere.  相似文献   

6.
When adult chicken skeletal myofibrils are treated with a myosin-extracting solution, the Z-discs with attached actin filaments retain their linear connections with one another in the extracted myofibril. The sarcomere length increases in the extracted myofibrils from a control lenght of 2.5 micrometer up to 6 micrometer. In a sarcomere, eight to fifty 10 nm filaments can be seen in parallel array in the H-zone. The 10 nm-wide filaments do not bind heavy meromyosin and are two to four micrometers in length. These intermediate filaments are postulated to be an integral part of the sarcomere, connecting Z-bands along the length of the myofibril.  相似文献   

7.
To study how contractile proteins become organized into sarcomeric units in striated muscle, we have exposed glycerinated myofibrils to fluorescently labeled actin, alpha-actinin, and tropomyosin. In this in vitro system, alpha-actinin bound to the Z-bands and the binding could not be saturated by prior addition of excess unlabeled alpha-actinin. Conditions known to prevent self-association of alpha-actinin, however, blocked the binding of fluorescently labeled alpha-actinin to Z-bands. When tropomyosin was removed from the myofibrils, alpha-actinin then added to the thin filaments as well as the Z-bands. Actin bound in a doublet pattern to the regions of the myosin filaments where there were free cross-bridges i.e., in that part of the A-band free of interdigitating native thin filaments but not in the center of the A- band which lacks cross-bridges. In the presence of 0.1-0.2 mM ATP, no actin binding occurred. When unlabeled alpha-actinin was added first to myofibrils and then labeled actin was added fluorescence occurred not in a doublet pattern but along the entire length of the myofibril. Tropomyosin did not bind to myofibrils unless the existing tropomyosin was first removed, in which case it added to the thin filaments in the l-band. Tropomyosin did bind, however, to the exogenously added tropomyosin-free actin that localizes as a doublet in the A-band. These results indicate that the alpha-actinin present in Z-bands of myofibrils is fully complexed with actin, but can bind exogenous alpha- actinin and, if actin is added subsequently, the exogenous alpha- actinin in the Z-band will bind the newly formed fluorescent actin filaments. Myofibrillar actin filaments did not increase in length when G-actin was present under polymerizing conditions, nor did they bind any added tropomyosin. These observations are discussed in terms of the structure and in vivo assembly of myofibrils.  相似文献   

8.
Goldberg WM 《Tissue & cell》2002,34(4):232-245
The scleractinian Mycetophyllia reesi lacks even the vestiges of tentacles, but quickly captures particulate food by mucus entanglement. Mesenterial filaments emerge through the oral opening, collect the mucus-embedded particulates, and withdraw to the gastrovascular system within 15 min. Mucocytes dominate the outer epidermis with about 3,000 cells/mm(2) and are capable of apocrine discharge en masse. Mucocytes are spumous, typically with web-like inclusions, which for the most part lack electron opacity with ordinary staining, and are only weakly PAS positive. In contrast, the mucus reacts strongly to diamine and other reagents that suggest an appreciable acidic mucopolysaccharide component. The strongest staining reaction occurs in the presence of high iron diamine, suggesting with other tests that the mucus contains significant quantities of sulfated polysaccharides. Cells with cilia anchored by spiriliform microvilli flank the mucocytes and possess small, spumous inclusions that contain acidic, sulfated, and neutral polysaccharides that do not appear to discharge during feeding. These support cells are closely intertwined with narrow, sinuous, secretory cells containing an electron-opaque cytoplasm of unknown composition that is discharged along with mucus during feeding. The outer epidermis also contains scattered cnidae, rather than the clusters or batteries typical of tentacles. The overwhelming abundance of mucocytes is consistent with their importance in feeding. Likewise, the small number of epidermal cnidae suggest they play a minor role in acquiring food. An inner epidermal layer associated with the mesoglea contains epitheliomuscular cells, nerve cells and pigment cells. The two epidermal layers form an essentially pseudostratified, architecturally simple epithelium.  相似文献   

9.
Immunocytochemical studies of spectrin in hamster cardiac tissue   总被引:4,自引:0,他引:4  
The spectrins are a family of cytoskeletal-membrane proteins that have a wide tissue distribution. In the present study, we employed polyclonal antibodies made against mammalian and avian erythroid spectrins as well as mammalian brain spectrin to assess their presence and distributions in the mammalian heart. Western blot analyses revealed that all three antibodies were specific for a 240,000 molecular weight alpha-spectrin subunit found in hamster erythrocyte ghost homogenates, whole hamster heart, and isolated hamster cardiac myofibril homogenates. Spectrin staining was absent from the Triton X-100-extracted supernatant fraction of myofibril preparations, suggesting that the protein is linked to the myofibril precipitate after exposure to the detergent. Frozen, unfixed, 2-microns-thick; sections of adult. Syrian golden hamster cardiac tissue exhibited strong immunofluorescent staining of intercalated discs and Z-bands using all three antibodies. In addition, the mammalian erythroid spectrin antibodies showed staining of the sarcolemma, and in cross section, revealed a delicate internal network of staining that appears to surround individual myofibrils. This may be T-tubule-associated staining. Myofibrils isolated from cardiac myocytes using Triton X-100 show positive Z-band staining using all three antibodies. Double staining with Texas Red-labeled monoclonal desmin and FITC-labeled polyclonal spectrin antibodies revealed that both stained the myofibrillar Z-line regions. These results demonstrate that spectrin is closely associated with the membranes, myofibrils, and intermediate filaments in the mammalian heart.  相似文献   

10.
The vertebrate muscle Z-band organizes and tethers antiparallel actin filaments in adjacent sarcomeres and hence propagates the tension generated by the actomyosin interaction during muscular contraction. The axial width of the Z-band varies with fibre and muscle type: fast twitch muscles have narrow (approximately 30-50 nm) Z-bands, while slow-twitch and cardiac muscles have wide (approximately 100-140 nm) Z-bands. In electron micrographs of longitudinal sections of fast fibres like those found in fish body white muscle, the Z-band appears as a characteristic zigzag layer of density connecting the mutually offset actin filament arrays in adjacent sarcomeres. Wide Z-bands in slow fibres such as the one studied here (bovine neck muscle) show a stack of three or four zigzag layers. The variable Z-band width incorporating variable numbers of zigzag layers presumably relates to the different mechanical properties of the respective muscles. Three-dimensional reconstructions of Z-bands reveal that individual zigzag layers are often composed of more than one set of protein bridges, called Z-links, probably alpha-actinin, between oppositely oriented actin filaments. Fast muscle Z-bands comprise two or three layers of Z-links. Here we have applied Fourier reconstruction methods to obtain clear three-dimensional density maps of the Z-bands in beef muscle. The bovine slow muscle investigated here reveals a Z-band comprising six sets of Z-links, which, due to their shape and the way their projected densities overlap, appear in longitudinal sections as either three or four zigzag layers, depending on the lattice view. There has been great interest recently in the suggestion that Z-band variability with fibre type may be due to differences in the repetitive region (tandem Z-repeats) in the Z-band part of titin (also called connectin). We discuss this in the context of our results and present a systematic classification of Z-band types according to the numbers of Z-links and titin Z-repeats.  相似文献   

11.
Summary A comparative study of the pigeon ventricular myocardial cell has been performed by transmission electron microscopy (TEM) and by scanning electron microscopy (SEM). Three-dimensional access to the cell interior was obtained by cryo-fracturing paraffin-embedded tissue immersed in liquid nitrogen. The TEM studies revealed parallelly arranged myofibrils separated by rows of mitochondria. The sarcoplasmic reticulum is represented by a well-developed network of tubules which, at the Z- and H-band level of the sarcomere, expands to form belt-like cisternae. The cisternae at the Z-band level lie in close proximity to both myofilaments and mitochondria. Transverse tubules are absent and thus only peripheral couplings are present.SEM observations of the fractured tissue revealed the spatial relationship between the different cell organelles, the most important of these being the parallel myofibrils and the mitochondria. The conspicuous ridges transversing the myofibril at the Z-band level consist mainly of expanded Z-bands, but overlying SR-tubules also contribute to these ridges. Traces of the SR can sometimes be seen covering the myofibrils. The close proximity between the SR and the mitochondria was also confirmed in the SEM.Preparation and examination of SEM prepared tissue in the TEM confirmed that no essential damage or reorganization of cell organelles had taken place during the SEM procedure. On the other hand some shrinkage of the tissue, which was probably caused by critical point drying, was noticed.  相似文献   

12.
Summary The ultrastructure of normal neural lobes of adult rabbits is described. The major part consists of non-myelinated fibres containing neural swellings at intervals. These enclose the neurosecretory granules, mitochondria and a few microtubules. The swellings are connected by narrow nerve fibres with parallel neurotubules but no granules. The Herring bodies resemble large neural swellings and may contain many neurotubules. They are sometimes enclosed by multilamellate sheaths. True myelinated nerve fibres full of granules also occur. The relationship between the neural swellings and pituicytes is discussed. The pituicyte cytoplasm contains many delicate fibrils but it does not resemble an active secretory cell.The blood vessels are characterised by an unusually wide perivascular space containing two condensed layers of basement membrane. These layers can be traced into channels which extend from the perivascular spaces and break up the tissue into lobules. It is suggested that these channels form a mucopolysaccharide spongework that may be important in relation to the release of hormones.The common feature of ether-treated, dehydrated and immature animals is the absence of electron-dense cores from the neurosecretory granules. Such glands are not completely depleted of hormones and much of the hormonal activity is still associated with a sedimentable fraction. Loss of electron density may be due to diffusion of the neurophysin carrier or to a change in configuration of the neurophysin molecules resulting in inaccessibility of both osmiophilic and hormone binding sites. The unbound hormone may be stored in the mucopolysaccharide sponge-work and released gradually into the blood stream.This work is offered as a tribute to Dr. Berta Scharrer on the occasion of her 60th birthday and in appreciation of her leading contribution over many years towards the understanding of the concept of neurosecretion.We are grateful to the Wellcome Trust for providing the Siemens Elmiskop 1 electron microscope used at the Dept. of Human Anatomy, Oxford, and to the D.S.I.R. for other assistance. We also acknowledge valuable discussions with our colleagues, especially Professors H. Heller and W. Bartley.  相似文献   

13.
The electron microscopic study of the tail of Cercaria chackai reveals that it contains four sets of striated muscle bundles located central to the nonstriated circular and longitudinal muscles. The striated muscle consists of longitudinally oriented lamellar myofibres. Each myofibre contains a single "U" shaped myofibril. The banding pattern is analogous to that of vertebrate striated muscle. The sarcolemma is a simple surface membrane. There are no transverse tubular extensions of sarcolemma. The sarcoplasmic reticulum (SR) is very well developed with cisternae, tubules, and vesicles. SR cisternae form dyadic couplings with the sarcolemma. There is a set of flattened tubules of SR origin traversing the myofibril exactly at the Z region. These tubules are unique to the striated muscle of the cercarian tail and may have functional significance. A diagrammatic reconstruction of the myofibre is presented.  相似文献   

14.
A new protein component of skeletal myofibrils has been isolated and characterized. It is prepared from impure myosin preparations and corresponds to band C, the principal contaminant observed in sodium dodecyl sulphate polyacrylamide gel electrophoresis patterns of such preparations (Starr and Offer, 1971).The C-protein, as we term it, is deduced to be a component of the skeletal myofibril because (i) glycerinated or fresh myoflbrils contain a component with a mobility identical to C-protein on sodium dodecyl sulphate gels, (ii) this component is extracted from myofibrils by the same solvent which extracts C-protein and (iii) C-protein may be prepared from preparations of isolated myofibrils. It is presumed to be a component of the thick filaments because it binds strongly to myosin at low ionic strength; immunological evidence which confirms this view is presented elsewhere.The quantity of C-protein in the myofibril has been estimated to be 2.0% by densitometry of sodium dodecyl sulphate gels of glycerinated myofibrils using actin as an internal reference. About forty molecules of C-protein are present in a thick filament.The properties of C-protein distinguish it from the other well-characterized myoflbrillar proteins. The C-protein molecule contains a single polypeptide chain of molecular weight 140,000. The intrinsic viscosity of 13.6 ml/g suggests that the molecule is neither completely globular nor as elongated as molecules like paramyosin or tropomyosin. The α-helical content is very low and the proline content higher than the other myofibrillar proteins. The molecule associates at low ionic strength.C-protein has no ATPase activity, nor does it affect the ATPase of pure myosin. But it reduces the activity of the actin-activated myosin ATPase by about half, this inhibition being independent of the level of Ca2+. C-protein does not bind Ca2+ in the presence of Mg2+. Its possible location and function are discussed.  相似文献   

15.
The fine structure of the epidermis and cuticle has been described for the oligochaete Aeolosoma bengalense. The epidermis is a pseudostratified epithelium and consists of the following cell types: ciliated and nonciliated supportive cells, pigment cells and associated satellite cells, mucous cells, basal cells, and ciliated non-supportive columnar cells. Overlying and restricted to the supportive cells is a delicate cuticle composed of: (a) a discontinuous layer of membrane-bounded surface particles; (b) a thin filamentous layer of moderate electron density just under the surface particles; (c) a thicker inner filamentous layer of low electron density. Digestion with pronase effectively removes the cuticle. This, together with the fact that it stains with alcian blue and ruthenium red, indicates that the cuticle contains an acid mucopolysaccharide. Regeneration of the cuticle, following pronase treatment, is marked by the elaboration of numerous microvilli by the supportive cells. Most of the microvilli are transitory and evidence supports a microvillar origin for the cuticular surface particles. The presence of cuticular surface particles may be a characteristic shared in common by all oligochaetes and, perhaps, some polychaetes.  相似文献   

16.
A role for integrin in the formation of sarcomeric cytoarchitecture   总被引:24,自引:0,他引:24  
T Volk  L I Fessler  J H Fessler 《Cell》1990,63(3):525-536
We propose that integrins help to coordinate the differentiation of the internal, sarcomeric cytoarchitecture of a muscle fiber with its immediate environment and are essential for correct integration of muscle cells into tissue. We found that integrin alpha PS2 beta PS accumulated at contact regions of Drosophila embryo cells cultured in D-22 medium on Drosophila laminin. Myotubes formed, but subsequent addition of serum or fibronectin was needed for sarcomere formation: integrin and actin became concentrated at Z-bands; myosin and actin occurred between the Z-bands. This change failed to occur in the multinucleate myotubes derived from integrin beta PS null myospheroid mutants. In normal embryos/early larvae, integrin was located at Z-bands and at muscle insertions. Myogenesis and Z-bands were defective in myospheroid embryos. Attachment, spreading, and growth of myoblasts and neurons on the laminin substrate utilized different binding proteins and were independent of integrin.  相似文献   

17.
FITC-labeled antibodies raised against chicken myofibrillar I-protein stained chicken myofibrils, which were fixed with formalin immediately after being cut from the sacrificed chicken breast muscle, at the junctional region of A-bands and I-bands. On the other hand, the antibodies stained the glycerinated myofibrils at the region around Z-bands. Aged glycerinated myofibrils stored in a cold room became stained with the same antibodies at the M-line and the A-band region except for the H-zone and the Z-band. I-Protein, which was originally localized at the A-I junctions, moved to the region around Z-bands and A-bands during the process of preparing myofibrils, paralleling the deterioration of myofibrils. Although I-protein is easily released from its original position, it is not a cytoplasmic protein of muscle but an intrinsic myofibrillar component, because immunoblotting tests showed that I-protein is contained in the myofibrillar fraction and not in the muscular cytoplasmic fraction.  相似文献   

18.
The term Bell's palsy is used for the peripheral paresis of the facial nerve and is of unknown origin. Many studies have been performed to find the cause of the disease, but none has given certain evidence of the etiology. However, the majority of investigators agree that the pathophysiology of the palsy starts with the edema of the facial nerve and consequent entrapment of the nerve in the narrow facial canal in the temporal bone. In this study the authors wanted to find why the majority of the paresis are suprastapedial, i.e. why the entrapment of the nerve mainly occurs in the proximal part of the canal. For this reason they carried out anatomical measurements of the facial canal diameter in 12 temporal bones. By use of a computer program which measures the cross-sectional area from the diameter, they proved that the width of the canal is smaller at its proximal part. Since the nerve is thicker at that point because it contains more nerve fibers, the authors conclude that the discrepancy between the nerve diameter and the surrounding bony walls in the suprastapedial part of the of the canal would, in cases of a swollen nerve after inflammation, cause the facial palsy.  相似文献   

19.
It was shown that a proteoglycan is synthetized by embryos of a Japanese sea urchin, Hemicentrotus pulcherrimus. This proteoglycan appears as a single peak on sucrose density gradient ultracentrifugation throughout the development. About half of the mucopolysaccharide moiety in this proteoglycan was found to be dermatan sulphate and the rest to be chondroitinase-resistant mucopolysaccharides.Evidence is presented to show that both types of mucopolysaccharide do not exist in a free form but reside as an integral part of the proteoglycan. The linkage between mucopolysaccharide and protein moieties of the proteoglycan appeared not be an O-glucosidic bond, which is common among other proteoglycans such as proteochodroitin sulphate and proteodermatan sulphate.  相似文献   

20.
The smallest contractile unit in striated muscles is the sarcomere. Although some of the classic features of contraction assume a uniform behavior of sarcomeres within myofibrils, the occurrence of sarcomere length nonuniformities has been well recognized for years, but it is yet not well understood. In the past years, there has been a great advance in experiments using isolated myofibrils and sarcomeres that has allowed scientists to directly evaluate sarcomere length nonuniformity. This review will focus on studies conducted with these preparations to develop the hypotheses that 1) force production in myofibrils is largely altered and regulated by intersarcomere dynamics and that 2) the mechanical work of one sarcomere in a myofibril is transmitted to other sarcomeres in series. We evaluated studies looking into myofibril activation, relaxation, and force changes produced during activation. We conclude that force production in myofibrils is largely regulated by intersarcomere dynamics, which arises from the cooperative work of the contractile and elastic elements within a myofibril.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号